当前位置:文档之家› 双作用液压缸的设计与控制

双作用液压缸的设计与控制

双作用液压缸的设计与控制
双作用液压缸的设计与控制

中原工学院机电学院

机电系统综合实验

(2016-2017学年第 1 学期)

专业:机械电子工程

题目:可伸缩伺服液压缸

姓名:程方园

学号:4109 班级机电131

指导教师:周高峰崔路军

完成日期:2017 年 1 月12 日

机械电子工程系

目录

设计任务书 1

1.设计目的与意义3

2. 设计内容和要求3

确定总体方案3

设计内容4

设计要求4

3.设计进度安排 4

4.机电系统设计的分析、计算、选用与说明4

机械设计4

液压缸的结构设计4

、液压缸的主要技术性能参数的计算5

、液压缸主油缸的设计计算 7

、缸体的材料和技术要求10

、活塞杆径的计算与校核10

、快速液压缸柱塞直径的计算12

、缸盖的设计计算12

、液压缸油口的直径计算13

、导向套的设计计算14

e.内孔中的环形油槽和直油槽要浅而宽,保证润滑条件良好14液压回路设计15

电路设计15

控制设计16

5. 机电综合课程设计结论16

6.机电综合课程设计的收获、体会和建议17

7. 参考文献17

8.附录17

设计任务书

可伸缩伺服液压缸设计与控制

1.设计目的与意义

油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,

起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。

设计内容和要求

1)理解可伸缩伺服液压缸的功能和工作原理,确定其功能参数;

2)明确可伸缩伺服液压缸的具体结构和控制方式,并给出相关参数;

3)分析和计算可伸缩伺服液压缸机械结构,并确定控制的具体实现。

4)绘制可伸缩伺服液压缸机械图纸和电气电子线路图;

5)撰写技术说明书

确定总体方案

当下各种液压缸规格品种比较少,主要是因各种机械对液压缸的要求差别太大。比如对液压缸的内径、活塞杆直径、液压缸的行程和连接方式等要求不一样。由于本次液压设计主要是实现立式快速的原则,故选双作用单活塞杆立式快速液压缸的设计。采用焊接连接。

设计内容

可伸缩伺服液压缸设计与控制

液压缸的公称压力为30Mpa

液压缸快进速度为s

液压缸的行程为300mm

液压缸回程力为175KN,

设计要求

1)理解可伸缩伺服液压缸的功能和工作原理,确定其功能参数;

2)明确可伸缩伺服液压缸的具体结构和控制方式,并给出相关参数;

3)分析和计算可伸缩伺服液压缸机械结构,并确定控制的具体实现。

4)绘制可伸缩伺服液压缸机械图纸和电气电子线路图;

5)撰写技术说明书

3.设计进度安排

1)17周:机械设计

2)18周:液压回路设计,电路设计

3)19周:控制电路设计

4.机电系统设计的分析、计算、选用与说明机械设计

液压缸的结构设计

1、缸体与缸的连接

缸体与缸的连接形式较多,有拉杆连接、法兰连接、内半环连接、焊接连接、。在此选用焊接连接。

3、活塞与活塞杆的连接

活塞与活塞杆的连接大多采用螺纹连接结构和卡键连接结构。螺纹连接结构形式简单实用,应用较为普遍;卡键连接机构适用于工作压力较大,工作机械振动较大的油缸。因此从多方面的因素考虑选择螺纹连接结构。

4、液压缸缸体的安全系数

对缸体来说,液压力、机械力和安全系数有关的因素都对缸体有影响。液压缸因压力过高丧失正常工作能力而破坏,往往是强度问题、刚度和定性问题三种形式给表现出来,其中最重要的还是强度问题。要保证缸体的强度,一定要考虑适当的安全系数。

、液压缸的主要技术性能参数的计算

1、压力

所谓压力,是指作用在单位面积上的负载。从液压原理可知,压力等于负载力与活塞的有效工作面积之比。

P=F/A(N/m2)

式中:F—作用在活塞上的负载力(N)

A—活塞的有效工作面积(m2)

从上述可知,压力值的建立是因为负载力的存在而产生的,在同一个活塞的有效工作面积上,负载越大,所需的压力就越大,活塞产生的作用力就越大。如果活塞的有效工作面积一定,压力越大,活塞产生的作用力就越大。由此可知:

1、根据负载力的大小,选择活塞面积合适的液压缸和压力适当的液压泵。

2、根据液压泵的压力和负载力,设计和选用合适的液压缸。

3、根据液压缸的压力和液压缸的活塞面积,确定负载的重量。

在液压系统中,为了便于液压元件和管路的设计选用,往往将压力分级。见下表

2、流量

所谓流量是指单位时间内液体流过管道某一截面的体积。对液压缸来说,等于液压缸容积与液体充满液压缸所需时间之比。即:

q=V/t

式中:V—液压缸实际需要的液体体积(L)

t—液体压力充满液压缸缸所需的时间(min)

3、运动速度

运动速度是指单位时间内液体流入液压缸推动活塞(或柱塞)移动的距离,运动速度可表示为:

v=q/A

式中:q—流量(m3/s)

A—活塞活塞受力作用面积(m2)

设定快进速度为s

计算运动速度的意义在于:

1、对于运动的速度为主要参数的液压缸,控制流量是十分重要。

2、根据液压缸的速度,可以选用流量合适的液压泵。

3、根据液压缸的速度,可以确定液压缸的进、出油口的尺寸,注塞杆,活塞和活塞杆的直径。

4、利用活塞杆前进和后退的不同速度,可实现液压缸的慢速攻进和快速退回。 4、速比

速比是指液压缸活塞杆往复运动的速度之比,因为速度与活塞的有效工作面积有关,速比也是活塞两侧有效工作面积之比。

1

2

v v =

? 式中:D —液压缸直径(m ) d —活塞杆的直径(m )

计算速比主要是为了确定活塞杆的直径和决定是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成活塞杆太细,稳定性不好。φ值可根据公称压力表值选定

液压油作用在活塞上的液压力,对于双作用单活塞杆液压缸来说,活塞杆伸出时的推力为F 1: F=A 1P ?106

活塞杆缩回时的拉力为F 2:

