当前位置:文档之家› 直流电机的发展史课件

直流电机的发展史课件

大功率无刷直流电机的介绍

通常情况下,1KW以上的电机我们会称它为大功率无刷直流电机。无刷电机在大功率、高转速的条件下,其优越性更加明显,但对电机控制器要求会比较高。 它的原理是很多人想要知道的,以BLDC80无刷直流电机为例来说吧,此款电机额定转速15000rpm,额定功率1300W,过载能力3倍,而驱动部分按1KW设计,电源为三相220V/50HZ,驱动方式为直流PWM,这样电机的可靠性更高,控制简单,控制特性更好,无刷直流电机控制器是根据霍尔效应制作的一种磁场控制器,其安装在电机的内部,是一种开关型器件。 大功率无刷直流电机控制器输入的信号经过阻容低通滤波后再输入到单片机中,以免杂波的干扰影响单片机的判断。 这款大功率无刷直流电机主要可以应用在智能家厨、工业设备、医疗设备等领域。其中家电设备的应用最为广泛,主要应用的产品是料理机、破壁机,此款无刷直流电机是含控制器一体化的产品,可根据性能和应用要求设计电机和控制器的方案。 随着市场的需求,无刷直流电机的技术优势越来越显著,近些年大功率无刷直流电机已经迅速的得到了推广与应用,无刷直流电机控制器的技术也得到了一

定的提升。无刷直流电机选型时需参考的主要参数有以下几点:最大扭矩:可以通过将负载扭矩、转动惯量和摩擦力相加得到,另外,还有一些额外的因素影响最大扭矩如气隙空气的阻力等。 平方模扭矩:可以近似的认为是实际应用需要的持续输出扭矩,由许多因素决定:最大扭矩、负载扭矩、转动惯量、加速、减速及运行时间等。 转速:这是有应用需求的转速,可以根据电机的转速梯形曲线来确定电机的转速需求,通常计算时要留有10%的余量。 江苏惠斯通机电科技有限公司具有完备售后服务队伍,为用户提供最佳的服务,并且取得了16949认证,是一家专业生产防爆控制电机,伺服电机,直流无刷电机的厂家,是中国航天防爆伺服制定供应商,是军工行业受欢迎品牌,其产品性价比远远高于国外品牌的同类电机。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

直流电机发展历史.doc

1 发展历史 直流马达(directcurrent,DCmotor)可以说是最早发明能将电力转换为机械功率的电动机,它可追溯到Michael Faraday所发明的碟型马达。法拉第(Faraday)的原始设计其后经由迅速的改良,到了1880年代已成为主要的电力机械能转换装置,但之后由于交流电的发展,而发明了感应马达与同步马达,直流马达的重要性亦随之降低。直到约1960年,由于SCR (单向可控硅)的发明、磁铁材料、碳刷、绝缘材料的改良,以及变速控制的需求日益增加,再加上工业自动化的发展,直流马达驱动系统再次得到了发展的契机,到了1980年直流伺服驱动系统成为自动化工业与精密加工的关键技术。 扭矩与功率 将力施于一可旋转之连杆,则此连杆将会旋转,扭矩即为造成此一旋转运动之力,定义为: (2.1) (2.2) (2.3) 如果扭矩固定不变,则

图2.1扭矩(torque)、功(work)与功率(power)牛顿定律(Newton's Law)

磁场之产生 在变压器、马达与发电机的运作过程中,能量常由一种型式转换为另一种型式,这种转换过程的基本机制即在于电磁场(electro-mechanical field)。 电场的变化在适当的情况下将造成感应的磁场,反之亦然,因而在电磁的交互作用中达到能量转换的目的。一个变化的磁场在其切割的线圈上将产生感应电压,这是变压器的基本工作原理。一根载有电流的导线如置于磁场中,则将感应一力施于其上,这是马达运转的基本原理。一根在磁场中移动的导线则将在导线上产生感应电压,这是发电机运转的基本原理。

