当前位置:文档之家› 智能电网与低压电网网络拓扑结构

智能电网与低压电网网络拓扑结构

智能电网与低压电网网络拓扑结构
智能电网与低压电网网络拓扑结构

智能电网与低压电网网络拓扑结构

随着国际金融危机、与全球能源危机的深化,二氧化碳减排与低碳经济的倡导,各国不约而同地选择了智能电网作为经济发展的引擎。它导致了全球范围的智能电网热潮。

我国根据自己电网的特殊性,提出坚强智能电网规划。其内涵包括特高压输电网架、数字化变电站、配网调度自动化系统,以及用电营业管理与用户互动系统。

而就目前我国的现实条件而言,只有特高压输电网络与用电营业管理系统具备立即实施的条件。数字化变电站与配网调度自动化,由于标准还很不完善,暂时还不具备全面实施的条件。

一.用电营业管理数据采集系统与低压电网网络拓扑分析:

鉴于用电营业管理与用户互动系统,涉及的产业链最长,现实需要的产品数量最大,可以容纳的企业也最多,它也成了企业追捧的热点、投资商的最爱!

但也就是这个系统,从现场反馈的数据分析,存在重大技术障碍。主要体现在系统的低压载波信道的通信可靠性上。

考虑到低压电网资产属于供电部门所有,国家投资形成的资产无投入或低投入增值,具有太大的诱惑;加上自家信道不用支付长年累月日常通信的运行费用,国网首选低压载波信道作为用电营业数据采集与用户互动系统的下段信道。

但是这条信道也存在它自身的弱点:由于我国对低压电器上网监控不严,电网载波通信背景噪声很大;而电网的优越的50hz频率

响应特性与极差的高频响应特性,面对剧烈的电网负载变化,使得电网产生极高的高频衰减与难以克服的衰减动态范围;这都导致了用电营业管理数据采集系统下段信道通信可靠性达不到现场适用要求。

根据目前国际上在低压电网上允许使用的两个载波通信频段与通信技术发展现状,目前低压载波通信单纯依靠物理层通信,无法保证系统数据采集的可靠性;这也为我国低压载波集抄系统将近二十年的推广实践所证实。现在国内外在低压载波通信领域,几乎毫无例外地都在发展中继组网技术。也就是关联中继技术。借助中继通信,牺牲部分数据采集速度,来提高数据采集的可靠性。

但是这种解决方案,具有一个前提,这就是电能表之间的关联性。当系统出现“孤岛”现象时,“孤岛”中的电能表与其他电能表之间丧失了通信上相关性,中继手段就完全无能为力了。要解决“孤岛”现象的唯一手段,就是提高载波通信芯片物理层通信能力,建立电能表之间的关联关系。这个要求,比单纯依靠物理层进行系统全覆盖,要求低一些。它也说明系统的关联指标是与载波通信芯片物理层通信能力是相关的。

中继通信的关键是电能表之间的相关性!

就关联中继技术而言,从中继的选择性分类,可以分为非选择性的自动中继(我们可以把它称作盲中继)与选择性自动中继两种。

非选择性的自动中继的典型方案,有lonworks总线技术,及其国内的动态组网技术。它主要依靠“全网侦听、冲突避让”,实现中

继自动路由。它对电能表关联性认知度要求最低,因为它是盲中继;但它也没有电能表关联性认知的历史积淀,更不能重复使用。

这种盲中继,无法保证中继效率;也不能人工调控后备方案;还需要全网互动配合;从工程实施上,需要系统配套供货;电能表需要有相应硬件、软件支持,成本、价格都相对高一些。

所谓的选择中继,也就是低压电网网络拓扑分析与中继路径自适应技术(Topo-relay技术),它的指导思想是首先建立网络拓扑分析的数学模型,通过系统调试,实现低压电网的网络拓扑分析,摸清低压电网的网架结构,以及电能表在这个网架上的位置,然后根据电能表的关联关系,通过第一次实时直抄结果与抄收边界,借助软件分析,自动选择中继表的位置,实现波状外延与抄收覆盖。