F 2=A 2x106=4

π

(D 2-d 2)Px106 式中: P —工作压力(Mpa ) D —缸筒内径(m ) d —活塞杆直径(m ) 6、行程

液压缸的活塞行程S ,在初步设计时,主要是按实际工作需要长度来考虑。但是,实际需要的工作行程并不一定是液压缸的稳定性所允许的行程,为了计算行程,应首先计算出活塞杆的最大允许计算长度。 L=2

k

Pn n 8.93

(cm)

式中: d —活塞杆直径(cm )

P —活塞杆纵向压缩负载(N )

n —末端条件系数,可查表求出,依题可知n=1/4 n k —安全系数,n k ≥6

根据液压缸的各种安装形式和欧拉公式所确定的活塞杆计算长度及导出行程计算式。一般情况下,液压缸看纵向压缩负载是知道的,有上式即可大概求出

液压缸的最大允许行程。

设计液压缸的行程为300mm 。 、液压缸的基本参数

1、液压缸内径及活塞杆外径尺寸系列 液压缸内径系列(GB/T2348-1993)

8 10 12 16 20 25 32

40 50 63 80 (90) 100 (110)

125 (140) 160 (180) 200 220 (250) (280) 320 (360) 400 450 500 括号内为优先选取尺寸

活塞杆外径尺寸 系列(GB/T2348-1993)

4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50

56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 活塞杆连接螺纹型式按细牙,规格和长度查有关资料。 液压缸的行程系列(GB2349-1980) 第一系列

25 50 80 100 125 160 200 250 320 400 500 630 800 1000 1250 1600 2000 2500 3200 4000 第二系列

40 63 90 110 140 180 220 280 360 450 550 700 900 1100 1400 1800 2200 2800 3600

在设计计算后按、、、选用缸径、杆径和行程,并验算与要求控制在±5%内

、液压缸主油缸的设计计算 1、缸体内径D 的计算

设计过程中,根据已经给出的工作压力、公称压力计算缸体的内径,对于双作用单活塞杆液压缸的计算如下: F=PA=

4

2

D πP

式中: F---液压缸的公称压力; P---液压缸的工作压力; 所以: D =

P

F

π4= 6

3

10

3014.31010004x x x x = 根据(GB/T2348—1993)圆整后取D =220mm 实际公称力F=30x106

x

4

)10220(2

3-x π=949850N ≈1140KN

验算:%5%6%1001000

11401000±≤-=-x

所以合理,即D =220mm

2、缸体壁厚

δ

的计算

按厚壁筒计算,因我们本次设计缸体的材料为QT500-7球墨铸铁,是脆性材料,则考虑用第一和第二强度理论计算,又因第二强度理论比第一强度理论更节省材料,故选用第二强度理论来计算:

)13.1][4.0][(2--+≥y

y

P P D σσδ

P y 为试验压力:

当缸的额定压力P ≤16Mpa 时,P y = 当缸的额定压力P>16Mpa 时,P y = 所以: y P =?=

δ=2D

(y

y P P 3.1][104][-+σσ-1)

=

220

2?(666610

5.373.11090105.374.01090??-???+?-1)= 根据国标GB8713—1988,圆整后取δ=50mm

3、缸体外径D 1的计算 D 1 = D+2δ

式中: D —缸体内径(参见重型机械表)

所以: D 1 = D+2δ=220+2?50=320mm 根据重型机械表,取D 1=320mm 合理。 4、缸体壁厚的验算

因我们本次设计缸体的材料为QT500-7球墨铸铁,是脆性材料,采用第二强度理论验算(以能量为依据)即:

P D

D D D 2

2

12

221)

4.03.1(-+=

σ=3022

.0317.0)

22

.04.0317.013(222

2?-?+?=][σ≤

D 1=D

Py Py

3.1][104][-+σσ=30

25.13.1903025.14.090??-??+=

σ=<90MPa

所以液压缸的壁厚是符合要求的。

5、支承台肩处强度计算 1)支承台肩接触面挤压应力

=

σ][]

)2()2[(785.0]2123σ≤+--S D S D P

式中: P=1000KN D 3=360mm

D 1=320mm S=2mm (倒角尺寸) []σ—许用挤压应力,[]σ=90Mpa

则:σ

=6

223

10

])2002.032.0()202.036.0[(785.0101000??+-?-?=≤ 90MPa 2)支承台肩断面,从图可见,台肩处断面上的合成应力为弯曲应力与拉伸压力之和。

即:

σ=

][6)

(785.02

2223σ≤+-h Ma

D D P =90MPa 式中:D 3=360mm D 2=260mm

Ma=T ?

?? ?

?-221D D ????????

?

???

??

?

??

?

++21

312

)(2211D D In h h D h ββ 其中: T=2

D P π=26.014.31010003

x x =(N/m)

h=160mm 1h =2

1

(D 1-D 2)=30mm

β=

4

21222)2

()

1(3xh D μ- μ=(材料泊松比系数)

钢:3.0=μ 铸铁:25.0=μ 得:2

224

03.0)2

26.0()

3.01(3x -=

β=

故Ma=2)26.032.0(-?????

?

??????++26.032.0)03.016.0(26.058.202216.058.2011

3In

x x x Ma=254831N

90MPa =] [<80.27Mpa =16.0254831

6)26.036.0(785.010000002

22σσx +-=

、缸体的材料和技术要求 1)缸体材料

选取QT500-7球墨铸铁,球墨铸铁的各种要求参数。

500,7%,170~230,90b MPa HBS MPa σδ==硬度许用应力

2)缸体的技术要求、精度、表面粗糙度和形位公差要求

a.缸筒的内径可选用H8、H9或H10配合。内径的表面粗糙度:活塞选用橡胶密封件密封,故取~m μ,并进行研磨

b .缸筒内径的圆度和圆柱度可选8级或9级精度

c .缸筒端面的垂直度可选7级精度 其他技术要求

a .缸筒内径端部倒角15~30o o ,或倒R3以上的圆角,粗糙度不得过高,以免装配时损伤密封件

b .缸筒外露表面可涂耐油油漆。

c.铸件不得有砂眼、气孔、夹渣及组织疏松等缺陷

d.铸件时效处理

e.螺纹退刀槽圆角半径R1

f .在压力下保压10min 不得有渗漏现象 、活塞杆径的计算与校核 1、活塞杆径的计算 1)用流量定回程速度V

由回程速度V=q/A 可计算出活塞杆直径d : V 回=q/A

?