安培定律 (2.4) 载有电流的导线会在其周围形成磁场,其关系即为(2.4)所示的安培定律,其中H为由净电流I net所造成的磁场强度(magneticfieldintensity),单位为ampere-turns/meter。 (2.5) 其中H为磁场强度向量H的大小,由此可计算出H为 (2.6) 。 (2.7) 称之为导磁性材料的导磁率(permeability)。

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

无刷电机之无感方案控制难点解析

无刷电机之无感方案控制难点解析 无刷无感控制在实际应用中极为广泛,人们对它的研究也尤为以久,它的控制难点主要有两点:第一,电机的启动;第二,转子位置的检测。 对于高压无感方案来讲,除了软件上的难点之外,硬件设计也不容忽视,如硬件设计稍有不当,会导致整个控制板的干扰很大,从而加大了整个方案成功的难度。 以下我们主要针对低压的无感方案进行讨论,对于低压的无感方案来讲,市面上的硬件设计都大同小异,检测转子的位置的方式也都几乎都采用反电动势检测法。 1、为什么无感方案电机的启动如此困难? 对于无刷电机来讲,电机的运转是靠电子开关控制换相,那么想要电机正常高效的运转,就必须要知道转子的位置之后,才能正常换相,问题来了,电机没有传感器,也没有转起来,所以转子的位置就不得而知了,所以无感的启动就要自转启动,先让电机以一定的速率自转,在电机自动的过程中,我们通过检测反电动势来得知转子的位置,从而得到正确的换相的相位。 电机的自启动说起来简单做起来难,本人在调试众多无感方案的过程中,总结出以下几点经验供参考: (1)、首先是自转,自转一定要让电机运转顺畅,不能打抖,同时也不能造成大电流。这是启动成功的非常关键的一步。具体如何达到这个效果,就要各位在调试的过程中调节PWM占空比以及换相时间的长短了。 (2)、启动步数不能太少,也不要过多,一般十来步就够了,等电机运行十来步后开始检测反电动势,当检测到正确的反电动势后这时候电机就正常运转起来了。 2、如何检测反电动势 检测反电动势的方法有两种,第一是用单片机内部AD采样反电动势信号来进行比较,第二是用比较器直接比较。这两种方法思路都是一样,但依个人的经验来看,用比较器的方案更可靠,性能更好,特别是电机转速要求非常高时,用AD采样方法几乎是行不通的。 虽然用比较器方案更有优势,可为何在市面上用AD采样的方式也非常常见?这个主要是因为产品成本的问题。用比较器方案做,要不在外部加一个比较器IC,不仅增加成本,同时也增大PCB 的布板空间,其二就是找一个内部带AD的单片机,而这种单片机相对来讲通常价格偏高一些。下图为检测反电动势的电路参考图:

直流无刷电机实验

直流无刷电机实验 一.实验目的 1.了解直流无刷电机的运行原理 2.掌握直流无刷电机的DSP控制。 二.实验内容 1.实现无刷直流电机的正反转控制 2.实现无刷的速度调节 3.实现无刷直流电机电流环和速度环双环闭环控制 三.原理简介 1.直流无刷电机的原理 无刷直流电动机的结构原理图如图2-1所示: 图1 直流无刷电动机的结构原理图 无刷直流电动机主要由电动机本体、位置传感器和电子开关电路三部分组成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图1中的电动机本体为三相两极,三相定子绕组分别与电子开关线路中相应的功率开关器件联接,在图1中A相、B相、C相绕组分别与功率开关管V1、V2、V3相接。位置传感器的跟踪转子与电动机转轴相联接[2]。 定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换

向作用。 所以,所谓直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电动机以及位量传感器三者组成的“电动机系统”。其原理框图如图2所示。 图2 直流无刷电动机的原理框图 2. 直流无刷电机的控制 直流无刷电机的控制基本上类似于直流有刷电机的控制(PWM 调制),但由于无刷直流电机用电子换向器取代了机械电刷,所以无刷直流电机除了在控制各相电枢电流的同时还用对电子换向器进行控制。在无刷直流电机的运行过程中,霍尔位置传感器不断检测电机当前位置,控制器根据当前位置信息来判断下一个电子换向器的导通时序。如图3所示 H1 H3 ANC BNC BNA CNA H2 CNB ANB A Z X C y W B u V 旋转方向 反向 图1 电子换向器的工作原理 图中H1、H2和H3分别表示霍尔位置传感器的信号,H1的有效期为X 轴到u 轴