在这个系统中,低压电网的网络拓扑分析是关键技术!它需要全面彻底了解低压电网的物理拓扑结构与所有电能表在低压电网上的准确位置,直到把电能表的关联关系,直观地呈现出来。便于通过集中器软件控制整个中继过程,并且选择各种后备中继手段,确保系统抄收全覆盖。在这个系统中,全部网络拓扑分析与中继过程,都由集中器软件进行控制,所有的电能表都是“傻瓜”电能表,只管中继转发。这样,系统中数量最大的载波电能表,成本可以相对降低,进而导致系统造价降低。而且,在公开通信规约的前提下,便于集中器与电能表分开供货,对于有效控制整个行业产业链建设,与系统工程组织实施,是很有好处的。

这种分析方法最大的好处,就在于电能表关联性的历史积淀!系统不断修正的电能表关联性的准确度;能够自适应系统的各种动态变化;其中包括正常的电能表轮换校验、损坏更新、线路改造、系统扩容、新户报装、气候变化、季节更迭、设备元器件老化等。而且,运行时间越长,这种关联性描述越准确。这个关联性还可以重复使用,包括智能电网中的其他应用。

二.分散型绿色电源建设与低压电网的网络拓扑分析:

随着国际金融危机的深化,与全球性的能源危机,一个新兴的产业——智能电网——全面兴起。世界各国都把低碳经济与清洁能源建设当作了新兴产业革命的引擎。

而在清洁能源建设过程中,替代化石能源的太阳能与风能,得到各方的极大关注。在智能电网工程实施过程中,这两种能源都要转换成电能。因为电能作为二次能源,使用最方便。

如果是集中型太阳能与风能电站,它接入电网以后的全部管理、运行模式,与普通水电站、火电厂,差别不大。但是,太阳能与风能电站,其发电条件受气候条件严重制约,不能参加系统调峰。

相对而言,分散型的绿色能源建设,有其独特的优势:分散型绿色电源都在负荷中心,这种能源消耗,避免了电能输送,大大降低了系统线损,提高了能源使用效率。但它的自然属性,发电条件的随机性,也给这些新能源上网,带来诸多问题。

智能电网的运行管理需要了解电能上网和使用电能的完整流程,以及在那些电能被转化、在这些位置上电网发生了什么变化。而

且为了电网的安全运行,也为了保护绿色电源设备,我们还需要计算、分析电网的潮流分布、负荷分配,还有电源点的有功、无功功率流向、功率因数参数、电网各点电压分布、各种故障状态下的短路电流计算,继电保护整定。一系列的电参量计算,都离不开低压电网的网络拓扑结构。

而我国由于历史变迁的缘故,大多负荷中心的低压电网网络拓扑结构,我们是不知道的!这就使得上述电参量计算,变得十分困难。而且,没有低压电网的网络拓扑结构,即使我们利用先进的只能表计,采集到现场的电气参数,它们又有多少现实价值呢?即使微网技术得到进一步的发展,它也需要这个网络拓扑结构支撑。

当然,就目前的技术发展来看,大规模的分散型绿色电源建设,条件还不具备。但是从长远来看,它带来的效益是明显的。值得我们期待。

而一旦开始分散型绿色电源建设,低压电网的网络拓扑结构就是一个绕不开的课题!

而就目前国内的现状而言,要了解低压电网的网络拓扑结构,只能采用人工摸查的办法。这种方法,既麻烦,又不准确。借助低压载波通信中的Topo-relay技术,进行网架结构与结点位置探查,是一个比较理想的方法。

这种方法可以通过逼近算法,比较准确地描绘整个低压电网的系统网架结构,也可以基本判断电能表所在结点的位置,从而为电网的各种电参数计算与摸查,奠定基础。

当然,这种基于载波通信的网络拓扑分析,也有它的局限性。它主要表现在以下几个方面:

首先,它得到的是基于通信概念的物理网络拓扑,而不是几何拓扑。它对系统网架结构的描述,与电路参数分析所用的几何拓扑是完全一致的。但电能表结点位置,与几何拓扑,可能存在一定的误差。电能表通信指标的一致性越好,这种差异就越小。

