当前位置:文档之家› 现代电力电子学

现代电力电子学

现代电力电子学
现代电力电子学

研究生学位课程

《现代电力电子学》的学习提纲与要求

一.本课程的目的与意义

目前电力电子技术已成为国家经济领域中不可缺少的基础技术和重要手段,大至

兆瓦级的高电压大电流的电气工程直流输电,小Array至家用的各种电器,无不渗透电力电子技术。

国际上公认电力电子技术的诞生是以1957

年第一个晶闸管问世为标志的。电力电子这一名

称迟至60年代才出现1974年,美国W.E.Newell

用右图的倒三角形对电力电子学进行了描述。认

为电力电子学是电力学,电子学和控制理论三个

学科交叉结合形成的一门新型学科,随着科学技

术的发展电力电子技术又与控制理论、材料科学、图一描述电力电子学的倒三角

电机工程、微电子技术、计算机技术等许多领域

密切相关。

目前,电力电子技术逐步发展成为一门多学科相互渗透的中和性学科。

可以将电力电子技术定义为:以电力为对象,利用电力电子器件对电能进行控制

和转换的学科,若认为微电子技术的信息处理技术,那么电力电子技术就是电力处理

技术。电力电子学除涵括技术和应用外,还有电力电子技术和相关学科的理论问题。

目前,许多高新技术均与电网的电流、电压、频率和相位等基本参数的转换与控

制相关。现代电力电子技术能够实现对这些参数的精确控制和高效率的处理。特别是

能够实现大功率电能的频率变换,为多项新技术的发展提供了有力的支持。因此,现

代电力电子技术不仅本身是一项高新技术,而且是其它高新技术的发展基础,电力电

子技术可应用到各工业、电力、交通、冶金、化工、电信、国防、家电等各个领域,

尤其与微电子、计算机技术、现代控制理论相结合,其应用面越广,自动化水平,快速性和可靠性发展越来越快,技术水平越来越高,为现代生产和现代生活带来了深远的影响。

简而言之,电力电子技术应包含电力电子器件,电力电子电路,电力电子装置及其系统三方面的内容,这三者有着密不可分的关系,随着器件的不断发展,电路和装置乃至系统,更容易发展。更加现代化。现代电力电子技术有如下特点:

1)集成化,2)高频化,3)全控化,4)电路弱电化,

5)控制技术数字化,6)多功能化。

在本科学习阶段已对传统的电力电子技术有了基础性的学习,为了更好地掌握电力电子技术。

并能灵活应用,本门课程的目的就要进一步加强基础,拓宽知识面,提高分析和解决问题的能力,更加系统、深入、全面地掌握电力电子技术的发展和应用。为其它学科的学习和今后的工作、开发、研究打造坚实的基础。

二、电力电子技术的学科地位

倒三角的电力电子学描述已被世界普遍接受,“电力电子学”和“电力电子技术”是分别从学术和技术两个不同的角度来称呼的,电力电子学包括理论和学科的内容。

在电力电子技术属于电工学科还是属于电子学科这个问题上,我国学术界和教育界有不尽相同看法。1980年我国成立了中国电力电子学会,当时曾为“Power Electronics”译为”功率电子学还是“电力电子学”而争论不休,后来定名为“电力电子学”。1981年中国电工技术学会成立后,电力电子学会成为电工技术学会所属的一个专业委员会,这意味着把电力电子技术隶属于电工学科。1997年修订研究生专业目录时,为了拓宽专业面将电力电子技术和电力传动自动化合并为“电力电子与电力传动”专业,同时也把电工学科更名为电气工程学科。

如前所述,电力电子技术是由电力学、电子学和控制理论交叉而成,这三者成为电力电子技术的三根支柱。控制理论在电力电子装置及系统中有着广泛应用,这与控制理论在其它领域中应用并无本质差别。电力电子装置广泛地应用于电力系统和电气工程中,这就是电力学和电力电子技术的主要关系。在我国“电力学”这个术语已不太称呼,而是用“电工学科”或“电气工程”制造技术,另一个应用电力电子器件组

成电路装置及系统的技术。前者是电力电子技术的基础,后者是核心,是具体的应用。电力电子电路与电子电路的许多分析方法是一致的,共同基础是电路理论,只是应用有所不同,电力电子技术用于功率变换,电子技术用于休息处理,电力电子技术除应用与电气工程外还广泛用于电子装置中,例如电源、功率放大、输出等都可以看成是电力电子电路,因此也可以把电力电子技术看成是电子技术后的一个分支。电子技术可分为信息电子技术和电力电子技术两大分支,信息电子技术包含模拟电子技术和数字电子技术两部分,因此,电子技术是由模拟电子、数字电子、电力电子三个分支组成。

电力电子技术是弱电与强电之间的结合,是弱电控制强电的技术。是一门实用性很强的学科直接在工业、交通、能源、信息、军事、管理、家庭等各个领域广泛应用。

三、电力电子技术的发展与应用现状及前景

(一)电力电子技术的发展历史

电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展是以电力电子器件的发展为基础的。电力电子技术的发展史,如图二所示。

一般认为,电力电子技术的开始是以1957年第一个晶闸管的诞生为标志的。但在晶闸管出现之前,电力电子技术就已经用于电力变换了。因此,晶闸管出现前的时期称为电力电子技术的史前期。

图二 电力电子技术的发展史

t(年)

1876年出现了硒整流器。1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开创了电子技术之先河。1911年出现了金属封装水银整流器,它把水银封于管内,利用对其蒸气的点弧可对大电流进行有效控制,其性能与晶闸管类似。20世纪30~50年代,是水银整流器发展迅速并广泛应用时期。它广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动。

20世纪50年代初,1953年出现了锗功率二极管;1954年出现了硅二极管,普通的半导体整流器开始使用;1957年诞生了晶闸管,一方面由于其变换能力的突破,另一方面实现了弱电对以晶闸管为核心的强电变换电路的控制,使之很快取代了水银整流器和旋转变流机组,进而使电力电子技术步入了功率领域。变流装置由旋转方式变为静止方式,具有提高效率、缩小体积、减轻重量、延长寿命、消除噪声、便于维修等优点。因此,其优越的电气性能和控制性能,在工业上引起一场技术革命。

在以后的20年内,随着晶闸管特性不断提高,晶闸管已经形成了从低电压、小电流到高电压、大电流的系列产品。同时研制出一系列晶闸管的派生器件,如快速晶闸管(FST)、逆导晶闸管(RCT)、双向晶闸管(TRIAC)、光控晶闸管(LTT)等器件,大大地推动各种电力变换器在冶金、电化学、电力工业、交通及矿山等行业中的应用,促进了工业技术的进步,形成了以晶闸管为核心的第一代电力电子器件,也称为传统电力电子技术阶段。