基于STM32的直流无刷无感电机的控制系统研究

南阳理工学院 本科生毕业设计(论文) 学院:电子与电气工程学院 专业:电子信息工程 学生: 指导教师:薛晓 完成日期2014 年 5 月

南阳理工学院本科生毕业设计(论文) 直流无刷电机的控制系统设计与实现Design of Brushless DC Motor Controller and Implementation 总计: 21 页 表格: 2 个 插图: 27 幅

南阳理工学院本科毕业设计(论文) 直流无刷电机控制系统设计与实现 Design of Brushless DC Motor Controller and Implementation 学院(系):电子与电气工程学院 专业:电子信息工程 学生姓名: 学号: 指导教师(职称):薛晓(讲师) 评阅教师: 完成日期: 南阳理工学院 Nanyang Institute of Technology

直流无刷电机控制系统设计与实现 电子信息工程专业 [摘要]直流无刷无感直流电机具有体积小、调速性能好、重量轻、效率高等优点,目前在很多领域得到了的应用。本课题设计的是无刷无感直流电机的控制,包括无刷直流电机无位置传感器控制系统和无刷无感直流电机的基本结构、工作原理、数学模型等理论进行了分析和论述,为直流电机的控制提供理论依据。用matlab guide设计了上位机界面来进行PID参数的整定。 本课题设计了直流无刷电机的控制系统并进行了调试。用STM32进行控制。实验结果表明设计的转子位置检测可以很好的检测电机的反电势过零点信号,进而保证电机的正确换相和稳定运行。整个系统可以控制无刷无感直流电机顺利启动,并通过滑动变阻器实现电机的调速。 [关键词] 无刷直流电机;电机驱动;换相;反电势 Design of Brushless DC Motor Controller and Implementation Electronic Information Engineering Specialty Abstract:The brushless DC motors have the advantage of small,good debugging performance,low weight,and high efficiency. So it has been widely used now. And this restricts the industrial drive applications,After the attachment with sensorless control. This paper mainly reserches the sensorless control technology for BLDCM,designs and control BLDCM without position sensor. I use MATLAB guide to debug PID parameter. designing a controller of brushless DC motor and do some experiments for this control system. I use the STM32 MCU as the core microprocessor of hardware system.The results of the experiment show that the rotor position detection system can perfectly detect the location of back-EMF zero-crossing signal,and ensuring the correct motor commutation and stable operation.The whole control system can control the brushless DC motor stating smoothly,and use the Sliding rheostat to achieve speed control. Key words:Brushless dc motor;motor drive;commutation; back-emf