?

????-4)220(601037=

150226

d x π

208()d mm =

根据(GB/T2348—1993)选取d=200(mm )

注: V —液压泵的回程速度。 q —液压泵的额定排量。

A —活塞与活塞杆的环形面积 2、活塞杆直径的校核

设计中回程力为175KN,根据计算实际回程力校核。 F=PA=

4

2

D πP

=25x106

x

4

)

(22d D -π=25x106

x 4

]

)10200()10220[(14.32323----?x

=KN 167≈

验算:5%%5.4%100175

167

175<=?-

所以合理,即活塞杆直径为200mm 3、活塞杆的材料和技术要求

活塞杆是液压缸传递力的主要元件,它必须具有足够的强度和缸度,以便能承受拉力、压力、弯曲力、振动和冲击等载荷的作用,同时还要注意到它多活塞有效工作面积的影响,保证液压缸达到所要求的作用力和运动速度。活塞杆应具有一定的耐磨性。它的端部要选择适当的连接形式,并有较好的连接强度,此外还应具有较高的尺寸精度、几何精度和表面光洁度。活塞杆的杆体分为实心杆和空心杆,本次设计选用空心杆。 1).活塞杆的材料

活塞杆通常选用棒料进行加工,此处选用球墨铸铁QT600-3。 2).活塞的技术要求

A .粗加工调质HB229~285

B .可高频淬火HRC45~55

C .外圆圆度公差按9、10、11级精度,圆柱度按8级,两外圆跳动公差为,端面垂直度公差按7级

D .活塞杆表面需镀硬铬,镀层厚度30~50m μ,镀后抛光

E .工作表面粗糙度4.0~3.0R ≤a 。

F 、时效处理

G .不得有影响强度和表面的铸造缺陷 3).活塞杆的密封和防尘 (1)、活塞杆的密封

A 、在一定工作压力和温度下具有良好的密封效果,泄漏小

B 、摩擦系数小,摩擦力均匀,不会引起运动零件的爬行或卡死等现象

C 、耐磨性好,寿命长,在一定程度上能自动补偿被密封件的磨损和几何精度的误差

D 、不损坏被密封件表面

E 、耐油性、抗腐蚀性好,不易老化

F 、成本低廉,制造容易,使用方便,维护简单

G 、采用标准化结构和尺寸

H 、适应液压缸工作条件的特殊要求

所以,其密封装置移动部分选用x Y 型聚氨酯密封圈密封;静止部分选用“O ”型橡胶密封圈密封。

4)活塞杆的防尘装置 液压缸工作时常有灰尘、沙粒、铁屑等污物落在活塞杆上。若将污物带进液压缸,不仅会加剧零件的磨损、产生划痕,而且会影响液压系统的正常工作,因此需要安装防尘装置。

因防尘圈能刮掉落在活塞杆上的污物,则按(QZB336—77)选用“防尘圈115聚氨酯Ⅱ—3”型的密封圈。 、快速液压缸柱塞直径的计算

根据由快进速度V=q/A 可计算出活塞杆直径d 柱:

柱快2d 4A q q V ==

mm 7.6214.32006010374v q 4A 4d 6=???===ππ柱

根据(GB/T2348—1993)取d 柱=63(mm )

注:V 快—快进(空载下行)速度。 1、实际工作压力的计算

已知:D 1—液压缸外径,D 1=320(mm ) D —液压缸内径,D=220(mm) d —活塞杆直径,d=200(mm ) 主压力:p= 回程压力:4

)

(D P 22d -=

π

式中 p —液体的工作压力p=25Mpa 主压力:p=?.??=(KN )

检验:%5%5%1001000

85

.9491000≤=?- 等于公称力的5%,合格。 回程压力:

P P

4

2d -2D )(回

π=

)()(回

KN 16710254

2.0-22.014.3622=???=P

检验:

00000055.4100175

167

-175<=?未超过额定回程力的5%,合格。 、缸盖的设计计算

缸盖装在液压缸两端,与缸筒构成紧密的油腔。缸盖、缸底和它们的连接部分都有足够的强度。 1、缸盖的结构

缸底与缸筒的连接形式:焊接连接形式 缸头与缸体的连接形式:焊接连接形式 (二)、缸底厚度的计算

1、缸筒底部厚度计算

缸筒底部为平底面且为有孔底时,其厚度h 可以按照下面公式进行计算:

[]σ)(443.00d D D

P D h y -?

?=

式中:h —缸筒底部厚度,(mm )

0d —油口直径,(mm ) D —液压缸内径,(mm )

[]σ—缸筒底部材料的许用应力,(90Mpa )

P y —试验压力,(Mpa )P y =(Mpa )

查机械零件设计手册可知:0d =20mm ,计算如下:

60mm m 06.010

90102010

220(1022025.3110

220443.06

33

3

3

==???-?????=----)h

(三)、缸盖的材料和技术要求

本次所设计的液压缸选用材料为球墨铸铁QT500-7,它属于塑性材料,具有良好的焊接性能,缸筒与缸头为焊接连接。 1.缸盖材料

缸头:此处缸盖又是导向套,故选用铸铁,QT500—7 缸底:缸筒与缸底为螺栓连接,故选用QT500-7 2.缸盖的技术要求

A 、活塞杆的直径(缸内径)等各种回转面(不含密封圈)的圆柱度按9级、10级或11级精度

B 、缸筒内外经的同轴度公差为

C 、与液压缸的配合端面垂直度按7级精度

D 、导向面的表面粗糙度为 1.25~6.3a R ≤

E 、铸件时效处理

F 、棱角倒顿

、液压缸油口的直径计算

由活塞的最高运动速度和油口最高流速

而定。

0013.0V V D d =

式中: 0V —油口流速(m/min ) V —活塞输出速度(m/min ) o d —液压缸油口直径(m ) D —液压缸内径(m )

0013.0V V D d =

mm 6.28601037)463(20022013.013.0630=?????=?=)(πq A V D d 根据国家标准柱塞缸油口取直径为30mm

mm d 8.44)601037()4220(4022013.0q A V D 13.0620=????=?=π 根据国家标准活塞杆油口取直径为45mm 、导向套的设计计算