晶闸管通过对门极的控制可以使其导通,而不能使其关断,因此属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式。即使在电流、电压这2个方面,晶闸管系列器件仍然有一定的发展余地,但因下述原因阻碍了它们的继续发展:①由于它是半控器件,要想关断它必须用强迫换相电路,结果使得电路复杂、体积增大、重量增加、效率较低以及可靠性下降;②由于器件的开关频率难以提高,一般低于400Hz,大大限制了它的应用范围;③由于相位运行方式使电网及负载上产生严重的谐波,不但电路功率因数降低,而且对电网产生“公害”。随着工业生产的发展,迫切要求新的器件和变流技术出现,以便改进或取代传统的电力电子技术。

20世纪70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(GTR)、电力场效应晶体管(Power MOSFET)为代表的第二代自关断全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可以使其开通,又可以使其关断。另外,这些器件的开关速度普遍高于晶闸管,可以用于开关频率较高的电路。

全控器件优越的特性使其逐渐取代了变流装置中的晶闸管,把电力电子技术推进到一个新的发展阶段。

和晶闸管电路的相位控制方式想对应,采用全控型器件的电路主要控制方式为脉冲宽度调制(PWM)方式。PWM控制技术在电力电子变流技术中占有十分重要的地位。它使电路的控制性能大大改善,使以前难以实现的功能得以实现,对电力电子技术的发展产生了深远的影响。

20世纪80年代,出现了以绝缘栅双极型晶体管(IGBT)为代表的第三队复合型场控半导体器件,另外还有静电感应式晶体管(SIT)、静电感应式晶闸管(SITH)、MOS晶闸管(MCT)等。这些器件不仅有很高的开关频率,一般为几十到几百千赫兹,而且有更高的耐压性,电流容量大,可以构成大功率、高频的电力电子电路。

20世纪80年代后期,电力半导体器件的发展趋势是模块化、集成化,按照电力电子电路的各种拓扑结构,将多个相同的电力半导体器件或不同的电力半导体器件封装在一个模块中,这样可以缩小器件体积、降低成本、提高可靠性。现在已经出现了第四代电力电子器件——集成功率半导体器件(PIC),它将电力电子器件与驱动电路、控制电路及保护电路集成在一块芯片上,开辟了电力电子器件智能化的方向,应用前景广阔。目前经常使用的智能化功率模块(IPM),除了集成功率器件和驱动电路以外,还集成了过压、过流和过热等故障检测电路,并可将监测信号传送至CPU,以保证IPM自身不受损害。

(二)现代电力电子技术的主要特点

①全控化

全控化是由半控型普通晶闸管发展到各类自关断器件,是电力电子器件在功能上的重大突破。自关断器件实现了全控化,取消了传统电力电子器件的复杂换相电路,使电路大大简化。

②集成化

集成化与传统电力电子器件的分立方式完全不同,所有的全控型器件都是由许多单元器件并联在一起,集成在一个基片上。

③高频化

高频化是指随着器件集成化的实现,同时也提高了器件的工作速度,例如GTR 可工作在10kHz频率以下,IGBT工作在几十千赫兹以上,功率MOSFET可达数百千

赫兹以上。

④高效率化

高效率化体现在器件和变换技术这2个方面,由于电力电子器件的导通压降不断减少,降低了导通损耗;器件开关的上升和下降过程加快,也降低了开关损耗;器件处于合理的运行状态,提高了运行效率;变换器中采用的软开关技术,使得运行效率得到进一步提高。

⑤变换器小型化

变换器小型化是指随着器件的高频化,控制电路的高度集成化和微型化,使得滤波电路和控制器的体积大大减小。电力电子器件的多单元集成化,减少了主电路的体积。控制器和功率半导体器件等,采用微型化的表面贴技术使得变换器的体积得到了进一步减少,功率为10kV·A,体积只有信用卡那样大。

⑥电源变换绿色化

电力电子技术中广泛采用PWM脉宽调制技术、SPWM正弦波脉宽调制和消除特定次谐波技术,采用多重化技术,使得变换器的谐波大为降低,同时也使变换器的功率因数得到提高,进而使得变换电源绿色化。

⑦改善和提高供电网的供电质量

近年来出现的静止无功发生器(SVG)、有源电力滤波器等新型电力电子装置,具有优越的无功功率和谐波补偿的性能,因此大大提高了电网的供电质量。

表1 电力电子器件现有发展水平

器件名称国外研制水平国内研制水平

普通整流管8kV/5kA(f=400Hz) 6kV/3.5kA 普通晶闸管(SCR) 12kV/1kA,8kV/6kA 5.5kV/3kA 快速晶闸管 2.5kV/1.6kA(Tq=8~50μs) 2kV/1.5kA(Tq=30μs)

光控晶闸管(LASCR) 6kV/6kA,8kV/4kA 4.5kV/2kA

可关断晶闸管(GTO) 9kV/2.5kA,6kV/6kA(f=1kHz) 4.5kV/2.5kA

集成门极换流晶闸管

(IGCT) 6kV/1.6kA 无静电感应晶闸管

(SITH) 4kV/2.5kA(f=100kHz) 1kV/150A

电力晶体管(GTR) 模块:1.8kV/1kA(f=2kHz) 模块:1.2kV/400A 功率MOSFET 60A/200V(2MHz),500V/50A(100MHz) 1kV/35A

单管:4.5kV/1kA模块:3.5kV/1.2kA 单管:1kV/50A

绝缘栅双极

晶体管IGBT

(UF=1.5~2.2V,f=50kHz) 模块:1.2kV/200A

电子注入增强栅极晶

体管IEGT 4.5kV/1kA 无

MOS控制晶闸管MCT 1kV/100A(UF =1.1V, Tq=1μs) 1kV/75A

智能功率模块IPM和

功率集成电路PIC IPM:1.8kV/1.2kA 600V/75A

⑧电力电子器件的容量和性能的优化

电力电子器件的现有发展水平,如表1所示。

近年来,新型半导体材料的研究正在取得不断地突破,碳化硅(SiC)、金刚石等新材料用于电力电子器件,特别是金刚石器件与硅器件相比,功率可提高106个数量级,频率可提高50倍,导通压降降低一个数量级,最高结温可达600℃。

(三)电力电子技术的应用

电力电子技术是以功率处理和变换为主要对象的现代工业电子技术,当代工、农业等各领域都离不开电能,离不开表征电能的电压、电流、频率、波形和相位等基本参数的控制和转换,而电力电子技术可以对这些参数进行精确的控制与高效的处理,所以电力电子技术是实现电气工程现代化的重要基础。