交直流电动机的原理、历史、现状及发展趋势要点

电力拖动自动控制系统 课程综合训练 ——交、直流电动机调速技术历史、现状及发展趋势 :王家琪16115746 班级:越崎学院11-3班

交直流电机调速技术历史、现状及发展趋势 王家琪 (中国矿业大学信息与电气工程学院,) 摘要:本文摘录了国外相关文献对电机调速技术发展的资料,并结合作者本人的本科学习经验整理收录,对于交直流电机调速技术的发展作了扼要的介绍,对于本科阶段理解与掌握电机拖动调速技术有着一定的帮助。 关键词:直流电机、交流电机、原理、调速技术、历史、现状、发展趋势 引言:人类社会发展的历史进程中,能源永远是人类赖以生存的物质基础,科学技术的进步更是和能源的获取变换利用紧密联系在一起。由于电能的生产和利用更涉及机械能与电能两种形态能量之间的转换,电机作为机电能量转换的设备所处位置关键,使得电机技术的发展直接关系到能源的有效变换和利用以及能源的开发和节约。而电机调速技术正是实现电机在工农业生产各领域展拳脚的前提保证。现代工业生产中有两种情况需要实现电机的速度控制: (1)满足运动及生产工艺要求。如对于电动车辆则要求低速恒转矩,高速恒功率;对于电梯机床纺织造纸等传动,特别是轧钢设备则要求正转反转电动制动四象限运行。这是高性能调速技术的应用场合。 (2)实现调速节能。主要针对拖动风机水泵的电机,过去电机恒速运行,依靠挡板或阀门调节风量或流量,致使大量能量耗费在挡板阀门上。采用调节速度方式调节流量时,电机输入功率大大减少,产生高达20%-30% 的节能效果。这是一般性能调速技术的重要应用场合。 一、直流电机调速技术 1.简介 按照电机类型的不同,电机的速度控制可区分为直流调速和交流调速。直流调速即对直流电动机的速度控制。由于直流电动机中产生转矩的两个要素-电枢电流和励磁磁通相互间没有耦合,并可通过相应电流分别控制,因此直流电动机调速时易获得良好的控制性能及快速的动态响应,在变速传动领域中过去一直占据主导地位。然而由于直流电机需要设置机械换向器和电刷,因此直流调速存在固有的结构性缺陷:机械换向器结构复杂,成本增加,同时机械强度低,电刷容易磨损,需要经常维护,影响运行可靠性。由于运行中电刷易产生火花,限制了使用场合,不能用于化工矿山炼油厂等有粉尘腐蚀易燃易爆物质或气体的恶劣环境。由于存在换向问题,难于制造大容量高转速及高电压直流电机,其极限容量与转速乘积被限制在1000000kw.r/min,使得目前3000r/min左右的高速直流电动机。最大容量只能达到(400-500)kw;低速直流电动机也只能到几千千瓦,远远不能适应现代工业生产向高速大容量化发展的需要。 直流电动机一般可分为电磁式和永磁式,电磁式电动机除了必须给电枢绕组外接直流电

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

电机发展历史年鉴电子教案

电机的发展大体上可以分为四个阶段:(1)直流电机;(2)交流电机;(3)控制电机;(4)特种电机。 1820年,丹麦物理学家奥斯特(Oersted)发现了电流在磁场中受机械力的作用,即电流的磁效应。 1821年,英国科学家法拉第(Faraday)总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。 1824年,阿拉果(Arago)发现了旋转磁场,为交流感应电动机的发明奠定了基础。当时阿拉果(Arago)转动一个悬挂着的磁针,在磁针外围环绕一个金属圆环,以研究磁针旋转时圆环所起的阻尼作用,这就是首次利用机械力所产生的旋转磁场。 1825年,发现了阿拉果旋转现象,根据作用力和反作用力的原理,利用外绕金属圆环的旋转,阿拉果使悬挂的磁针得到一定的偏转,这个现象实质上就是以后多相感应电动机的工作基础。 1831年,法拉第发现了电磁感应定律,并发明了单极直流电机。 1832年,人们知道了单相交流发电机。由于生产上没什么需要,加上当时科学水平的限制,人们对交流电还不很了解,所以交流电机实质上没什么发展。 1833年,法国发明家皮克西(Pixii)制成了第一台旋转磁极式直流发电机,主要利用了磁铁和线圈之间的相对运动和一个换向装置,这就是现代直流发电机的雏形。楞次已经证明了电机的可逆原理。 1833~1836年,美国人奥蒂斯设计和制造了第一台ARBOR步进电机生产率为35米3/时。 1834年,俄国物理学家雅可比(Якоби)设计并制成了第一台实用的直流电动机,该电动机有15瓦,由一组静止的磁极和一组可以转动的磁极组成;依靠两组磁极之间的电磁力和换向器的换向作用,得到了连续的旋转运动。 1838年,雅可比把改进的直流电动机装在一条小船上。 1850年,美国发明家佩奇(Page)制造了一台10马力的直流电动机,用来驱动有轨电车。 1851年,辛斯坦得首先提出(1863年再次由华尔德提出)电流代替永磁来励磁,使磁场得以初步加强。由希奥尔特首先提出(1866~1867年再次由华尔德和西门子提出)用蓄电池他励发展到自励,最终地解决了加强励磁的问题。 1857年,英国电学家惠斯通(Wheatstone)发明了用伏打电池励磁的发电机。