导向套对活塞杆起导向和支承的作用,它要求配合精度高,摩擦阻力小,耐磨性好,能承受活塞杆的压力、弯曲力以及冲击振动。 1、导向套的结构

选用易拆导向套,因为这种导向套采用螺钉或螺纹固定在缸盖上,当导向套和密封圈磨损而需要更换时,不必拆卸端盖和活塞杆就能进行。维修方便,并且适用于工作条件恶劣,需经常更换导向套和密封圈而又不允许拆卸液压缸的情况。

2、最小导向长度的确定 当活塞杆全部伸出时,从活塞支撑面的中点到导向套滑动面中点的距离称为最小导向长度(H ),它应满足下式要求:

cm 2

D

20L H +≥

式中: L —最大工作行程cm ;L=50cm D —液压缸内径cm ;D=22 cm

cm D L H 362

22250220=+=+≥

导向套滑动面的长度A 两种确定形式: 当缸径小于80时取:A=(∽)D 当缸径大于80时取:A=(∽)d 式中: d---活塞杆直径(cm) d=20 cm D---液压缸内径(cm) D=22 cm 活塞宽度B 取:B=(∽)D=

因为液压缸的缸径为220mm>80mm,则取 A==12 cm

根据实际情况考虑: A=985cm B= 3、导向套的材料及技术要求 1.导向套的材料

导向套一般采用摩擦系数小、耐磨性好的青铜材料制作,也可以选用铸铁、球铁。 2.导向套的技术要求

a.外圆与端盖内孔的配合多为H8/f7

b.导向套内孔与活塞杆外圆的配合多为H9/f9

c.外圆与内孔的同轴度误差不大于

d.形状误差不大于公差之半

e .内孔中的环形油槽和直油槽要浅而宽,保证润滑条件良好

f .表面粗糙度为3.6~25.1 a R

液压回路设计

电路设计

按下SB2,继电器K1得电并自锁,YA2得电,油缸左腔得油伸出,当推动活塞

的压力大于溢流阀所设定的压力时,溢流阀导通卸荷,使活塞伸出速度保持一致,工作稳定,按下SB3,继电器K2得电并自锁,互锁断开YA2, YA1得电,油缸右腔得油缩回,当推动活塞的压力大于溢流阀所设定的压力时,溢流阀导通卸荷,使活塞伸出速度保持一致,工作稳定。按下SB1急停。

控制设计

机电综合课程设计结论

经过一些列的计算和绘图以,达到设计目的的要求。

6.机电综合课程设计的收获、体会和建议

三周的机电液综合设计与实验终于结束了,虽然很忙碌很疲劳,但感觉收获还是蛮大的。

为了使液压缸各个结构设计的精确,我查阅了许多手册和参考书,为我以后的毕业设计打下了牢固的基础。我几乎每天的专注和辛劳,唤回了我对液压与气压传动的重新认识,对液压缸结构的深刻理解,还有一种对设计制图工作的热情和认真态度,我的细心再次发挥了优势,我不敢说我的这份设计图一定会得优秀,但看着图纸上的每一个细节,我觉得没有枉费这两周来的心血。同时也让我觉得大学里学到了很多知识,我的大学生活没有浪费。

参考文献

[1]冯清秀,邓星钟等著.机电传动控制[M].武汉:华中科技大学出版社,2011.

[2]刘德全著.Proteus8电子线路设计与仿真[M].北京:清华大学出版社,2014.

[3]成大先编.机械设计手册(第5版)[M].北京:化学工业出版社,2008.

[4]董玉红徐莉萍编.机械控制工程基础(第2版)M].北京:机械工业出版社,2013.

[5]秦曾煌著.电工技术(第7版)[M].北京:高等教育出版社,2009.

[6]王成元,夏加宽等著.现代电机控制技术(第2版)[M].北京:机械工业2014.

[7]濮良贵,陈国定著.机械设计(第9版)[M].北京:高等教育出版社,2015.

[8]刘娜李波等著.AutoCadMechanical机械设计入门到精通(第3版)[M].北京:机械工业出版社,2015.

8.附录

液压缸的装配总图

螺纹环

活塞杆

活塞

缸筒

缸底

导向套

可伸缩伺服液压缸机械结构外观

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 The Standardization Office was revised on the afternoon of December 13, 2020

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优

液压传动习题4

第四章液压缸 一、填空题 1、液压马达是将_________转换为_________的装置,可以实现连续地旋转运动。 2、液压缸是将液压能转变为机械能,用来实现__________的执行元件。 3、活塞缸按其结构不同可分为和两种,其固定方式有 固定和固定两种。 4、单杆液压缸可采用连接,使其活塞缸伸出速度提高。 5、在液压缸中,为了减少活塞在终端的冲击,应采取_____措施。 二、单项选择题 1.液压缸差动连接工作时,缸的(),缸的()。 A.运动速度增加了 B.输出力增加了 C.运动速度减少了 D.输出力减少了 2.在液压系统的组成中液压缸是() A.动力元件 B.执行元件 C.控制元件 D.传动元件 3.液压缸的运动速度取决于()。 A 压力和流量 B 流量 C 压力 4.要求机床工作台往复运动速度相同时,应采用()液压缸。 A、双出杆 B、差动 C、柱塞 D、单叶片摆动 5、单杆活塞液压缸作为差动液压缸使用时,若使其往复速度相等,其活塞直径应为活塞杆直径的()倍。 A、0 B、1 C 6、差动液压缸,若使其往返速度相等,则活塞面积应为活塞杆面积的____。 A、1倍 B、2倍 C、2倍 D、4倍 7、双活塞杆液压缸,当缸体固定时,其运动件的运动范围等于液压缸有效行程的()。A、二倍B、三倍C、四倍 8、双作用多级伸缩式液压缸,外伸时推力和速度的逐级变化结果是() A、推力和速度都增大 B、推力和速度都减小 C、推力增大,速度减小 D、推力减小,速度增大 9、能实现差动连接的油缸是: A、双活塞杆液压缸 B、单活塞杆液压缸 C、柱塞式液压缸 D、A+B+C 10、将液体的压力能转换为旋转运动机械能的液压执行元件是()。 A、液压泵 B、液压马达 C、液压缸 D、控制阀 11、双作用杆活塞液压缸,当活塞杆固定时,运动所占的运动空间为缸筒有效行

液压缸选型参考

【液压缸选定程序】 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

一种双作用多级液压缸的设计与应用_臧克江.