电力电子技术应用范围十分广泛,国防军事、工业、能源、交通运输、电力系统、通信系统、计算机系统、新能源系统以及家用电器等无不渗透着电力电子技术的新成果。下面是简单的介绍:

1、一般工业电机调速

工业中大量应用各种交、直流电动机。直流电动机具有良好的调速性能,为其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电动机的调速性能可与直流电动机相媲美,因此,交流调速技术得到了广泛应用,并且占据主导地位。

作为节能控制主要采用交流电动机的变频调速,它带来了巨大的节能效益。在各行各业中,风机、水泵多用异步电动机拖动,其用电量占我国工业用电的50%以上,全国用电量的30%。控制风量或水流量,过去是靠控制风门或节流阀的转用,而电机的转速不变。由于风门或节流阀转角的减小,却增大了流体的阻力,因此功率消耗变化甚小,结果造成在小风量或小水流时电能的浪费。我国的风机、水泵,全面采用变频调速后,每年节电可达数百亿度。家用电器的空调,采用变频调速技术,可节电30%以上。

2、交通运输

电气化铁道中私广泛采用电力电子技术,电气机车中的直流机车采用整流装置供电,交流机车采用变频装置供电。如直流斩波器广泛应用于铁道车辆,磁悬浮列车中电力电子技术更是一项关键的技术。

新型环保绿色电动汽车和混合动力电动汽车(EV/HEV)正在积极发展中。汽车是靠汽油引擎运行而发展起来的机械,它排出大量二氧化碳和其他废气,严重的污染了环境。绿色电动车的电机是以蓄电池为能源,靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子技术。显而易见,未来电动车将取代燃油汽车。

飞机、船舶需要各种不同要求的电源,因此航空、航海都离不开电力电子技术。

3、电力系统

发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子装置的处理。电力系统在通向现代化的进程中,是离不开电力电子技术的。

高压直流输电,其送电端的整流和受电端的逆变装置都是采用晶闸管变流装置,它从根本上解决了长距离、大容量输电系统无功损耗问题。

柔性交流输电系统(FACTS),其作用是对发电-输电系统的电压和相位进行控制。其技术实质类似于弹性补偿技术。FACTS技术是利用现代电力电子技术改造传统交流电力系统的一项重大措施,已成为当今发达国家电力界研究的热点。FACTS技术(包括系统应用技术及控制器技术)已被国内外的一些权威性的输电技术专家、学者称为未来输电系统新时代的3项支撑技术(FACTS技术、先进的控制中心和综合自动化技术)之一,或是“现代电力系统中的3项(如新时代技术、智能控制、基于全球卫星定位系统)具有变革性影响的前沿性课题之一”。

无功补偿和谐波抑制对电力系统有重要意义。晶闸管控制电抗器(TCR)、晶闸管投切电容量(TSC)都是重要的无功补偿装置。静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更优越的无功和谐波补偿的性能,减少或消除由于传统变流装置对电网产生的公害,大大地改善了供电质量,使得电源电网得到净化。

4、电源

电力电子技术的另一应用领域是在各种各样的电源中。电器电源需求是千变万化

的,因而电源的需求和种类非常多。下面介绍几种特种电源。近年来,国内外在高频逆变整流焊机的研究方面,取得了实质性进展。由于采用高频逆变,体积和重量都有明显减少,既节能,又便于使用。

通信的电源是一种DC/DC高频开关电源,也适用于其他领域。通信事业的发展大大推动了通信用电源的发展。1992年,全国邮电部门全年用电达到25亿度。由于交换机总量的增加,用电量也大幅度增加,可见邮电部门年耗电量是非常可观的。高频开关电源的使用,大大减小了电源体积和开关损耗。

不间断电源(UPS)在现代社会中的作用越来越重要,用量也越来越大。目前,UPS在电力电子产品应用中已占有相当大的数额。

小型化开关电源,在办公自动化设备、计算机设备、电子产品、工业测控、电子仪器和仪表中被广泛采用。由于运用了高频技术,实现了开关电源的小型化。

在军事应用中主要是雷达脉冲电源、声纳及声发射系统、武器系统及电子对抗等系统电源。

航天、航海、矿山及科学研究等各个领域为了人的生存和工作,都离不开各种能源,所以这些都离不开电力电子技术。

5、照明

在各个国家,照明用电占发电量的数量也是比较大的,其中美国占24%,中国占12%。白炽灯发光效率低、热损耗大,故现在广泛使用日光灯。但日光灯必须有镇流器启辉,全部电流都要流过镇流器的线圈,因而无功电流较大,不能节能。电子镇流器的出现,较好的解决了这个问题。电子镇流器就是一个AC-DC-AC变换器。在相同功率的情况下,电子镇流器比普通镇流器的体积小,可减少无功和有功损耗。另外,采用电力电子技术可实现照明的电子调光,也可节约能源,因此被称为节能灯。

6、新能源开发和利用

传统的发电方式是火力、水利以及后来兴起的核能发电。能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。其中太阳能发电、风能发电的发展较快,燃料电池更受关注。太阳能、风能发电受环境条件的制约,发出的电能质量较差。利用电力电子技术可以进行能量储存和缓冲,改善电能质量。同时,采用变速恒频发电技术,可以将新能源发电与电力系统联网。

太阳能、风能、生物质能、海洋潮汐能及超导储能等可再生能源,已形成一个新

兴产业。与其他发电方式比较,可再生能源发电不排放任何有害特质,也不存在居民迁移问题。因此,发展和利用绿色能源是洁净生态环境,改善电力结构的重要措施,未来的结构应该是一个持久的、可再生的、干净的体系。新能源是近期能源的补充,也是未来能源的基础。

7、环境保护

随着工业、农业迅速发展,特别是火力发电和水泥业的发展对自然环境的污染越来越严重。为了净化环境,提高人们的生活质量,在某些行业采用高压静电除尘措施是十分有效的,其关键也是微机和电力电子技术。

总之,电力电子技术的应用范围十分广泛。从人类对宇宙和大自然的探索到国防,从军事到国民经济的各个领域,再到人们的衣食住行,无处不应用电力电子技术。这就是激发一代又一代专家、学者和工程技术人员学习、研究电力电子技术的巨大魅力之处。

(四)电力电子技术的未来发展方向和前景

电力电子技术已进入各个领域,未来的广阔前景和发展方向,主要体现在下面几个方面:

(1)新材料的进一步研究和应用,扩大了器件的频率、功率等级、使用温度范围,减少器件的体积和降低价格。因此,可以大大改进系统性能和降低成本,使它的应用范围越来越广。

(2)改进器件和装置封装形式,实现系统集成,以获得更高的集成化和可靠性。(3)使用无需吸收电路并且关断延时小的集成门极换流晶闸管(IGCT),使得在大功率应用场合的器件选择越来越容易。