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 : 又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电, 但是, 注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC, 采用方波自控式永磁同步 电机,以霍尔传感器取代碳刷换向器, 以钕铁硼作为转子的永磁材料; 产品性能超越传统直流电机的所有优点, 同时又解决了直流电机碳刷滑环的缺点, 数字式控 制, 是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性, 非常适合使用在24 小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载; 低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动; 其稳速运转精度比直流有刷电机更高, 比矢量控制或直接转矩控制速度闭环的变频驱动还要高, 性能价格比更好, 是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

直流无刷电机驱动原理

直流无刷电机的工作原理 直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电 枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会 产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及 整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技 术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处 理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制 交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(Analog-to-digital converter,ADC)、脉冲宽度调制(pulse wide modulator,PWM)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转 子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直 流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子 的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电 机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 直流无刷驱动器包括电源部及控制部如图(1) :电源部提供三相电源给电机,控制部则依需 求转换输入电源频率。

电机的历史与未来发展--

摘要 在现代社会中,电能是现代社会最主要的能源之一。在电能的生产、输送和使用等方面,电机起着重要的作用。从19世纪30年代法拉第发明了世界上第一台真正意义上的电机—法拉第圆盘发电机开始,到现在21世纪10年代,电机的发展已经经过了近200年的历史。从最初的直流电机到现在大热的超声电机,随着科学的进步,生产力的迅猛发展,电机更新换代的速度日益加快,应用范围也越来越广,遍及生产生活的各个领域。我国在电机方面起步比西方国家晚了100年,但研究发展速度很快,很多企业和高校也都有自己新的研究技术,与国外先进国家的差距在逐渐缩短。未来,相信电机的应用和发展将会更加环保,更加智能。 关键词:电机、历史、发展、中国电机发展、未来

1、电机的简介 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机主要包括发电机、变压器和电动机等类型。发电机是将其他形式的 能源转换成电能的机械设备,电动机将电能转换成为机械能,用来驱动 各种用途的生产机械。 在自然界各种能源中,电能具有大规模集中生产、远距离经济传输、智能化自动控制的突出特点,它不但成为人类生产和活动的主要能源,而且对近代人类文明的产生和发展起到了重要的推动作用。与此相呼应,作为电能生产、传输、使用和电能特性变化的核心装备,电机在现代社会所有行业和部门中也占据着越来越重要的地位。 纵观电机的发展,其应用范围不断扩大,使用要求不断提高,结构类型不断增多,理论研究也不断深入。特别是近30年来,随着电力电子技术和计算机技术的进步,尤其是超导技术的重大突破和新原理;新结构;新材料;新工艺;新方法的不断推动,电机发展更是呈现出勃勃生机,其前景是不可限量的。 2、电机的历史 2.1直流电机发展史 1820年丹麦物理学家奥斯特发现了电流磁效应 随后安培通过总结电流在磁场中所受机械力的情况建立了安培定律 1821 年 9 月法拉第发现通电的导线能绕永久磁铁旋转以及磁体绕载流导体的运动,第一次实现了电磁运动向机械运动的转换,从而建立了电动机的实验室模型,被认为是世界上第一台电机 1822年,法国的阿拉戈.盖.吕萨克发明电磁铁,即用电流通过绕线的方法使其中铁块磁化。 1829年,美国电学家亨利对斯特金电磁铁装置进行了一些革新,绝缘导线代替裸铜导线,就大大提高了把电能转化为磁能的能力。 1826年德国G.S.欧姆提出电路实验定律――欧姆定律。 1831 年,法拉第发现了电磁感应现象之后不久,他又利用电磁感应发明了世界上第一台真正意义上的电机──法拉第圆盘发电机

