当前位置:文档之家› 等价无穷小替换公式

等价无穷小替换公式

等价无穷小替换公式

. 当x→0时,

sinx~x

tanx~x

arcsinx~x

arctanx~x

1-cosx~(1/2)*(x^2)~secx-1

(a^x)-1~x*lna ((a^x-1)/x~lna)

(e^x)-1~x

ln(1+x)~x

(1+Bx)^a-1~aBx

[(1+x)^1/n]-1~(1/n)*x

loga(1+x)~x/lna

(1+x)^a-1~ax(a≠0)

'.

(完整word)高等数学等价替换公式

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x Θ .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n Θ .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

高等数学等价无穷小替换

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x ) 函数()x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n

定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系:

等价无穷小替换_极限的计算

无穷小 极限的简单计算 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞ →+∞→∞→∞ →∈00 0x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即 ()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都 不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0l i m =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim ()()(),x x x f x A f x A x α? =? +其中)(x α是自变量在同一变化过程 0x x →(或∞→x )中的无穷小.

三角函数极限等价无穷小公式

三角函数公式整合: 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB- cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB- cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα

大学高等数学等价无穷小#(精选.)

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。 碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim () ()(),x x x f x A f x A x α其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α ).()(x A x f α+=∴

考研数学等价无穷小代换

考研数学等价无穷小代换 更多技巧尽在考研数学(https://www.doczj.com/doc/a92767435.html,/u/2461250915)每周至少更新两次 众所周知,考研数学里面一部分题目需要求极限,大多数同学处理这类问题的方法是洛必达法则,但是,运用洛必达法则运算量大,运算步骤繁琐,因而也就容易出错,稍有不慎,则会算错,尤其对于选择填空题,一旦算错,一分也没有,而且,洛必达法则需要的时间也较多,如果一味的使用洛必达法则,则有可能浪费大量的时间,得不偿失。这里介绍一些求极限等问题的特殊技巧,基本上可以涵盖所有的求极限题目,因为,我们所学的初等函数有五类,反三角函数,对数函数,幂函数,三角函数,指数函数,简称反对幂三指,以下是这五类函数的无穷小代换。以下x均趋近于0 常见代换:x~sin x~tan x~arctan x~arcsin x 幂函数代换:(1+x)λ~λx+1 λ可以取整数也可以取分数 指数函数代换:e x ~x + 1 a x ~ lna·x + 1 对数代换:ln(1+x) ~ x log a(1+x) ~ x/lna 差代换:1.二次的:1-cos x ~ x2/2 x-ln(1+x) ~ x2/2 2三次的:(1)三角的:x -sin x ~ x3/6 tan x -x ~ x3/3 tan x -sin x ~ x3/2 (2)反三角的:arcsin x -x ~ x3/6 x -arctan x ~ x3/3 arcsin x -arctan x ~x3/2 下面来举几个例子简单的说一下这些技巧怎么用 例如:求:当x→0时,lim(arcsin x-arctan x)/ x3的值。 当求这个极限的值的时候,如果用洛必达法则,计算量则会很大,这里不再赘述运用洛必达法则如何求解,只介绍如何使用上述技巧。 lim(arcsin x-arctan x)/ x3=lim(1/2 x3)/ x3=1/2 大家可以自己做一下洛必达法则的方法,对比一下两者之间的差别。 需要注意的是,等价无穷小的运用往往不止一次,只要发现运用洛必达法则运算困难,则可以尝试等价无穷小代换。

高等数学等价无穷小替换

无穷小极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如,,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

高等数学等价无穷小替换_极限的计算

讲义 无穷小极限的简单计算【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是

等价无穷小转换公式

F o r p e s n a u s e o n y s u d y a n d r e s a c h n o f r c m me r c a u s e F o r p e s n a u s e o n y s u d y a n d r e s a c h n o f r c m me r c a u s e 优质解答 当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换, 在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