(4)多电平逆变器大功率逆变器中的应用。

(5)体积小、重量轻、损耗小、无无功率的全半导体变流系统的设计。

(6)采用神经网络和模糊控制逻辑芯片的无速度传感器控制的传动系统。

(7)采用专家系统获得优化的实时性和系统容错控制。

(8)自主学习与自适应调节控制器在传动系统中的应用。

(9)改善动力系统供电质量,柔性交流输电技术将得到越来越广泛运用。

(10)高效、轻便、绿色的电动车供不应求。

(11)发展更高效的家用电器产品。

电力电子技术是目前发展较为迅速的一门学科,是高新技术产业发展的主要基础技术之一,是传统产业改造的重要手段。可以预言,随着各学科新理论、新技术的发展,电力电子技术的应用具有十分广泛的前景。

四、课程的主要内容

(一)复习与巩固部分

Ⅰ.电力电子器件Ⅱ.整流电路

1.各种二级管 1.二级管整流电路

2.半控型器件,晶闸管 2.单相与三相整流电路3.典型全控器件:GTO、BJT、电力

3.六相、十二相整流电路MOSFET、IGBT

4.大功率整流电路

4、MCT、SIT、SITH等其它电力电子器件

5、功能模块和功率集成电路

6、电力电子器件的串并联

7、电力电子器件的保护

8、电力电子器件的驱动和同步电路

Ⅲ.直流斩波电路Ⅳ.交流电力控制电路1.升压斩波电路 1.单相相控式交流调压电路2.降低站波电路 2.三相相控式交流调压电路3.升降压斩波电路 3.交流调节电路

4.复合斩波电路 4.交流电子开头

ⅴ.逆变电路ⅵ.交一交变频电路

1.换相方式 1.单相、三相输出交一交变频电路2.电压型和电流型逆变电路 2.矩阵式变频电路

3.负载换相逆变电路 3.交一交变频的应用

4.电容换相逆变电路

ⅶ.脉冲调制(PWM)技术

1.PWM调制的基本原理

2.PWM逆变电路的控制方式

3.PWM波形的生成方式

4.PWM整流电路

(二)提高和加深部分

Ⅰ.电路部分

1.跟踪型PWM逆变电路

2.SPWM的控制模式

3.优化PWM设计

4.交一交变频的高次谐波问题

5.谐振式变换器的控制方式

6.有源滤波的原理与电路

7.功率MOSFEET的驱动电路

8.电力电子器件的缓冲电路

9.组合变频电路

Ⅱ.装置及系统

1.开关电源的设计

2.变频调速装置

3.有源滤波装置

4.快速开关装置用于无功补偿及变压器有载调压

5.大功率直流稳压调压电源装置

(三)设计与开发部分

1.智能化的变频调速系统

2.微机控制的可控励磁调节系统

3.智能式无极大功率快速开关

4.电力网有源滤波器

5.电力系统潮流控制装置

6.智能式电力网谐波抑制装置

7.电力电子装置系统的可靠性设计

五、课程的要求

(一)熟练掌握本课程的基本要求,(除听课外一定要加强自习、完成练习作业和实验。考试时间第14周,考试方式:笔试)

包括:1.不同时期的电力电子器件的工作特性和主要参数

2.基本的电力电子电路

3.典型的电力电子装置的基本构成和原理

4.电力电子技术的主要应用与发展

(二)掌握本课程的提高和加深的内容(考试时间第14周,考试方式:笔试)

包括:1.传统电力电子技术与现代电力电子技术的区别

2.电力电子装置的发展趋势

3.提高和加深部分的电力电子电路的计算与分析

4.电力电子装置及其系统的设计

(三)应完成本课程的归纳、总结和优化(20周交读书报告)

包括:1.本课程的学习心得与体会

2.电力电子技术与其他学科和技术之间的关系

3.电力电子技术的发展规律

4.本课程学习的重点与难点

5.提出一个具有智能式的电力电子装置或系统的研制方案及实施步骤

(四)实践环节要求(第13周实验电路方案及实验结果报告)

1.完成如下实验(实验室:3402)

a.相控整流电路

b.斩波电路

c.变频电路

d.开关电路

e.上机仿真

2.完成一个典型的电力电子技术应用的装置(20周交英文总结报告)

包括:①本装置的用途

②方案及设计思路和参数指标;

③由CAD 等软件工具、完成的电路原理图和安装图;

④装置的实现

⑤装置的实验结果;

⑥由英文完成总结报告。

六、考试方式及要求

1.因本课程是本专业的一门必修的学位课程,因此必须按“四.本课程的要求”来完成。

2.考试共分五个部分即:

(1)笔试:

①基本内容部分;②提高和加深部分。时间安排在第14周

(2)撰写叁份报告:

①读书学习报告(20周交)(含关键词、摘要报告)。②实验报告(19周交)。③由英文完成装置的总结报告。(20周交)。

七、参考书与文献

1.王兆安主编,电力电子变流技术,北京机械出版社,2000年。

2.贺益康,潘再平编,电力电子技术基础,浙江大学出版社,1994年。

3.陈坚,电力电子学,高等教育出版社,2001年。

4.张立,现代电力电子技术,北京:科学出版社。

5.《电力电子技术》94年-03年,西安电力电子技术研究所。

6.《电网技术》,94年-03年,北京:电力部电力科学研究院。

7.《电力系统自动化》,92年-至今年,南京:电力自动化研究所。

8.IEEE Trans.PAA.88年—至今年。

9.IEEE Trans.PWRD.90年—至今年。

10.IEEE Trans.On power Delivery 91年—至今年。

八、习题(要求认真完成作业习题)

1-1.总结且叙述各类电力电子器件的基本特征和各适用于什么场合?

2-1.作用于RLC 串联电路的电压为

c u [50cos 25cos(3)]3t t V πωω=++,且基本波

频率的输入阻抗L Z(j )=R+j()(86)j C ωωω=+Ω ,求电流i(t)=?

2-2.施加于两端网络的电压ab u ()[100100cos 3cos 3]t t V ωω=++,流入a 端电流()[50c o s ()10s i n (3)20c o s t ]A 43i t t t ππωωω-+-+求:①ab u 的有效值为若干?②ab i 的有效值为若干?③平均功率为若干?