无刷直流电机简介及实例

无刷直流电机属于直流电机,我们需要先清楚何为直流电机。 直流电机是指能输出直流电流的发电机,或通入直流电流而产生机械运动的电动机。直流电机简易模型如下图。 原动机以恒定转速拖动电枢即直流发电机。若把负载改为直流电源,则电机做电动机运行。 直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机,这就是无刷直流电机,它没有电刷和换向器。 构成和原理: 以无刷直流电动机为例: 无刷直流电动机通常是由永磁电机本体、转子位置传感器和功率电子开关三部分组成。 众所周知,直流电动机从电刷向外看虽然是直流的,但从电刷向内看,电枢绕组中的感应电势和流过的电流完全是交变的。从电枢绕组和定子磁场之间的相互作用看实际上是一台电励磁的电动机。电动机运行方式下,换向器起逆变作用,把电源直流逆变成交流送入电枢绕组。永磁无刷电动机用功率电子开关代替了直流电机中的换向器,用无接触式的转子位置检测器代替了基于接触导电的电刷,尽管两者结构不同,但作用完全相同。 无刷直流电动机中的位置传感器的作用是检测转子磁场相对于定子绕组的位置,并在确定的相对位置上发出信号控制功率放大元件,使定子绕组中的电流进行切换。通过位置传感器测量转子的准确位置,使各晶体管在转子的适当位置导通和截止,从而控制各电枢绕组的

电流随着转子位置的改变按一定的顺序进行换流,保证了每个磁极下电流的方向,实现了无电刷的无接触式换向。 控制: 无刷直流电机使用了位置检测器代替了电刷,电子换向电路代替了机械式换向器,因此电子控制系统是这种电机不可缺少的必要组成部分。 开环控制系统和闭环控制系统。可以实现电机正反转控制、制动、速度调节。 星形三相六状态无刷直流永磁电动机原理 当开关管BG1与BG5导通时,电流由A组线圈进B组线圈出,两个线圈形成的合成磁场方向向上,,规定此时的磁场方向为0度、转子旋转角度为0,如下图。

51单片机直流无刷电机控制

基于MCS-51单片机控制直流无刷电动机 学号:3100501044 班级:电气1002 :王辉军

摘要 直流无刷电机是同步电机的一种,由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载围当负载变化时仍可以控制电机转子维持一定的转速。 MCS-51单片机是美国英特尔公司生产的一系列单片机的总称,是一种集成电路芯片,采用超大规模技术把具有数据处理能力的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路、定时计算器、串行通信口、脉宽调制电路、A/D转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 本论文将介绍基于MCS-51单片机控制直流无刷电动机的设计,它可以实现控制直流无刷电动机的启动、停止、急停、正反转、加减速等功能。 关键词:单片机,直流无刷电动机,控制系统

直流无刷电动机是在直流电动机的基础之上发展而来的,它是步进电动机的一种,继承了直流电动机的启动转矩大、调速性能好等特点克服了需要换向器的缺点在交通工具、家用电器及中小功率工业市场占有重要的地位。直流无刷电动机不仅在电动自行车、电动摩托车、电动汽车上有着广泛的应用,而且在新一代的空调机、洗衣机、电冰箱、吸尘器,空气净化器等家用电器中也有逐步采用的趋势,尤其是随着微电子技术的发展,直流无刷电动机逐渐占有原来异步电动机变频调速的领域,这就使得直流无刷电动机的应用围越来越广。 本设计就是基于MCS-51系列单片机控制直流无刷电动机,利用所学的知识实现单片机控制直流无刷电动机的启动、停止、急停、正反转,加减速等控制,并对直流无刷电动机运行状态进行监视和报警。详细介绍单片机的种类、结构、功能、适用领域和发展历史、未来前景及其直流无刷电动机的工作原理、控制结构等容,既着重单片机的基本知识、功能原理的深入阐述,又理论联系实际详细剖析单片机控制直流无刷电动机的过程。 1.直流无刷电动机的基本组成 直流无刷电动机是在直流电动机的基础上发展而来的,直流无刷电动机继承了直流电动机启动转矩大、调速性能好的优点,克服了直流电动机需要换向器的缺点,在交通工具、家用电器等生活的方方方面面占有重要的地位。 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 直流无刷电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图3-1所示为三相两极直流无刷电机结构。 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、