文章编号 :1008-1402(2006 04-0524-05 一种双作用多级液压缸的设计与应用 臧克江 , 蒲红 , 李彩花 , 胡晓平 (佳木斯大学机械工程学院 , 黑龙江佳木斯 154007 摘要 :通过对一种双作用多级液压缸伸缩过程的分析 , 弄清了影响此种双作用多级液压缸动作顺序的几何要素和系统的力学要素 , 确定了此种双作用多级液压缸设计原则及液压缸正常工作的条件 , 为此种双作用多级液压缸的设计及应用提供了理论依据 . 关键词 :液压 ; 双作用 ; 多级缸 中图分类号 : TH137文献标识码 : A 根据工作要求设计了如图 1所示的液压系统 . 系统由变量泵供油 , 三位四通换向阀控制液压缸的伸缩 , 液控单向阀保证液压缸伸缩停在任意位置 , 通过单向节流阀调节液压缸缩回速度 , 电磁溢流阀实现系统的调压和卸荷

. 图 1液压系统原理图 在系统调试过程中发现 , 液压缸活塞外伸时 , 按照先大后小的顺序 , 而在液压缸活塞回缩时本应 该按先小后大的顺序时 , 可是出现按先大后小的顺序 . 如果在回缩过程中三位四通换向阀电磁铁失电 , 使三位四通换向阀处中立位置 , 出现大活塞快速外伸 , 小活塞杆快速回缩 , 负载急剧下落 , 不能保证负载回落时停在任意位置的要求 , 实质上此系统不能正常工作 . 本文对此系统出现的现象进行了研究 , 提出了多级双作用液压缸设计及使用时应注意的事项 . 1液压缸结构设计 由于系统对负载的运动速度没有过多要求 , 只是对推力和行程有要求 , 因此本系统参考文献 [1]对液压缸进行了机构设计 , 其机构简图如图 2(a 所示 . 此液压缸为

双作用液压缸的设计与控制

中原工学院机电学院 机电系统综合实验 (2016-2017学年第 1 学期) 专业:机械电子工程 题目:可伸缩伺服液压缸 姓名:程方园 学号:2 班级机电131 指导教师:周高峰崔路军 完成日期:2017 年 1 月12 日 机械电子工程系

目录 设计任务书 (3) 1.设计目的与意义 (4) 2. 设计内容和要求 (4) 2.1确定总体方案 (4) 2.2设计内容 (5) 2.3设计要求 (5) 3.设计进度安排 (5) 4.机电系统设计的分析、计算、选用与说明 (5) 4.1机械设计 (5) 4.1.1液压缸的结构设计 (5) 4.1.2、液压缸的主要技术性能参数的计算 (6) 4.1.4、液压缸主油缸的设计计算 (8) 4.1.5、缸体的材料和技术要求 (11) 4.1.6、活塞杆径的计算与校核 (11) 4.1.7、快速液压缸柱塞直径的计算 (13) 4.1.8、缸盖的设计计算 (13) 4.1.9、液压缸油口的直径计算 (14) 4.1.10、导向套的设计计算 (15) e.内孔中的环形油槽和直油槽要浅而宽,保证润滑条件良好 (15) 4.2液压回路设计 (16) 4.3电路设计 (16) 4.4控制设计 (17) 5. 机电综合课程设计结论 (17) 6.机电综合课程设计的收获、体会和建议 (17) 7. 参考文献 (18) 8.附录 (18)

设计任务书

可伸缩伺服液压缸设计与控制 1.设计目的与意义 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构, 起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 2.设计内容和要求 1)理解可伸缩伺服液压缸的功能和工作原理,确定其功能参数; 2)明确可伸缩伺服液压缸的具体结构和控制方式,并给出相关参数; 3)分析和计算可伸缩伺服液压缸机械结构,并确定控制的具体实现。 4)绘制可伸缩伺服液压缸机械图纸和电气电子线路图; 5)撰写技术说明书 2.1确定总体方案 当下各种液压缸规格品种比较少,主要是因各种机械对液压缸的要求差别太大。比如对液压缸的内径、活塞杆直径、液压缸的行程和连接方式等要求不一样。由于本次液压设计主要是实现立式快速的原则,故选双作用单活塞杆立式快速液压缸的设计。采用焊接连接。

双作用单杆活塞式液压缸毕业论文正稿

v .. . .. 目录 设计题目---------------------------------------------------------------------------2 液压缸的选型---------------------------------------------------------------------2 液压缸主要参数的计算 液压缸主要性能参数-----------------------------------------------------2 缸筒内径(缸径)计算--------------------------------------------------2 缸壁壁厚的计算------------------------------------------------------------2 流量的计算------------------------------------------------------------------3 底部厚度计算---------------------------------------------------------------4 最小导向长度的确定------------------------------------------------------4 主要零部件设计与校核 缸筒的设计------------------------------------------------------------------5 缸筒端盖螺纹连接的强度计算-----------------------------------------6 缸筒和缸体焊缝连接强度的计算--------------------------------------6 活塞设计----------------------------------------------------------------------7 活塞的密封-------------------------------------------------------------------8 活塞杆杆体的选择----------------------------------------------------------8 活塞杆强度的校核----------------------------------------------------------8 液压缸稳定性校核----------------------------------------------------------9 活塞杆的导向、密封和防尘---------------------------------------------9 致谢-----------------------------------------------------------------------------10 参考文献------------------------- 一.设计题目 双作用单杆活塞式液压缸设计 主要设计参数: 系统额定工作压力:p= 25(Mpa)驱动的外负载:F =50(KN) 液压缸的速度比:λ=1.33 液压缸最大行程:L =640 (mm) 液压缸最大伸出速度:λ=4 (m/min) 液压缸最大退回速度:v t =5.32(m/min) 缸盖连接方式:螺纹连接 液压缸安装方式:底座安装 缓冲型式:杆头缓冲 二.液压缸的选型

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。图1 在油缸进出油口加节流阀3、在液压回路中使用分流阀与集流阀或者调速阀分流阀与集流阀或者调速阀调整两个油缸的同步效果要比采用节流阀好一些。这是因为分流阀与集流阀或者调速阀对流量的控制相对准确。图2 在两个油缸的有杆腔与无杆腔进出油口加分流阀与集流阀或调速阀4、两个油缸分别使用独立定量泵供油实现双缸同步采用两个油泵分别驱动两个油缸,由于两个油泵的流量相等。两个油缸之间的进出油缸的液压油不受相互牵连。尽管载荷有所不同,但在流量相同的条件下可以实现同步。5、回路中采用同步马达实现双油缸同步图3 在双缸的进油口加同步马达供油的同