3-1.画出单相半波可控整流电路,在a=090时,如下五种情况的()T f t i ω=和()

T f t u ω=的波形。

①电阻性负载。

②大电感负载不接续流二极管。

③大电感负载接续流二极管。

④反电动势不串入平波电抗器。

⑤反电动势负载串入平波电抗器,又接续流二极管,但负载电流仍然无法连续。 3-2.三相半波可控整流电路,负载为电动机,串入足够大的平波电抗器,再与续流二极管并联,U=220V ,电动机负载为40A ,电枢回路总电阻为0.2Ω,求:当a=060时,流过晶闸管与续流管的电流平均值、有效值以及电动机反电动势各为多少?并画出电压、电流波形。

3-3.三相全控桥整流电路,触发方式采用“单宽脉冲”或“双窄脉冲”触发,这是为什么?“单宽脉冲”的宽度应为多少?触发脉冲如何排列?

3-4.三相半控桥整流电路大电感负载,为了防止失控,并接了续流二极管,2100V u =,

d 10R =Ω,求a=0120时输出电压、电流平均值,流过晶闸管与续流管的电流平均值、有效值,并画出电压电流波形。

3-5.某车刀床架采用小惯量G Z 180型直流电动机,其额定功率为5.5KW ,额定电压为220V ,额定电流28A ,电枢电阻为0.03Ω,由三相半波可控整流电路经过星形接线,二次相电压为220V 的变压器供电,整流变压器每相绕组漏抗和电阻(已折算)分别为100H μ和0.02Ω,系统控制电机起动电流不超过60A ,并当负载电流降至3A 时,电流仍要连续。试求:

①整流变压器容量和晶闸管的型号。

②平波电抗器的电感量(不计变压器漏抗和电动机电感量)。

③写出a=0

60时,负载电流连续时的机械方程,并汇出特性曲线。

④a=0

60时,电动机理想空载转速为多少?临界电流为多少?并画出电流不连续时机械特性曲线(近似的)。

3-6.晶闸管三相全控桥式整流供电的直流电动机调速系统,2100V

U=

,电动机的额定电压220V,电流90A,转速1500r/min,功率17KW。电枢回路总电阻为0.5Ω,平波电抗器电感量为5mH,试写出a=0

60时,电流连续区的机械方程式并绘出特性曲线,以及写出当a=0

60时,电流断续区的理想空载转速与临界电流各为多少?

4-1.锯齿波移相触发电路有何优点?锯齿波的底宽由什么元件参数决定?输出脉冲宽度是如何调整的?双窄脉冲比单宽脉冲有何优点?

4-2.图为单结晶体管触发单相半波可控整流电路,试求:①画出a= 0

90时图中①~②点及d u的波形。②加大C的电容量,对触发脉冲有何影响?

题4-2 图

4-3.图是采用变压器耦合的晶体管脉冲触发电路,试叙述其工作原理及各元器件作用,并画出①~⑤点波形。

g 题 4-3 图

4-4.图是带有正反馈的晶体管触发电路,试叙述其工作原理及各元器件作用,并画出①~⑥点波形。

g

题 4-4 图

5-1.为什么三相全控桥整流装置不仅内部接线要正确,而且电网电源进线的相序也必须正确?请绘出波形图说明。

5-2.图为晶闸管、发光二极管LED 等元件组成的测定三相电源相序的电子线路。当被测试点1、2和3所接的三相电源相序分别为U 、V 、W 时,则发光二极管所发出光较暗,反之发光二极管较亮,为什么?试绘出波形图说明。

3

题 5-2 图

5-3. 三相半控桥整流装置,采用单结晶体管触发电路,如图5-12所示。当主变压器接成5Y D 时,根据移相同步要求,试确定同步变压器的联结组别?

5-4. 某三相半控桥整流电路,移相范围接近0

180,主变压器采用Dy11联结组别,触发电路采用带有正反馈的正弦波移相触发电路,并用NPN 管,如果已有一台同步变压器,其联结组别为Dy5、Dy11,那么16~VT VT 晶闸管的触发电路,其同步电压如何取法?此时RC 滤波移相环节的移相角应多大?

5-5. 三相半波可控整流电路,负载时电动机并接有续流管。主变压器为Dy7联结组

别,采用有NPN 管组成的锯齿波触发电路,考虑锯齿波起始段的非线性,留出060裕量,试用图解确定同步变压器的联结组别,并完成电路连线。

6-1. 直流斩波器有哪几种调试方式?画出不同调试方式的输出电压波形。

6-2. 图为某电车斩波器电路,电动机功率为60KW ,电压为600V ,斩波频率为125Hz ,

工作方式为定频调宽制,斩波器的最小导通比0.1c

t T =,斩波器不失控的最大负载电流Im=300A ,晶闸管的最大关断时间80c s t μ=。试计算斩波器换流电容C 、电感1L 及反压电感2L 的数值,并验算换流电路最大冲击电流max c i 和么压持续时间0t 。

题 6-2 图

6-3. 图所示的斩波电路,对电阻、电感和反电动势负载供电,其中1100V E =,

0.25R =Ω,L=0.02mH ,240V E =,斩波周期2500T s μ=,接通时间1

1250s T μ=,试求:输出平均电压和电流(d U 和d I );瞬时输出电流的最大和最小值(m ax d I 和m ix d I );按比例画出d T1T2D1D2i i i i i d u 、、、、、和2i 随时间变化的波形。

题6-3 图

6-4. 上题中,若1110V E =,R=0.15Ω,250V E =,T 4000s μ=,而L 足够大,

使得d i 实际上可认为是一常值,试求:当100A d d I i ==时,计算接通时间1T ,按比例

画出d u 和2i 随时间变化的波形,并验证输入功率和输出功率相等;当100A d d i I ==-时,计算接通时间1T ,按比例画出d u 和2i 随时间变化的波形。 7-1. 双向晶闸管额定电流的定义和普通晶闸管(KP 型)额定电流的定义有何不同?额定电流100A 的两只普通晶闸管反并联可以用额定电流为多少的双向晶闸管代换? 7-2. 双向晶闸管有哪几种触发方式?一般选用几种?为何一般不选用Ⅲ+触发方式?

7-3. 某单相反并联调功电路,采用过零触发。

2220V U =,负载电阻R 1=Ω,控制在设定周期c T 内,使晶闸管导通0.5s ,断开0.3s 。试计算送到电阻负载上的功率与假定晶闸管一直导通时所送出的功率。

8-1. 什么是有源逆变?逆变时a 角至少为多少度?为什么?

8-2 为什么有源逆变工作时,变流器整流侧会出现负的直流电压,而电阻负载或大电感串电阻负载侧不能(电感负载指在正常工作时)?

8-3. 如果只有一组晶闸管供电给一台直流电动机,电动机拖动位能负载,说明什么时候产生发电制动?什么时候产生反接制动?

8-4. 在a=β工作制的有环流可逆系统中,如果环流回路中除电感外还有电阻,此环流能否连续?为什么(环流电压达反向最大值时电流i 降到零即认为连续)?