直流电的发展

直流电的发展 阮仕海 2012级软件学院7班 学号 12330272 摘要 电是人类的一大发明,而直流电从其产生便遭受了很大的挫折,最终在交流电的背后沉默了一百多年。不过随着21世纪能源危机的接近、新能源的发展以及高科技的兴起,直流电相对交流电的优势变得越来越明显,而直流电的发展也越来越吸引着人们的目光。一场被称为“直流电复仇”的革命正在演绎,直流电发展前景一片光明,极有可能夺回曾经失去的统治地位。当然,直流电的发展的背后还必须攻克许多重要的技术难关。 关键词 直流电;交流电;能源;变革;技术难关;应用;前景 引言 毋庸置疑,在过去的一百多年里,交流电占据了绝对的统治地位,而造成这一现象的初衷,只是因为当时对直流电应用的相关技术发展跟不上,相对而言,交流电应用则简单得多了。但是,科技的发展日新月异,进入21世纪,直流电方面的许多技术难关已经攻克,技术日趋成熟,而且直流电本身就具备了许多交流电无可比拟的优势,再加之当今人们对“节约资源,开发新能源”呼声不断,直流电便具备了天时、地利、人和的绝对优势,人类的关注焦点在转移,直流电正在回归。 1 直流电的过去和现状 1.1直流电的过去 在早期,工程师们主要致力于研究直流电,尤其到了18世纪,电的研究迅速发展起来。一百多年前,当托马斯?爱迪生发明电灯之后,直流电便是当时最主要的传输方式。1889年的巴黎世博会选择在晚上开幕,馆内馆外共有一千多

个弧光灯大放异彩,使用电压为60伏,亮度从几百烛光到10000烛光不等,爱迪生公司详尽演示了白炽灯生产的每个步骤和整个流程,从此电灯开始普及,电力产业开始起步,而且速度飞快。然而,在1893年的芝加哥世博会上,直流电一方是“世界发明大王”爱迪生和新组建的通用电气公司,交流电一方是初露头角的塞尔维亚移民科学家特斯拉和实力强大的威斯汀豪斯公司(即西屋电气的前身),两者竞争异常激烈,直流电也因此结束了一家独大的历史。 随着科学技术和工业生产发展的需要,社会对电力的需求也急剧增大。由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。而电流愈大,输电线路发热就愈厉害,损失的功率就愈多,而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。为了减少输电线路中电能的损失,只能提高电压。在发电站将电压升高,到用户地区再把电压降下来,这样就能在低损耗的情况下,达到远距离送电的目的。而要改变电压,只有采用交流输电才行。直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。 1903年,爱迪生为了能够保住直流电作为全美配电标准的地位,甚至导演了一场电刑事件,即使用6600伏交流电,对一头被认为威胁人类的马戏团大象实施电刑处死,以此散步恐慌来证明交流电的危险性。但事实证明了交流输电的优越性,爱迪生以失败告终,曾经风靡一时的爱迪生通用电气公司也被迫去掉了爱迪生的名字,改名为通用电气公司。从此,交流电开始了长达百年的统治。 而总观直流电衰落的原因,正如法克所说,“直流在一百多年前败给交流就是由于当时的技术条件所限,一是远程传输技术难点,二是当时半导体技术并未像目前一样发展,三是直流的灭弧问题没办法解决。” 20世纪50年代后,电力需 电网扩大,交流输电受到同步运行稳定性的限制,在一定条件下的技术经济比较结果表明,采用直流输电更为合理,且比交流输电有较好的经济效益和优越的运行特性,因而直流输电重新受到人们的重视。 附:电的发展史上的重要事件 1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电。