第二,这种网络拓扑分析,需要通过逼近算法计算。虽然,系统经过24小时自动调试以后,就可以保证低压载波集抄系统的正常运行与100%系统全覆盖;但是距离系统完整的网架结构分析,还有一定距离。需要再通过一段时间的运行与使用,才能描绘出整个系统准确的网架结构。

第三,它无法提供系统50Hz准确的电参量。

鉴于微网技术尚处于发展与完善的过程中,这种基于通信概念的网络拓扑分析方法的应用前景,还不是十分明确。

网络拓扑和电路的矩阵形式

第十五章网络拓扑和电路方程的矩阵形式 第一节网络的拓扑图 一、网络的图:1、拓扑图: 在电路的分析中,不管电路元件的性质差别,只注意连接方式即网络拓扑的问题。若将每一条支路用一条线段(线段的长短、曲直不限)来表示,就组成拓扑图。如图15-1-1(a)对应电路的拓扑图为(b)。图15-1-2(a)对应电路的拓扑图为(b)。图15-1-3(a)对应电路在低频下的拓扑图为(b)。 此拓扑图是连通图。 (b) 是互感 电路的 分离图。 (b)是在低频下的拓扑图,是分离图,包括自环(自回路)、悬支、孤立结点。

2、有向图:如果标以支路电压、电流的(关联)参考方向,即成有向图。 3、子图:如果图G1的所有结点和支路是图G的结点和支路,则G1是G的子图。子图可以有很多。 第二节树、割集 一、树: 1、定义:连通图G的树T是G的一个子图。(1)它是连同的。(2)包括G中的所有结点。(3)不包含任何回路。树是连接图中所有结点但不包含回路的最少的支路集合。同一拓扑图可以有不同的树。对于一个有n个结点的全连通图可以选择出n n-2种不同的树。 2、树支和连支:当树确定后,凡是图G的支路又属于T的,称为树支,其它是连支。树支数T=n-1;连支数L=b-(n-1)。 二、割集: 定义:对连通图来说,割集C是一组支路的集合,如果把C的全部支路移去,将使原来的连通图分成两个分离部分,但在C的全部支路中,只要少移去一条支路,剩下的拓扑图仍是连通的。因此割集是把连通图分成两个分离部分的最少支路集合。 三、独立回路组的确定: 可以通过树确定一组独立回路,称为单连支回路组。如图15-2-1。 选择支路1、2、3、7为树支,4、5、6、 8为连支,则单连支回路组为: {1、2、4},{2、3、5},{2、3、6、7}, {1、3、7、8}。 又称为单连支回路组。 四、独立割集组的确定: 可以通过树确定一组独立割集,称为单树支割集组。如图15-2-2。 选择支路1、2、3、7为树支,4、5、 6、8为连支,则单树支割集组为: {1、4、8},{2、4、5、6},{3、5、6、 8},{6、7、8}。 又称为单树支割集组。 第三节关联矩阵、回路矩阵、