8-5. 三相半波晶闸管电路工作在有源逆变状态,试画出030β=时,2VT 管的脉冲丢

失时,输出电压d U 的波形。

8-6. 某晶闸管可逆供电装置为三相半波接线,变压器二次侧相电压有效值230V ,00.3R =Ω电动机从220V ,20A 稳定的电动状态下进行发电制动。要求制动初始强度为40A ,试求初始逆变角β应多大(换相压降与管压降不计)?

9-1. 晶闸管装置发生过电流的原因有哪些?可以采用哪些过电流保护措施?塔门所起保护作用的先后次序是怎样的?

9-2. 晶闸管装置发生过电压的原因有哪些?可以采用哪些过电压保护措施?塔门所起保护作用的先后次序是怎样的?

9-3. 晶闸管装置产生

du dt 、di dt 的原因有哪些?相应的保护措施有哪些?

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.doczj.com/doc/a95257913.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.doczj.com/doc/a95257913.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

大功率电力电子器件的新进展

大功率电力电子器件前沿技术分析 贾海叶山西吕梁供电 摘要:本文对大功率电力电子器件技术进行了简述,阐述了大功率电力电子器件发展热点,并对其前沿技术和未来的发展方向进行了分析。 关键词:大功率、电子电力器件,前沿技术 1 引言 随着半导体制造工艺的进步和对电力电子设备容量增大的需求,对电力电子器件的性能和功率要求也越来越高,由此产生了耐高压、大功率的电力电子器件。近来,伴随着器件的大功率化,新的HVIGBT(HighVoltage Insulated Gate BipolarTran-sistor Module)高压绝缘栅双极型半导体模块、HVIPM(High Voltage Intelligent Power Module)高压智能电力模块的MOS型电力电子器件的开发、GCT(Gate Commutated Turn-off Thyristor)闸门换相关断可控硅器件的开发,都有了较大的进展。以新一代器件问世为标志,必然在电力电子设备的开发方面,向着小型化、高效率化、高速控制化的目标飞跃前进。 1.1 大功率电力电子器件的分类 大功率电力电子器件主要分为:二极管、可控硅、光触发可控硅、GTO(Gate Turn-off Thyristor)闸门关断可控硅、GCT、HVIGBT及HVIPM器件。 从1960年开发初期的1英寸硅片开始至今,发展到直径为6英

寸硅片的耐高压、大功率电力电子器件系列化产品,其容量和当初相比,提高了100多倍。而且在使用上减少了串联或并联元件的数量,提高了可靠性,减小了设备的体积。 按照电力电子器件能够被控制电路信号所控制的程度分类,大功率电力电子器件分为: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、MOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类: 1.单极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.双极型器件,例如MOSFET、IGBT;

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子考试题

华南农业大学期末考试试卷(A 卷) 一、 填空题(每题2分,10题共20分) 1. 通常取晶闸管的断态重复峰值电压 UDRM 和反向重复峰值电压 URRM 中 较小的 标值 作为该器件的额定电压。选用时,额定电压要留有一点裕量,一般取额定电压为正常工作时的晶闸管所承受峰值电压的2~3倍。 2. 晶闸管额定电流为100A ,通过半波交流电时,电流的波形系数为K f =1.57,电流的有 效值计算为/2m I ,则通过电流最大值m I 为 314 A 。 3. 单相全波可控整流电路中,晶闸管承受的最大反向电压为 1.41 U 2 。三相半波可控整流电路中,晶闸管承受的最大反向电压为 2.45U 2 。(电源相电压为U 2) 4. 要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是 用 宽脉冲 触发;二是用 双窄脉冲 触发。 5. 单相交流调压电阻性负载电路的移相范围在 0度~ 180 度 内,在阻感性负载时移相范围在 功率因素角 ~ 180度 内。 6. 交流调压电路和交流调功电路异同点: 电路结构相同,控制方式不同,(交流调压电路采 用移相触发对一个周期内导通角控制,调功电路对导通周波数与阻断周波数的比值进行控制) 。 7. 电压型逆变电路中的反馈二极管的作用是 给交流侧向直流侧反馈的无功能量提供 通道 。 8. 变流电路的换流方式有 器件换流 、 电网换流 、 负载换 流 、 强迫换流 等四种。 9. 180°导电型三相桥式逆变电路,晶闸管换相是在 同一相上下两个桥臂 元件之 间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在 上桥臂或者下桥臂组内

电力电子课程学习心得

前沿 在大二学习模电之后,这学期我们开始接触电力电子器件和多种变换器。其中包括直流变直流,无源逆变电路,整流和有源逆变电路,交流变交流电路,软开关变换器。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务. 电力电子器件及应用 电力电子器件特点:1.具有较大的耗散功率2.工作在开关状态3.需要专门驱动电路来控制4.需要缓冲和保护电路。我们在本章学习了功率二极管,场效应二极管,电力二极管,IGBT . 可控整流器与有源逆变器: 主要内容: 整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括: (1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对 整流电路工作情况的影响。 (2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念, 并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。 (3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。 (4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的 选取方法。 交-交变换器: 主要内容: 晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。 交流调压电路通常由晶闸管组成,用于调节输出电压的有效值。与常规的调压变压器相比,晶闸管交流调压器有体积小、重量轻的特点。其输出是交流电压,但它不是正弦波形,其谐波分量较大,功率因数也较低。 控制方法: (1) 通断控制。即把晶闸管作为开关,通过改变通断时间比值达到调压的目的。这种控制方式电路简单,功率因数高,适用于有较大时间常数的负载;缺点是输出电压或功率调节不平滑。 (2) 相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻将负载与电源接通,改变选定的时刻可达到调压的目的。 基本结构和工作原理

现代电力电子技术发展及其应用

现代电力电子技术发展及其应用 摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 二、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压

和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

电力电子考试题库(含答案)

一、填空(每空1分) 1、请在正确的空格内标出下面元件的简称: 电力晶体管GTR;图形符号为; 可关断晶闸管GTO;图形符号为; 功率场效应晶体管MOSFET;图形符号为; 绝缘栅双极型晶体管IGBT ;图形符号为;IGBT是MOSFET 和GTR的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。 4、在电流型逆变器中,输出电压波形为正弦波,输出电流波形为方波。 6、180°导电型三相桥式逆变电路,晶闸管换相是在同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在不同桥臂上的元件之间进行的。 9、常用的过电流保护措施有快速熔断器、串进线电抗器、接入直流快速开关、控制快速移相使输出电压下降。(写出四种即可) 12、由晶闸管构成的逆变器换流方式有负载换流和强迫(脉冲)换流。 13、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分 为有源逆变器与无源逆变器两大类。 16、一个单相全控桥式整流电路,交流电压有效值为220V,流过晶闸管的大电 流有效值为15A,则这个电路中晶闸管的额定电压可选为V 5.1( ;晶闸管 )2 220 2