无感无刷电机笔记

最近一直在研究无刷电机驱动,随着资料和方案越看越多,觉得还是根据自己理解写一点心得,希望对大家有帮助,文章如有不对之处还望大家多多包涵。好了,下面来进入正题一、无刷直流电机种类 我们常见的无刷直流电机有两种,一种是带霍尔传感器的叫有感无刷直流电机;另外一种是航模常用的不带霍尔传感器的叫做无感无刷直流电机。 下面来简单介绍下两种电机之间的区别。 有感无刷电机在电机的内部会装有霍尔传感器,其安装的位置一般都是对称的,有30度、60度、120度,其重要功能是来反馈电机转子的位置,来告诉控制者什么时候可以换相了,还有可以根据其两次换相的时间来反馈电机的转速。有感无刷电机一般都是用在工业级控制上面,其功率都偏大。 无感无刷电机是不带有霍尔传感器的,其输出线只有三根电机控制线,那么我们怎么来知道电机转子的位置和转速呢,还有我们怎么来驱动它,下面我们慢慢来分析其中的奥秘! 二、无刷电机的驱动常用的电路 在直流有刷电机驱动大家应该都知道用全桥电路来控制其的正反转,通过改变PWM 的占空比来改变其转速。无刷电机的控制方式和其很相似,只是多了一对半桥。 上面的电路图是从其他论文上截图的,我们可以看出图右边是无刷电机的模型,其采用的是星型的连接方式。其输出有三根线,常称其为:A相、B相、C相。也有称呼为:U相、V相、W相。左边的为功率变化驱动电路,上图采用的是NPN型的三极管,若用5V的单片机来驱动它,则高电平导通,低电平截止。不知道大家注意到没有,每个三极管旁边都会有一个二极管,其作用很大,它起到一个续流的作用。如果大家有研究过开关电源ZVS移相全桥拓扑的应该知道这个续流二极管的重要性。 上图是用MOS来驱动的,其可以过大电路,

无刷直流电机控制技术综述

龙源期刊网 https://www.doczj.com/doc/a97803885.html, 无刷直流电机控制技术综述 作者:黄秀勇 来源:《山东工业技术》2017年第14期 摘要:在十九世纪电机诞生的时候,其中实用性的电机就是无刷的形式,其得到了广泛 的运用,随着时代的发展,在上世纪中叶的时候晶体管诞生,直流无刷电机也随之应运而生,无刷直流电机的应用十分广泛,在各个领域都有涉猎。 关键词:直流无刷电机;技术研究;控制技术 DOI:10.16640/https://www.doczj.com/doc/a97803885.html,ki.37-1222/t.2017.14.201 0 引言 经过不断的演变与发展,无刷直流电机综合了交流电机和直流电机的全部优点出现在人们的视野当中,它的出现大大的提高了生产的效率,减少了能源的消耗,得到了广泛的应用和普及。在电机领域中,新型无刷电机的品种众多,其性能和价格都不尽相同,就其的控制来说具有多种方法。 1 无刷直流电机的特点 随着科技的发展,无刷直流电机的出现代替了许多传统的电机,在各个领域都得到了广泛的应用,它具有传统直流电机的全部优点,但同时又除去了碳刷、滑环结构,它在投入使用的过程中具有速度很低的优点,这就大大的减少了用电率,虽说其速度低但其产生的功率却十分巨大,其体积小、重量轻的优点省去了减速机的超大负载量,在使用的过程中效率十分高。由于其除去了碳刷,所以减少了很多消耗,这就使它的省电率相当高,再加上其在运作时不会产生火花,对于一些爆炸性的场所来说更具备安全性,对其的维修和保养方面来说也是十分容易的。综合其特点来看,和其他种类的电机相比其优异性非常显著,因此,无刷直流电机凭借着其充分的优势在很多场合都发挥着重要的作用。 2 转子位置检测技术 逆变器功率器在进行运转的时候,转子在进行运转的时候位置会发生改变,在其位置发生改变的同时会触发组合,使其组合的状态进行不同的改变,这就是无刷直流电机的运行原理,由此看来,想要准确的控制无刷直流电机的运行就必要确保转子的位置,与此同时还要对转子触发的功率器件组合进行相应准时的切换,想要做到这一点是相当困难的。 通过科技水平的不断提高,相关学者提出了检测转子位置的一种新的办法。首先准备一些非磁性导电质地的材料,把这些材料粘在永磁转子的外部;其次,相关设备在工作时会使非磁性材料上产生涡流效应,进而使转子的位置发生相应的改变,最后通过观察检测电压来确定转

相关主题
文本预览
相关文档 最新文档