液压与气压传动考试题两套(含答案解析)

液压与气压传动考试题(一) 一.单项选择题(每小题2分,共50分) 1. 二位五通阀在任意位置时,阀芯上的油口数目为--------- A .2 B.3 C.5 D.4 2. 应用较广.性能较好,可以获得小流量的节流口形式为------------ A .针阀式或轴向三角槽式 B.偏心式或周向缝隙式 C.轴向三角槽式或周向缝隙式 D.针阀式或偏心式 3. 调压和减压回路所采用的主要液压元件是--------- A.换向阀和液控单向阀 B.溢流阀和减压阀 C.顺序阀和压力继电器 D.单向阀和压力继电器 4. -------管多用于两个相对运动部件之间的连接,还能吸收部分液压冲击。 A. 铜管 B.钢管 C.橡胶软管 D.塑料管 5. ------是液压系统的储能元件,它能储存液体压力能,并在需要时释放出来供给液压系统。 A.油箱 B.过滤器 C.蓄能器 D.压力计 6. 能输出恒功率的容积调速回路是------------- A.变量泵---变量马达回路 B.定量泵---变量马达 C.变量泵---定量马达 D.目前还没有 7. 溢流阀的作用是配合油泵等溢出系统中多余的油液,使系统保持一定的------- A.压力 B.流量 C.流向 D.清洁度 8. 当环境温度较高时,宜选用粘度等级-----的液压油 A.较低 B.较高 C.都行 D.都不行 9. 能将液压能转换为机械能的液压元件是--------- A.液压泵 B.液压缸 C.单向阀 D.溢流阀 10. 下列压力控制阀中,哪一种阀的出油口直接通向油箱--------- A.顺序阀 B.减压阀 C.溢流阀 D.压力继电器 11. 液压系统的动力元件是----------- A.电动机 B.液压泵 C.液压缸 D.液压阀 12. 活塞有效作用面积一定时,活塞的运动速度取决于----- A.液压缸中油液的压力 B.负载阻力的大小 C.进入液压缸的流量 D.液压泵的输出流量 13. 不能作为双向变量泵的是----------- A.双作用叶片泵 B.单作用叶片泵 C.轴向柱塞泵 D.径向柱塞泵 14. 在液压系统中用于调节进入执行元件液体流量的阀是------------ A.溢流阀 B.单向阀 C.调速阀 D.换向阀 15. 压力控制回路包括----------- A.换向和闭锁回路 B.调压.减压和卸荷回路 C.调压与换向回路 D.节流和容积调速回路 16. 液压系统中减压阀处的压力损失是属于-------- A.沿程压力损失 B.局部压力损失 C.两种都是 D.两种都不是 17. 柱塞泵是用于---------系统中 A.高压 B.中压 C.低压 D.都不可以 18. 下列液压缸中可以进行差动连接的是------------- A.柱塞式液压缸 B.摆动式液压缸

液压支架用伸缩式两级液压缸设计

第1章绪论 1.1课题背景 介休倡源煤炭有限责任公司是凯嘉能源集团有限责任公司 属下企业。公司前身为介休市连福镇镇办煤矿,2005年8月,由义棠煤业整体并购,2006年4月,省煤整办批准介休倡源煤炭有限责任公司整合金山坡煤矿和西兴煤矿, 2007年12月, 义棠煤业、投资、介休义民投资三方签署合作协议,共同投资建设介休倡源煤炭有限责任公司。公司注册资本为1.6亿元,现有资产总额8亿多元,员工1600多名,其中:中专以上学历员工450 多名,初级以上职称员工90多名。公司位于介休市连福镇,朝南相望是生态原始、风景独特的天峻山,西距介休市20km,北距大运高速、108国道及南同浦铁路干线义安站20km,东与介沁公路相邻, 地理位置优越,交通便利。 公司井田面积4.62km2,可采煤层6层,可采储量32702kt,设计能力为90万吨/年。公司实行董事会领导下的总经理负责制,股东会、董事会、监事会、党总支、工会组织齐全,有14个职能部门以及综采、普采等9个生产基层队。

倡导文明,源远流长。公司秉承“以德为魂,诚信为本”的企业精神,近年来,在生产经营、企业管理、员工队伍、企业文化、环境建设、后勤保障等方面都发生了巨大的变化,使一个名不见经传的小煤矿改造成为年产90万吨原煤的新型煤炭企业,使一个生态恶化的旧矿井改造成为环境优美的绿色生态矿井。公司被介休市人民政府授予“优秀管理先进单位”等荣誉称号。 在凯嘉集团的统领下,公司将以“高水平规划、高标准建设、高质量管理”为指导思想,致力于基础建设和未来发展,全体员工将以百折不挠的精神和敢为人先的勇气,高起点、高标准,努力把公司打造成为管理科学、装备先进、安全文明、集约高效的标准化煤炭企业。 1.2液压支架简述 20世纪50年代前在国外煤矿生产中基本上采用木支架,木顶梁或金属摩擦支柱和铰接顶梁来支护顶板。1954年英国首先研制出液压支架,通过对液压支架的逐步完善改进,进而普遍推广使用使采煤工作面采煤过程中的落煤,装煤,运煤和支护等工序全部实现了机械化。到20世纪90年代初,寻找到适合矿区资源条件的先进采煤方法,采用了放顶煤技术。随着计算机技术和自动化技术的普及应用与提高为煤矿生产自动化和提高生产提供

液压多缸同步方法的选择

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节,只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟.误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀

2、同步缸同步: 同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易 升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不 能做得很大,在流量,小行程时可以采用,大流量,大行程时, 不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗 偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有 限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10%