的额定电流可选为A 57 .115)35.1(倍 是 阳极A , 阴极K 和 门极G 晶闸管的导通条件是 阳极加正电压, 阴极接负电压,门极接正向电压形成了足够门极电流时晶闸管导通 ;关断条件是 当晶闸管阳极电流小于维持电流I H 时,导通的晶闸管关断 。 18、单相交流调压在电阻性负载电路的移相范围在 0o—180o 变化,在阻感性负载时移相范围在 φ—180o 变化。 20、晶闸管的换相重叠角与电路的 触发角α 、 变压器漏抗 X B 、 平均电流I d 、 电源相电压U 2 等到参数有关。 21、要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是用 大于60o小于120o的宽脉冲 触发;二是用 脉冲前沿相差60o的双窄脉冲 触发。 27、单相全波可控整流电路中,晶闸管承受的最大反向电压为 √2U2 。三相半波可控整流电路中,晶闸管承受的最大反向电压为 √6 U2 。(电源电压为U2) 28、从晶闸管开始承受正向电压起到晶闸管导通之间的电角度称为 控制角,用 α 表示。 29、正弦波触发电路的理想移相范围可达 180o、 度,实际移相范围只有 150o 。 30、一般操作过电压都是瞬时引起的尖峰电压,经常使用的保护方法是 阻容保护 而对于能量较大的过电压,还需要设置非线性电阻保护,目前常用的方法有压敏电阻和 硒堆 。

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

电力电子技术期末考试试题及答案(史上最全)

电力电子技术试题 第1章电力电子器件 1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高 时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、 _主电路_三部分组成, 由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_ 、 _ 双极型器件_ 、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、 _肖特基二极管_。 7.肖特基 二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为 __正向电压门极有触发则导通、反向电压则截止__ 。 | 9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。 10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。 的__多元集成__结构是为了便于实现门极控制关断而设计的。 的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系, 其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET的通态电阻具有__正__温度系数。 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。 16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以 上区段具有__正___温度系数。 18.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属 于不可控器件的是_电力二极管__,属于半控型器件的是__晶闸管_,属于全控型器件的是_ GTO 、GTR 、电力MOSFET 、IGBT _;属于单极型电力电子器件的有_电力MOSFET _,属于双 极型器件的有_电力二极管、晶闸管、GTO 、GTR _,属于复合型电力电子器件得有 __ IGBT _;在可控的器件中,容量最大的是_晶闸管_,工作频率最高的是_电力MOSFET,属于电压驱动 的是电力MOSFET 、IGBT _,属于电流驱动的是_晶闸管、GTO 、GTR _。 . 第2章整流电路 1.电阻负载的特点是_电压和电流成正比且波形相同_,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是_0-180O_。 2.阻感负载的特点是_流过电感的电流不能突变,在单相半波可控整流带阻感负载并联续 流二极管的电路中,晶闸管控制角α的最大移相范围是__0-180O _ ,其承受的最大正反向电压均为___,续流二极管承受的最大反向电压为___(设U2为相电压有效值)。 3.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为__0-180O _,单个晶闸管 所承受的最大正向电压和反向电压分别为__ 和_;带阻感负载时,α角移相范围为_0-90O _, 单个晶闸管所承受的最大正向电压和反向电压分别为___和___;带反电动势负载时,欲使电阻上的电流不出现断续现象,可在主电路中直流输出侧串联一个_平波电抗器_。 4.单相全控桥反电动势负载电路中,当控制角α大于不导电角时,晶闸管的导通角=_π-α-_; 当控制角小于不导电角时,晶闸管的导通角=_π-2_。

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子器件的发展分析

电力电子技术课程论文 电力电子器件的发展分析 摘要:电力电子器件发展至今已有近60年的历史,本文简单介绍了电力电子器件的发展历程,然后对IGCT、IGBT、MCT等新型电力电子器件的发展状况及其优缺点进行了分析,最后, 展望了电力电子器件的未来发展。 关键字:电力电子器件;IGCT;ICBT;MCT; 1、引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中,电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“机车”。 电力电子器件的发展时间并不长,但是至今已经发展出多个种类的产品,其中最早为人们所应用的是普通晶闸管,普通晶闸管是由美国通用电气公司在1958年时研制并投产的,它为之后的电力电子器件发展奠定了基础,在1964年时,美国公司又成功研制了可关断的GT0;到了二十世纪七十年代,电力电子器件的研究有了又一成果——GTR系列产品,二十世纪八九十年代,以功率M0SFET和IGBT为代表的,集高频、高压和大电流于一身的功率半导体复合器件,标志着传统电力电子技术已经进入现代电力电子时代。 2、电力电子器件发展史

电力电子器件又称作开关器件,相当于信号电路中的A-D采样,称之为功率采样,器件的工作过程就是能量过渡过程,其可靠性决定了装置和系统的可靠性。根据可控程度以及构造特点等因素可以把电力电子器件分成四类: (1)半控型器件——第一代电力电子器件 2O世纪5O年代,由美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。到了2O世纪7O年代,已经派生出了许多半控型器件,这些电力电子器件的功率也越来越大,性能日渐完善,但是由于晶闸管的固有特性,大大限制了它的应用范围。 (2)全控型器件一一第二代电力电子器件 从2O世纪7O年代后期开始,可关断晶闸管(GTO)、电力晶体管(GTR或BJT)及其模块相继实用化。此后,各种高频率的全控型器件不断问世,并得到迅速发展。这些器件主要有:电力场控晶体管(即功率MOSFET)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)等,这些器件的产生和发展,已经形成了一个新型的全控电力电子器件的大家族。 (3)复合型器件——第三代电力电子器件 前两代电力电子器件中各种器件都有其本身的特点。近年来,又出现了兼有几种器件优点的复合器件。如:绝缘门极双极晶体管IGBT(Insulated Gate Bipolar Transistor)。它实际上是MOSFET驱动双极型晶体管,兼有M0sFET的高输入阻抗和GTR的低导通压降两者的优点。它容量较大、开关速度快、易驱动,成为一种理想的电力电子器件。 (4)模块化器件——第四代电力电子器件 随着工艺水平的不断提高,可以将许多零散拼装的器件组合在一起并且大规模生产,进而导致第四代电力电子器件的诞生。以功率集成电路PIC(Power Intergrated Circuit)为代表,其不仅把主电路的器件,而且把驱动电路以及具有过压过流保护,甚至温度自动控制等作用的电路都集成在一起,形成一个整体。 3、电力电子器件的最新发展 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。其中,电力电子模块化是电力电子器件向高功率密度发展的重要一步。下面介绍几种新型电力电子器件: 3.1 IGCT IGCT(Intergrated Gate Commutated Thyristors)是一种用于巨型电力电子成套装置中的新型电力半导体器件[1]。它是将GTO芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,它是结合了晶体管和晶闸管两种器件的优点,即晶体管的稳定的关断能力和晶闸管的低通态损耗的一种新型器件。IGCT在导通阶段发挥晶闸管的性能,关断阶段呈类似晶体管的特性。IGCT具有电流大、电压高、开关频率高、可靠性高、结构紧凑、损耗低的特点。此外,IGCT还像GT0一样,具有制造成本低和成品率高的