学术论文 14021198 程浩关于等价无穷小替换法则在何种情况下适用于加减法的若干探讨

关于等价无穷小替换法则在何种情况下适用于加减 法的若干探讨 程浩 北京航空航天大学,电子信息工程学院,北京,100191 薛玉梅 北京航空航天大学,数学与系统科学学院,数学、信息、行为教育部重点实验室,北京, 100191 摘要:本文对等价无穷小替换法则适用于加减法的情形做了 一些探究,并在最后以泰勒公式做了一些推广. 关键字:等价无穷小 替换 泰勒公式 一、引言 我们已经知道,等价无穷小替换法则适用于乘除法,即: 设函数()()()x h x g x f ,,在0x 附近有定义,且()()()0~x x x g x f → 则:若()()a x h x f x x =→0 lim ,则()()a x h x x x =→g lim 0 ; 若()() a x f x h x x =→0 lim ,则()()a x x h x x =→g lim 0.(在0x 附近()()0,0≠≠x g x f ) 那么等价无穷小替换法则在何时适用于加减法呢?当然我们可以轻易推得: 若()()()0~x x x g x f →,则()()()()()()x h x g x h x f x x x x ±=±→→0 lim lim (若两极限存在)但 在参与一些较复杂的运算时就不一定成立了.如: 例1计算x x x x 30 sin sin tan lim -→ 正解 303030sin cos sin lim sin tan lim sin sin tan lim x x x x x x x x x x x x x -=-=-→→→

()21 sin 21cos cos 1sin lim 2230==-=→x x x x x x x 错解 0sin tan tan lim sin sin tan lim 3030=-=-→→x x x x x x x x 究竟是什么原因导致了错误呢? 原来若我们所求极限是 型极限的话,我们轻易替换可能出现错误,不难验证若分子分母函数的极限都存在且不等于0时,等价无穷小可以适用于加减.因此我 们主要探讨0 型极限.我们只讨论减法运算. 二、从无穷小阶量化角度得到的结论 笔者从无穷小量化的角度得到了如下结论: 定理1设()()()0~x x x g x f →,()0lim 0 =→x h x x ,()0lim 0 =→x F x x ,()()() a x F x h x f x x =-→0 lim , (1)当()x f 和()x h ()0x x →不是等价无穷小量,则 ()()()()()() a x F x h x f x F x h x g x x x x =-=-→→00 l i m l i m ; (2)当()()()0~x x x h x f →,则 ()()()()()() a x F x h x f x F x h x g x x x x =-=-→→00 lim lim 成立当且仅当()()x g x f -是()x F 的高阶无穷小量. 证明 以下设()x h 的阶数为m ,()x f 的阶数为n ,()()x h x f -的阶数为p ,()x F 的阶数为 q , ()()x g x f -的阶数为s.

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } -+→→→-∞→+∞→∞→∞→∈000 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小 是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0lim ()() (),x x x f x A f x A x α? =?+其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim (),x x f x A ?=令()(),x f x A α=-则有0 lim ()0,x x x α?= ).()(x A x f α+=∴

等价无穷小公式大全

等价无穷小公式大全 一、等价无穷小的介绍 等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。 二、等价无穷小的公式 当x趋向于0时,有以下重要等价无穷小: sinX~X tanX~X arcsinX~X ln(1+X)~X e^x-1~X a^x-1~Xlna (a>0,a≠1) 1-cosX~1/2X^2 (1+βx)^α-1~αβx (1+x)^a-1~ax log(1+x)~x/ln(a>0,a≠1) 注:以上各式可通过泰勒展开式推导出来。 三、求极限时,使用等价无穷小的条件 1. 被代换的量,在取极限的时候极限值为0;

2. 被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。 四、极限 数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限。其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。

等价无穷小在求函数极限中的应用

等价无穷小在求函数极限中的应用 XX (XX 学院XX 学院 山西XX ) 摘要:等价无穷小替换是求函数极限的常用方法之一,本文讨论了等价无穷小在四则运算、变上限积分、幂指运算中的应用,并通过实例分析了等价无穷小求极限的优势及常见错误. 关键词:等价无穷小;替换;极限 1 引言 在微积分中极限处于十分重要的地位,极限求法众多,而等价无穷小替换是一类重要的方法.在求极限时,灵活运用等价无穷小,往往会使一些复杂的问题简单化.但现在的高等数学和数学分析教材中,只给出积、商运算中等价无穷小因子的替换规则,对四则运算、变上限积分及幂指运算等广泛使用的情况未能提及.本文作了一个比较系统和全面的总结及适当的拓展,并对等价无穷小求极限的优势和常见错误举例分析,以加深对等价无穷小性质的认识和理解. 2 等价无穷小的定义及性质 定义1 如果函数)(x f 当0x x →(或∞→x )时的极限为零,那么称函数)(x f 为当0x x →(或∞→x )时的无穷小. 定义2 设)(x f 与)(x g 都是在同一个自变量的变化过程中的无穷小,且 0)(≠x g ,如果1) () (lim =x g x f ,就说)(x f 与)(x g 是等价无穷小,记作)(~)(x g x f . 常用的等价无穷小:

当0→x 时,x x ~sin ,x x ~arcsin ,x x ~tan ,x x ~arctan ,x x ~)1ln(+, x e x ~1-,22 1 ~cos 1x x -,x n x n 1~1)1(1 -+. 关于等价无穷小,有三个重要性质: 性质1 β与α是等价无穷小的充分必要条件为 )(ααβo +=. 性质2 设αα'~,ββ'~,且αβ'' lim 存在,则 αβαβ' '=lim lim . 性质3 βα~,)(~)(~a x a x →?→γαγβ. 3 等价无穷小在求函数极限中的应用 3.1 含四则运算的等价无穷小替换 定理2表明求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替.因此,如果用来代替的无穷小选得适当的话,可以使计算简化. 例1 求极限2 0sin )1() cos 1(lim x e x x x x --→. 解 当0→x 时,2 2 1~ cos 1x x -,x e x --~1,22~sin x x ,因此 20sin )1()cos 1(lim x e x x x x --→=22 021lim x x x x x ?-?→=2 1-. 例2 求极限) cos 1cos(11lim 4 x x e x x ---→. 解 )cos 1cos(11 lim 4 x x e x x ---→=42 121lim )cos 1(21lim 224 024 0=?=-→→x x x x x x x x . 注意0→x 时,424 1 ~)cos 1(21~ )cos 1cos(1x x x x x ---.用到了性质3. 利用等价无穷小因子替换求极限,可以大大减少计算量,但利用等价无穷小

等价无穷小替换应用的总结

万方数据

万方数据

等价无穷小替换应用的总结 作者:周宏辉 作者单位:湖南城建职业技术学院,湖南,长沙,410015 刊名: 现代企业文化 英文刊名:MORDEN ENTERPRISE CULTURE 年,卷(期):2009,""(15) 被引用次数:0次 参考文献(3条) 1.同济大学才教学教研室高等数学 2.候风波高等数学 3.王晓宏高等数学 相似文献(4条) 1.期刊论文周宏辉等价无穷小在求未定型极限中的应用-中国校外教育(理论)2008,""(12) 在求未定型极限的运算中,如能灵活运用等价无穷小的性质,则能达到洛比达法则所不能取代的作用,能使这些原本复杂的问题简单化. 2.期刊论文郑国彪等价无穷小代换定理的一个结论及其应用-青海师专学报(教育科学版)2004,24(5) 未定型极限是极限问题中的重点和难点之一.等价无穷小代换定理及其推论1、2为计算x→x0时0/0型的极限带来了方便.但推论2不一定总是成立,如果只从形式上套用该推论,而对其成立的条件不加分析与判断,便会造成错误.本文给出推论2之补充结论,从而弥补这一不足. 3.期刊论文施达巧解1∞型极限-成都大学学报(自然科学版)2003,22(4) 本文充分利用等价无穷小量的代换,归纳出1∞未定型极限的几种巧妙方法,与<高等数学>教材中的常用方法相比,这些方法更简洁实用. 4.期刊论文刘小平剖析极限的求法和技巧-中国校外教育(基教版)2009,""(12) 极限问题是整个微积分学的基础,是高等数学基础概念与核心内容之一,熟练掌握一些解题技巧是非常必要的.本文将从变形法求极限的技巧以及巧解1∞型极限这两类求极限的技巧进行探讨,变形法作为求极限的一种常用的方法,变化很多,本文力图对其中的变化技巧作出归纳,提出了5种方法;本文充分利用等价无穷小量代换,归纳出1∞未定型极限的几种巧妙方法,以便形成常规思路. 本文链接:https://www.doczj.com/doc/a92767435.html,/Periodical_xdqywh200915109.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:8683c798-a2ea-43ac-9bf0-9dca00f5215b 下载时间:2010年8月6日