一种补偿的双杆串联液压缸新同步回路

在液压系统中,使两个或多个液压缸在运动中保持相对位置或速度不变的回路称为同步回路。在多缸液压系统中,往往由于液压缸负载、摩擦阻力、泄漏、制造精度、结构变形以及油液中的含气量等因素的差异而不能使串联的液压缸保持同步,性能良好的液压回路要尽量克服或减少这些因素的不良影响。有关带补偿措施的串联液压缸同步回路,很多研究工作者对其进行了研究与改进。长沙大学汪大鹏做了开创性的工作,提出了几种单杆串联液压缸带补偿措施的新同步回路,采用单向阀、单向阀和顺序阀、在液压缸端盖和活塞上装单向阀来消除误差,但这几种同步回路只能在液压缸下行时消除误差,反向则不行。汪大鹏又提出了双杆串联液压缸的同步回路的补偿措施,采用单向阀、单向阀与顺序阀以及在活塞上装单向阀来消除误差。这几种补偿措施虽然可以消除双向误差,但需要在液压缸和活塞上另外加工油孔,不仅使液压缸加工工序和造价增加,而且由于油孔的存在,易产生应力集中,影响液压缸和活塞寿命,特别是活塞受其影响较大。另外由于使用多个单向阀,连接比较复杂。 本文提出了几种新的带补偿装置的双杆串联缸同步回路,可以免去加工油孔及其带来的不良影响,消除误差更准确、及时,而且价格也不贵。 2 现有的单杆串联缸同步回路 教材上提到一种带补偿装置的串联缸同步回路,如图1a所示,其工作原理简介如下。 图1 同步回路工作原理 2个串联的液压缸5和6,有效工作面积相等而使进出流量相等,理论上升降可同步,实际上产生的误差都可在每一个下行运动中消除。 例如,当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸5和6活塞同时下行,如果缸5活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3左位接人回路,压力油经换向阀3和液控单向阀4进入缸6上腔,进行补油,使其活塞继续下行到达行程端点,积累误差便可消除。 如果缸6活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3右位接人回路,由于缸6先到达行程端点,遇到阻力,缸5上腔油压升高,高压油便进人液控单向阀4的控制腔,打开阀4,缸5下腔便与油箱接通,使其活塞继续下行到达行程端点,从而消除积累误差。 已有的这种同步回路的缺点是只能在液压缸下行时消除误差,上行时则不行,作者针对这种回路进行了改进,使液压缸双向都可消除误差。 3 对单杆串联缸同步回路的改进 针对图1a我们进行了改进,图1b和图1c是改进后的新同步回路,它们不仅克服了图1a中回路上行不能消除积累误差的缺点,而且结构简单,连接方便。3.1 采用两三位四通电磁换向阀对称连接的同步回路(1)图1b是新的带补偿装置的两缸双杆串联缸同步回路,与图la相比,保持了原有的液控单向阀和换向阀,增加了两个行程开关3S、4s和一个三位四通电磁换向阀5,使换向阀4和5对称水平放置,其工作原理如下。 如当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸6和7活塞同时下行,如果缸6活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3左位接入回路,压力油便不再经过缸6,而是经换向阀3和液控单向阀5进入缸7上腔,进行补油,使其活塞继续下行到达行程端点。下行中积累误差即被消除。 如果缸7活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3右位接入回路,由于缸7先到达行程端点,遇到阻力,缸6上腔油压升高,高压油便进入液控单向阀5的控制腔,打开阀5,液压油便由缸6下腔,经过液控单向阀5流回油箱,下行中积累误差即被消除。 如果换向阀2换向,2Y通电,右位接人回路,液压缸6和7活塞同时上行,如果缸6活塞先到达行程端点,则挡块顶起行程开关3s,3s给换向阀4发信号,使电磁铁5Y得电,换向阀4右位接人回路,压力油液压英才网用心专注、服务专业

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 作者:李毅民王英洁 2010-10-15 来源:屹立散料机械在线https://www.doczj.com/doc/a96176376.html,/ 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。 双油缸运行不同步的原因: 1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。 2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。 3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。 4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。 5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。 6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。 双油缸运行不同步的解决办法: 1、机械刚性同步与机械传动同步 机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。 2、回路中使用节流阀 采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。 图1 在油缸进出油口加节流阀 3、在液压回路中使用分流阀与集流阀或者调速阀

同步油缸

高精度同步液压缸JZP 系列 同步运行 JZP 同步缸是由若干个结构尺寸相同的液压缸串联而成的,由于它每节腔体结构尺寸相同,所以各腔的出口流量相同。同时,JZP 同步缸内部采用了德国最先进的密封,可以在具有不同负载的情况下获得较高的同步精度,这种功能是调速阀、同步阀或同步马达不能够实现的。JZP 同步缸是线性运动与同步马达的旋转运动不同。 同步精度 JZP 同步缸同步精度的决定性因素与分流马达基本相同。想获得高水准的同步精度,就必须减小负载的不均衡程度、降低系统的压力等级、因为压力越高,泄漏量越大。在理想的状态下,即各腔负载相同的情况下,它能获得非常高的同步精度。同时,同步误差还受到加工精度的影响,因此它不可能达到100%的同步,必定会存在同步误差。根据实验,我们得出同步液压缸JZP 在不同压差下的同步精度大致成线性关系。 性能特点 y JZP 同步缸可以使用各种矿物油工作介质,特殊JZP 同步缸可以使用水乙二醇、磷酸酯以及乳化液等工作介质。 y JZP 同步缸可以承受-35℃~+80℃的工作温度,高温JZP 同步缸可以承受-35℃~+220℃的工作温度。 y 介质油清洁度应达到NAS1638-9级或ISO4406-19/15 级以上。

y JZP同步缸单腔最小流量可以达到0.1 L/min,最低启动压力小于0.3Mpa,内部压力损失小,仅为7 bar。 y JZP同步缸工作速度最大为0.5 m/s,高速缸可以达到2 m/s。 y JZP同步缸,同步精度高、运行过程中噪声小,可以应用在剧场的舞台升降、印刷行业、建筑行业中的重型机械、倾卸车等行业。 同步缸的用途 y JZP同步缸除了能够等容积分配流量外,其胜公司还可以提供非等容积同步缸,当您需要非等容积同步缸时请联系其胜公司。 y同步油缸也可以做“增压器”使用,使系统的出口压力高于进口压力,但要注意增压腔的出口压力不可以超过同步缸的工作压力。(具体使用方法参考同步马达“增压器”的使用) 同步缸典型应用回路液压原理图