电力电子题库含答案

1.一型号为KP10-7的晶闸管,U TN= 700V I T(A V)= 10A 。1 2.中间直流侧接有大电容滤波的逆变器是电压型逆变器,交流侧输出电压波形为矩形波。 3.晶闸管串联时,给每只管子并联相同阻值的电阻R是__均压______措施。4.在SPWM的调制中,载波比是载波频率和调制波频率的比值。5.考虑变压器漏抗的可控整流电路中,在换相过程期间,两个相邻的晶闸管同时导通,对应的电角度称为换相重叠角。 6.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为二次击穿。7.三相半波可控整流电阻性负载电路中,控制角α的最大移相范围是150°。8.三相全控桥电路有 6 只晶闸管,应采用宽脉冲或双窄脉冲才能保证电路工作正常。电压连续时每个管导通120 度,每间隔60 度有一只晶闸管换流。接在同一桥臂上两个晶闸管触发脉冲之间的相位差为180°。 9.型号为KP100-8的晶闸管其额定参数为:额定电压800v,额定电流100 A 。10.考虑变压器漏抗的可控整流电路中,在换相过程期间,两个相邻的晶闸管同时导通,对应的电角度称为换相重叠角 11.抑制过电压的方法之一是用_电容__吸收可能产生过电压的能量,并用电阻将其消耗。而为抑制器件的du/dt和di/dt,减小器件的开关损耗,可采用接入缓冲电路的办法。 12.在交-直-交变频电路中,中间直流环节用大电容滤波,则称之为电压型逆变器,若用大电感滤波,则为电流型逆变器。 13.锯齿波触发电路由脉冲形成环节、锯齿波的形成和脉冲移相环节、同步环节、双窄脉冲形成环节构成。 14.若输入相电压为U2,单相桥式电路的脉冲间隔= 180 ,晶闸管最大导θ180 ,晶闸管承受的最大电压U dm= 0.9U2 , 整流电压脉动通= m a x 次数m= ; 三相半波电路的脉冲间隔= 120 , 晶闸管最大导通 θ150 ,晶闸管承受的最大电压U dm= 1.17U2 ,整流电压脉动次数= max m= ; 15.GTO、GTR、MOSFET、IGBT分别表示:可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管 16.在三相半波可控整流电路中,电感性负载,当控制角大于30°时,输 出电压波形出现负值,因而常加续流二级管。 17.三相电压型逆变电路基本电路的工作方式是180°导电方式,设输入电压为U d,输出的交流电压波形为矩形,线电压宽度为180°其幅值为U d;相电压宽度为120°,幅值为2/3 U d。 二、判断题 1.各种电力半导体器件的额定电流,都是以平均电流表示的。(× ) 2.对于门极关断晶闸管,当门极上加正触发脉冲时可使晶闸管导通,而当门极

现代电力电子技术

现代电力电子技术

现代电力电子技术二、主观题(共12道小题) (主观题请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答案。) 11. 电力电子技术的研究内容? 12. 电力电子技术的分支? 13. 电力变换的基本类型? 14. 电力电子系统的基本结构及特点? 15. 电力电子的发展历史及其特点? 16. 电力电子技术的典型应用领域? 17. 电力电子器件的分类方式? 18. 晶闸管的基本结构及通断条件是什么? 19. 维持晶闸管导通的条件是什么? 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 21. 整流电路的主要分类方式? 22. 单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=________。

现代电力电子技术二、主观题(共12道小题) 11. 电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 12. 电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 13. 电力变换的基本类型? 参考答案: 包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC (3)斩波DC-DC (4)交交电力变换AC-AC 14. 电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。'

15. 电力电子的发展历史及其特点? 参考答案:主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势 16. 电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 17. 电力电子器件的分类方式? 参考答案: 电力电子器件的分类 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型 18. 晶闸管的基本结构及通断条件是什么? 参考答案:晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 19. 维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 参考答案:I L__〉____I H 21. 整流电路的主要分类方式? 参考答案: 按组成的器件可分为不可控(二极管)、半控(SCR)、全控(全控器件)三种; 按电路结构可分为桥式电路和半波电路; 按交流输入相数分为单相电路和三相电路。

电力电子基础考试题库

作业1 一、判断题(C第1-10题每题4分) 1. 逆变器采用负载换流方式实现换流时,负载谐振回路不一定要呈电容性。 (A) A (B) B 2. 双向晶闸管的额定电流的定义与普通晶闸管不一样,双向晶闸管的额定电流是?用电流有 效值来表示的。 (A) A (B) B 3. 在DC/DC变换电路中,可以采用电网换流方法。 (A) A (B) B 4. 为避免三次谐波注入电网,晶闸管整流电路中的整流变压器应采用Y/Y接法 (A) A (B) B 5. 电流可逆斩波电路可实现直流电动机的四象限运行。 (A) A (B) B

6. 过快的晶闸管阳极du/dt会使误导通。 (A) A (B) B 7. 在变流装置系统中,增加电源的相数也可以提高电网的功率因数。 (A) A (B) B 8. PWM脉宽调制型逆变电路中,采用不可控整流电源供电,也能正常工作。 (A) A (B) B 9. 对三相桥式全控整流电路的晶闸管进行触发时,只有采用双窄脉冲触发,电路才能正常工 作。 (A) A (B) B 10. 无源逆变指的是把直流电能转换成交流电能送给交流电网。 (A) A (B) B

[参考答案:B] 分值:4 二、单选题(第1-15题每题4分) 1. 在晶闸管触发电路中,改变()的大小,则输出脉冲产生相位移动,达到移相控制的目 的 (A) 同步电压 (B) 控制电压 (C) 脉冲变压器变比 (D) 整流变压器变比 2. 直流斩波电路是一种______变换电路 (A) AC/AC (B) DC/AC (C) DC/DC (D) AC/DC 3. 功率晶体管的安全工作区由以下4条曲线限定:集电极-发射极允许最高击穿电压,集电 极最大允许直流功率线,集电极最大允许电流线和______ (A) 基极最大允许直流功率线

相关主题
文本预览
相关文档 最新文档