电力通信网络的现状及未来发展方向探讨

电力通信网络的现状及未来发展方向探讨 发表时间:2019-05-06T15:53:40.293Z 来源:《防护工程》2019年第1期作者:周建波 [导读] 努力开创电力市场崭新经济增长点,提高竞争实力和可持续发展能力,实现电力系统经济利益最大化。 国网青岛供电公司 266001 摘要:本文通过对我国电力通信网络现状的介绍,针对电力系统特点,从未来业务发展的角度出发,给出今后电力通信业务扩展可行方案,阐述了电力通信网络今后发展方向。 关键词:电力通信;能源互联网;发展方向 0.前言 2018年,国网确立了“建设具有卓越竞争力的世界一流能源互联网企业”的企业战略目标。未来电网发展方式必然会发生巨大的变化,大电网安全控制、“源网荷储”友好交互、企业管理信息化对通信网络新的更为苛刻的要求,通信网络必然会与电网生产、企业经营、客户服务深度融合发展,各型智能化终端必然会在电网智能化建设中大量普及应用,大电网安全控制、“源网荷储”友好交互对通信网络的接入需求必然会有爆炸性的增长。电网对通信网络架构、带宽、时延、可靠性、灵活性、泛在性等指标有着新的更为苛刻的要求。本文主要针对电力通信系统未来的发展做出较为详实的阐述与探讨。 1.电力通信网简介 1.1 概述 电力系统通信网是一种专业的通信网,是由发电厂及变电所等各级电力部门相互连接的传输系统和设在这些部门的交换系统或终端设备构成,是电网重要组成部分,由电网的结构、运行管理模式、经济性等因素决定。 1.2 主要发展历程 通信技术经历了从纵横交换到程控交换、从明线和同轴电缆到光纤传输、从模拟网到数字通信网、从定点通信到移动通信、从主要面向硬件到面向软件技术的几大阶段变化。我国电力专用通信网也是基于此进程,随着电网的建设、发展以及电网自动化水平的不断提高形成并逐步成长起来的。在60、70年代,电力通信是以音频、载波、模拟微波等通信方式为主。80年代之后,随着大规模集成电路的发展,出现了数字微波、光纤通信、程控交换机等,这也是目前电网通信系统的主要组成单元。到了90年代,我国电力通信装备水平与日新月异的通信技术发展相比已显滞后。随着信息交流的日益强烈,跨行业技术交叉与渗透越发明显,电力通信作为电力系统的重要基础设施、系统的神经中枢、行业的高科技先驱,更应该跟上飞速发展的时代步伐,率先引领电力科技领域新潮流。 2.主要扩展业务形式 随着网络通信技术在电力行业内的广泛应用,对我国电力基建、生产和营销时刻产生着深层的影响。以下简要介绍一些可以基于我国电力通信网的扩展业务类型。 2.1 电网安全监视和稳定控制方面 (1)电力系统崩溃的根本原因是网络结构的薄弱性和不合理性,利用测量控制装置的投入(如:及时定位线路故障点的线路故障测距装置;实时监视通信全网路健康状况的通信全线路自动监视系统等),通过网络传递实时信息,实现在线监控。利于迅速排除输电线路事故,快速恢复故障电网,防止大面积停电。 (2)在电力系统中实施相量控制是电力系统稳定控制最直接的方法,通过采用全球卫星定位系统GPS实现的同步相量测量技术和光纤通信技术使任一变电站均可通过精确时间脉冲给当地测量的电压波形以时间标记。通信系统将测量收集汇总处理后,根据各变电站之间动态相量变化实施控制。GPS相量测量装置与常规RTU相配合,使调度中心的EMS系统功能从稳态向动态转变,将使大电力系统的全局稳定和恢复控制成为可能。 2.2 气象与新能源方面 (1)降水量监测装置:在水电站上游某位置(如:野外无人职守监测台站)进行常年降雨量的采集,给每一个采集点分配相应的网络地址号或频点,通过网络传递信息,进行数据统一分析处理。再如,水电站水位网络报警装置:当汛期或其它原因使水库水位异常时可通过网络自动向下游传递实时信息,并提示对策便于宏观调控。 (2)雷电观测系统:由于雷击是造成线路事故的主要原因,随着电力工业的发展,电网建设密度的加大,雷击故障点的精确定位、轨迹跟踪及处理难度也随之提高,就要求我们制定出一整套较为完善的方案,以加强对雷电的实时监测。 (3)新型能源发电技术 太阳能、风能、潮汐等新能源发电技术实施是今后国家电力进程的一个目标,对新能源的预报及充分利用也是今后电力通信网络的任务之一。 2.3 环境保护方面 随着环境保护力度的加大,要求对火电厂、核电站的排放(包括烟气、放射线等)实时监测。监测系统将采集的数据就地分析处理,并提示采取相应措施;同时通过网络传输,由中央级单元统一备案集中调控。 GPS系统、地理信息系统(GIS)、遥感技术(RS)等的出现及应用,为电力通信网络业务扩展实施提供了可能。特别是允许用户利用基于Windows环境下的具有可视化界面的VB、VC等软件自主二次开发GPS用户接收机单元,通过接收机自身的串行通信口传输数据,实现对雷电、降雨、水位、烟气、放射线、电磁等的时间、地址、数量、强度、浓度等各种信息、数据的实时监测。对上述几项业务的开展提供了技术上的支持。 2.4电网商业化运营方面 随着电力改革的不断深化,依托于全国联网工程和开放性电力市场的电网商业化运营方针已经逐步形成,具有集成、拓展、安全性的基于国际互联网的企业电子商务系统是今后发展的必然。电子商务系统以其快捷安全的性能使电力市场的开放交易成为可能,电量的即时交易、用户的个性定制,既极大的改善了交易与服务,又降低了成本。互动式电子商务平台的建立,其所提供的服务不仅停留在销售层面