双活塞杆双作用活塞式液压缸结构设计

目录 1设计的依据、原则和步骤 (3) 1.1引言 (3) 1.2设计的依据 (3) 1.3设计的一般原则 (3) 1.4设计的一般步骤 (4) 2设计的题目、技术参数、目的和要求 (5) 2.1设计题目 (5) 2.2设计技术参数 (5) 2.3设计目的 (5) 2.4设计要求 (5) 3液压缸缸体结构形式的确定 (5) 3.1结构初型 (5) 4液压缸性能参数与结构参数的计算 (6) 4.1液压缸工作负载力分析和计算 (6) 4.2 液压缸的液压力计算和工作压力的选择 (7) 4.3液压缸速度比的确定 (7) 4.4液压缸速度计算和流量选择 (7) 4.5液压缸综合结构参数及安全系数的选择 (8) 5缸筒设计与计算 (9) 5.1缸筒与缸盖的连接形式 (9) 5.2对缸筒的要求及材料选择 (11) 5.3缸筒的计算 (11) 5.4缸筒加工的技术要求 (13) 5.5缸筒头部法兰厚度 (14) 5.6缸筒—缸盖的连接计算 (15) 5.7 缸盖的材料和技术要求 (15) 5.8缸盖厚度的确定 (16) 5.9最小导向长度的确定 (16) 5.10缸体长度的确定 (16) 6活塞组件设计 (16) 6.1活塞设计 (16) 6.2活塞与活塞杆的连接结构 (17) 6.3活塞杆设计 (18)

6.4活塞杆及连接件强度校核 (19) 6.5活塞杆液压缸稳定性校核 (20) 7液压缸油口和排气装置设计 (21) 7.1油口设计 (21) 7.2排气装置设计 (22) 参考文献 (23)

双活塞杆双作用活塞式 液压缸结构设计 1设计的依据、原则和步骤 1.1引言 一部现代机器通常由机架、原动机、传动装置和工作机构四个主要部分构成,其中机架为载体,原动机的作用是进行能量形式的转换,为机器提供适当形式的动力,传动装置的作用是进行动力的传递,工作机构即执行机构,其作用是消耗能量而做功。如果原动机将其他形式的能转换成液压能,执行元件消耗液压能而做功,则称为液压机械或液压机。液压机械的执行元件即做功元件是液压马达和液压缸。液压马达和液压缸是通用化和标准化程度很高的液压元件,用户或设计者在研制一部新的液压机械时,应尽量选择标准化的液压元件,以避免金钱的浪费和时间、精力的消耗。但由于使用要求的千差万别,液压元件的专用化设计是不可避免的,其中以液压缸设计居多。这是由于液压缸配置的灵活性,设计、制造比较容易,维护比较方便的特点决定的。因而,相对其他液压元件而言,液压缸的设计是极为常见的,这也是工程技术人员必须具有的一种基本技能。 1.2设计的依据 液压缸与机器及机器上的机构直接相联系,对于不同的机构,液压缸的具体用途和工作性能也不同,因此设计之前,要进行全面地分析和研究,收集必要的原始资料并加以整理作为设计的依据。 (1)了解和掌握液压缸在机器上的用途和工作要求。 (2)了解液压缸工作环境条件。 (3)了解外部负载情况。 (4)了解液压缸运动形态及安装的约束条件。 (5)了解液压系统的情况。 (6)了解有关国家标准、技术规定和其他参考资料。 1.3设计的一般原则

液压支架用伸缩式两级液压缸设计

第1章绪论 1.1课题背景 山西介休倡源煤炭有限责任公司是山西凯嘉能源集团有限责任公司属下企业。公司前身为介休市连福镇镇办煤矿,2005年8月,由山西义棠煤业有限公司整体并购,2006年4月,省煤整办批准山西介休倡源煤炭有限责任公司整合金山坡煤矿和西兴煤矿, 2007年12月, 山西义棠煤业有限公司、山西中通投资有限公司、介休义民投资有限公司三方签署合作协议,共同投资建设山西介休倡源煤炭有限责任公司。公司注册资本为1.6亿元,现有资产总额8亿多元,员工1600多名,其中:中专以上学历员工450多名,初级以上职称员工90多名。公司位于介休市连福镇,朝南相望是生态原始、风景独特的天峻山,西距介休市20km,北距大运高速、108国道及南同浦铁路干线义安站20km,东与介沁公路相邻, 地理位置优越,交通便利。 公司井田面积4.62km2,可采煤层6层,可采储量32702kt,设计能力为90万吨/年。公司实行董事会领导下的总经理负责制,股东会、董事会、监事会、党总支、工会组织齐全,有14个职能部门以及综采、普采等9个生产基层队。

倡导文明,源远流长。公司秉承“以德为魂,诚信为本”的企业精神,近年来,在生产经营、企业管理、员工队伍、企业文化、环境建设、后勤保障等方面都发生了巨大的变化,使一个名不见经传的小煤矿改造成为年产90万吨原煤的新型煤炭企业,使一个生态恶化的旧矿井改造成为环境优美的绿色生态矿井。公司被介休市人民政府授予“优秀管理先进单位”等荣誉称号。 在凯嘉集团的统领下,公司将以“高水平规划、高标准建设、高质量管理”为指导思想,致力于基础建设和未来发展,全体员工将以百折不挠的精神和敢为人先的勇气,高起点、高标准,努力把公司打造成为管理科学、装备先进、安全文明、集约高效的标准化煤炭企业。 1.2液压支架简述 20世纪50年代前在国内外煤矿生产中基本上采用木支架,木顶梁或金属摩擦支柱和铰接顶梁来支护顶板。1954年英国首先研制出液压支架,通过对液压支架的逐步完善改进,进而普遍推广使用使采煤工作面采煤过程中的落煤,装煤,运煤和支护等工序全部实现了机械化。到20世纪90年代初,寻找到适合矿区资源条件的先进采煤方法,采用了放顶煤技术。随着计算机技

液压多缸同步方法的选择

液压多缸同步方法的选择 This model paper was revised by the Standardization Office on December 10, 2020

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液 压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一 个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节, 只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟. 误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀 2、同步缸同步:

同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不能做 得很大,在流量,小行程时可以采用,大流量,大行程时,不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10% 1 柱塞同步马达(精度高)价格昂贵,维修困难. 2 齿轮同步马达(精度低)

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。 (1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合:单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

相关主题
文本预览
相关文档 最新文档