高等数学中的导数公式和等价无穷小公式

声明:第一次弄这些,花了本人好些时间,o(∩_∩)o ,版权所有,严禁将本人的劳动成果用于商业用途。 导数公式 (1) (C)'=0 (2) (x μ)'=μ1x μ- (3) (sinX)'=cosX (4) (cosX)'=-sinX (5) (tanA)'=2sec A (6) (cotA)'=-2csc A (7) (secA)'=secAtanA (8) (cscA)'=-cscAcotA (9) (x a )'=x a ln a (10) (x e )'=x e (11) (㏒a x)'=1 ln x a (12)(lnx)'=1x (13) (arcsinX)' (14) (arccosX)'=- (15) (arctanX)'=21 1X + (16) (arccotX)'=-21 1X +

等价公式 101lim(1)1~n x x x n →+- 当0x →时,ln(1+x)~x 201cos 1lim 2x x x →-= 当0x →时,1~x e x - 0sin lim 1x x x →= 当0x →时,1~ln x a x a - 1lim(1)x x e x →∞+= 22221123...(1)(21)6n n n n ++++=++ 0tan lim 1x x x →= 223333(1)123...4n n n +++++= 0arcsin lim 1x x x →= 2200sin cos n n xdx xdx ππ=?? 0ln(1)lim 1x x x →+= 01lim 1ln x x a x a →-=

等价无穷小替换的实质

等价无穷小替换的实质 陈玉发 (河南 郑州 郑州职业技术学院 450121) 摘要:在利用等价无穷小替换进行极限运算时,出现了“悖论”.产生悖论的原因是因为使用者没有 真正理解等价无穷小替换的实质.可以从代数变换的角度理解等价无穷小替换的实质,也可以从函数的幂级数逼近理解等价无穷小替换.理解了替换的实质,在运算中就可以避免出错. 关键词:不定式 极限 等价无穷小替换 代数变换 幂级数 (作者简介:陈玉发,男,河南省荥阳市人.汉族,出生于1969年5月.工作单位:郑州职业技术学院,副教授,硕士.从事数学教育研究.邮编:450121.E-mail:cyf01969@https://www.doczj.com/doc/a92767435.html, .) 两个无穷小(大)量之比的极限,可能存在,也可能不存在,因此我们把两个无穷小量 或两个无穷大量之比的极限统称为不定式极限,分别记为00型或∞∞ 型的不定式极限【1】 .除此之外,还有其它5种类型的不定式极限,最终都是通过适当的代数变换,转化为00型或 ∞ ∞ 型的不定式极限. 在计算不定式极限时,等价无穷小替换是一种简化运算的有效手段.但是,任何方法都有它的局限性,等价无穷小替换也不例外. 1.等价无穷小替换的“悖论” 例1.计算极限 1 20l i m ( )x x n x x x e e e n →++ +. 解Ⅰ 用罗比达法则: 原式1 1 220ln() lim ln()0 lim x x nx x x nx x x x e e e e e e n n x e e →++++++→= = 221 l n () l n l i m l n ( ) l i m x x n x x x n x e e e n x x x x e e e n e e +++-→→+++== 1 2(2) 20 l i m x x n x e e n e x x n x e e e x e ++++++→= 1 1( 1) (12) 2 n n n n n e e ++++?==