人工智能与神经网络课程论文

1. 引言 (2) 2. 在农业生产管理与决策中的应用 (2) 2.1. 在农业机械化中的应用 (2) 2.2. 在智能农业专家系统中的应用 (3) 3. 在预测和估产中的应用 (3) 3.1. 在农作物虫情预测中的应用 (3) 3.2. 在作物水分和营养胁迫诊断及产量估测中的应用 (4) 4. 在分类鉴别与图像处理中的应用 (5) 5. 结束语 (5)

BP 神经网络的研究与应用 摘要: 本文概述了BP 神经网络在农机总动力预测、农业专家系统信息决策、虫情测报、农作物水分和养分胁迫、土壤墒情、变量施肥、分类鉴别和图像处理等领域的应用情况,总结了人工神经网络模型的优点,指出其在精准农业和智能农业中的重要理论技术支撑作用。 关键词: BP神经网络; 农业工程; 农业专家系统; 变量施肥; 土壤墒情 Research and Application of BP Neural Network Abstract: Application of BP neural network in prediction of total power in agriculture machinery,information decision-making by agricultural experts system,pest forecast,crops to water stress and nutrient stress,soil moisture condition,variable rate fertilization,identification and image processing were overviewed.Characteristics of artificial neural network model were summed.Supporting role for important theory and technology in precision agriculture and intelligent agriculture were pointed. Key words: BP neural network,Agricultural engineering,Agricultural experts system,Variable rate fertilization,Soil moisture condition

简述电力系统通信设计

简述电力系统通信设计 摘要:本文分析了目前电力通信网的特点,介绍了电力通信设计应满足的特性和电力通信设计一般采用的通道技术类型。 关键词:电力系统通信设计 0、引言 电力通信网是电力企业生产、经营和管理的核心支撑系统。它同电力系统的安全稳定控制系统、调度自动化系统合称为电力系统安全稳定运行的三大支柱。电力通信网是由光纤、微波及卫星电路构成主干线,各支路充分利用电力线载波、特种光缆等电力系统特有的通信方式,并采用明线、电缆、无线等多种通信手段及程控交换机、调度总机等设备组成的多用户、多功能的综合通信网。 1、目前电力通信网的特点 (1)要求有较高的可靠性和灵活性。电力对人们的生产、生活及国民经济有着重大的影响,电力供应的安全稳定是电力工作的重中之重;而电力生产的不容间断性和运行状态变化的突然性,要求电力通信有高度的可靠性和灵活性。 (2)传输信息量少、种类复杂、实时性强。电力系统通信所传输的信息有话音信号、远动信号、继电保护信号、电力负荷监测信息、计算机信息及其他数字信息、图像信息等,信息量虽少,但一般都要求很强的实时性。目前一座110kV 普通变电站,正常情况下只需要1到2路600-1200Bd的远动信号,以及1到2路调度电话和行政电话。 (3)具有很大的耐“冲击”性。当电力系统发生事故时,在事故发生和波及的发电厂、变电站,通信业务量会骤增。通信的网络结构、传输通道的配置应能承受这种冲击;在发生重大自然灾害时,各种应急、备用的通信手段应能充分发挥作用。 (4)网络结构复杂。电力系统通信网中有着种类繁多的通信手段和各种不同性质的设备、机型,它们通过不同的接口方式和不同的转接方式,如用户线延伸、中继线传输、电力线载波设备与光纤、微波等设备的转接及其他同类型、不同类型设备的转接等,构成了电力系统复杂的通信网络结构。 (5)通信范围点多且面广。除发电厂、供电局等通信集中的地方外,供电区内所有的变电站、电管所也都是电力通信服务的对象。很多变电站地处偏远,通信设备的维护半径通常达上百公里。 (6)无人值守的机房居多。通信点的分散性、业务量少等特点决定了电力通信各站点不可能都设通信值班。事实上除中心枢纽通信站外,大多数站点都是无