等价无穷小量替换定理

§2-6无穷小与无穷大的比较 基础知识导学 则(1) (2) (3) 2、 1、无穷小的比较 定义1设a 、3是某一极限过程中的两个无穷小,若 lim — = C ( c 为常数) a 称在此极限过程中 称在此极限过程中 称在此极限过程中 当c 丰0时, 当c = 0时, 当c = 1时, 无穷大的比较 是同阶无穷小; 的高阶无穷小,记作 3 =0( a )(读作小欧a ); 是等价无穷小,记作 3 (X 。 定义2 (1) 如果 如果 设丫 Z 是同一极限过程中的两个无穷大量, lim Z = c 工0则称丫与Z 是同阶无穷大量; lim —= 8时,则称Z 是丫的高阶无穷大量; 如果 lim Y^= c 工0(k >0),则称Z 是关于(基本无穷大量) 丫的k 阶无穷大量。 无穷小的阶与主部 k 定义3 把某极限过程中的无穷小 a 作为基本无穷小,如果 3与a ( k > 0)是同阶的无穷小,即 hm —= CP 则称3是关于“的k 阶无穷小。 重点难点突破 1.关于无穷小的比较 要确定两个无穷小量是同阶、高阶和等价的关系,其实就是求这两个无穷小量比的极限,再根据定义判 断两个无穷小的关系。 注意 (1)符号3 =0( a )与3?a 的含义 亠 P 3 =0(a )表示3是a 的咼阶无穷小,即lim — = 0 ; a P lim — =1 a 3?a 表示3与a 是等价无穷小,即 同阶不一定等价,等价一定同阶。 利用等价无穷小求极限 (1) (2) 等价无穷小在求极限的过程中可以进行如下替换: 若a ?a', 3?3/,且lim —存在,则 a , lim 一 = lim — — a a' 无穷小量的比较表 设在自变量X T X 0的变化过程中,a (X )与 P (X )均是无穷小量 无穷小的比较 定义

泰勒公式与等价无穷小替换的区别

泰勒公式与等价无穷小替换的区别 在考研数学中,利用等价无穷小替换或泰勒公式来计算极限是常考的考点。然而很多同学对于等价无穷小替换求解极限的运用不够灵活甚至常常犯错。究其原因主要有两个:一是学生平时努力不够,对于常见的等价无穷小没有准确记忆并且对于此类求极限问题缺少练习;二是对于等价无穷小替换的实质还没有达到透彻的理解,使用的原则存在错记、混记的现象。比如练习时有这样的题目: 30tan 2sin 2lim x x x x →-有这样的解法:3300tan 2sin 222lim lim 0x x x x x x x x →→--==从解答过程中可以看出,学生不论前提条件是否满足而生搬硬套地使用等价无穷小替换法则,反映出学生对于该法则的使用没有达到本质的理解。我们知道等价无穷小替换原则是:只能适用于乘除法中,也就是说只能作为乘除因子时才可以使用,而在该题目中,分子中是减法运算不能直接替换,故该方法是错误的。而泰勒公式的好处就是将极限问题化繁为简,即把涉及到的函数全部转化为有理函数。比如 331sin ()6 x x x o x =-+,左右两边是等号相连接,只要当0x →时,该式都是成立的都可以使用,比等价无穷小替换使用的范围更广。 下面我们结合泰勒公式来重新理解等价无穷小替换的一些法则和原理(假设所有极限中涉及的自变量变化过程都是趋向于零) 性质:~() o αββαα?=+我们简单证明一下:若~αβ,根据等价无穷小的定义可得:lim 1βα =,即:lim 10βα??-= ???;lim 0βαα -?=;

()o βαα?-=?()o βαα=+; 最初学生对于右边式子中的()o α会觉得比较抽象难以理解,我们可以结合泰勒公式来形象直观的理解。以正弦函数的泰勒公式为例: 357111sin ...3!5!7! x x x x x =-+-+如果β取sin x ,那么α可以取x ,或313!x x -,或35113!5!x x x -+;则:相应的()o α分别为:35(),(),()o x o x o x , 所以()o α并不是抽象的符号,实际代表着具体的表达式,而且该表达式很复杂,由多个式子组成,所以简写成用()o α来表示。 那么在具体的极限题目中,利用泰勒公式具体应该展开到哪一项呢?我们有一个原则就是“上下同阶”。比如在前面的例题中,由于分母是3 x ,所以我们只展开到第二项就可以了,即:331sin ()6x x x o x =-+;331tan 22(2)()3 x x x o x =++故上题中正确的作法应为: 333333 00112(2)()2[()]tan 2sin 236lim lim x x x x o x x x o x x x x x →→++--+-=333 03()lim 3x x o x x →+==所以在求解极限问题的思路中利用泰勒公式比等价无穷小替换法则更一般、更普遍,在解决问题时往往倾向于接受和使用那些放之四海而皆准的思路和方法,关于等价无穷小替换和泰勒公式的使用,同学们要后期多加练习。

相关主题
文本预览
相关文档 最新文档