低压电力线载波通信技术及应用

低压电力线载波通信技术及应用 摘要:低压电力线在实际应用的过程中有很多优良的特性,并且在多个领域中 都有着广泛的应用。低压电力线载波通信技术经历了很长时间的发展过程,在技 术的应用上已经趋于成熟。本文先对低压电力线载波通信技术的系统设计进行了 分析,并介绍了它的工作原理和具体的应用,希望可以为相关领域提供一些参考 意见。 关键词:低压电力线;载波通信技术;应用 低压电力线载波通信技术可以应用于很多不同的领域,并且具有覆盖规模广、操作简单等优势。基于此,该技术逐渐发展成为我国现阶段完成高速数据传播的 主重要技术之一。但是由于受到各种因素的限制,该技术存在的潜能难以进行有 效的挖掘,所以该技术还有丰富的可开发利用空间。在此情况下,我国有关部门 不断提高了对该技术的重视程度并且对其加以改进和完善,从而保障我国的通信 技术向着更加优化的方向发展。 1.低压电力线载波通信系统设计概述 该技术发展的关键性因素在于其进行信号传输时的质量,而信号传输有着抗 阻和不断衰减的特点,并且会对信号的质量产生直接的影响。另外,利用低压电 力线载波通信技术进行传输时,信号的质量还会受到不同噪音的干扰,使得信号 质量被消弱,最终对通信效果产生不良影响。而且信号传输时的抗阻和不断衰减 这两种特性对信号传输的实际距离起着决定性的影响,对噪音的抗干扰能力在很 大程度上影响着信号在传输过程中的质量。因此,在应用该技术时必须要对多方 面的因素进行综合考虑,从而有效的促进信号传输距离不断扩大,信号质量得以 提高,最终实现良好的传输效果。 在对电力线进行设计时,必须要将其抗阻能力考虑在内。正常情况下,电力 线都具备良好的抗阻性,所以在对通信系统进行设计时一般只需要保证信号输出 和接收两端具有良好的的抗阻性即可,尽可能的对信号接收和传输时的能量消耗 进行有效的控制。在电力线上进行信号传输的过程中,高频传输信号会出现大幅 度的衰减,并且无法避免噪音干扰。为了确保信号在传输过程中的强度,电力线 需要具备良好的抗干扰能力。在此通信技术中,为了实现信号强化一般可以应用 扩频以及正交频复用这两种技术手段。应用扩频技术一般多应用于信噪微弱的环 境下,用于接收信噪比较为强烈的信号。此外,在选取宽带和载波频率的时候应 该注意以下内容:尽量按照噪音干扰程度最小和信号衰减速度最低的要求进行选取。在不同频域中,结合信号的实际衰减情况和噪音出现的密度来确定最适宜的 载波频率。按照信号干扰强度的实际情况,在频谱中如果信号衰减会比噪音干扰 对信号产生更大的影响,首先需要对不同频谱中出现的信号衰减情况进行考虑, 然后再结合噪音频谱的实际密度进行分析,一般会选取处于低频段的载波频谱。 反之如果噪音干扰所带来的影响更大,则应该先对噪音频谱的实际密度进行分, 这种情况下一般回选取高频率频段。 2.低压电力线载波通信技术原理分析 该技术一般包括三个部分,分别为低压电力线、终端设备以及系统管理中心。在通信系统中,低压电力线担任信号传输过程中的媒介。因为信号在进行传输期 间会受到很大程度的衰减,所以该技术进行信号传输的距离会被限制。为了处理 这个问题,系统管理中心有负责进行信号接收的设备,接收完成后再对信号进行 解调,然后再经过其他一系列的处理之后,应用串口的方法或GPRS技术将经过

电力系统动态潮流计算及网络拓扑分析

分 类 号: 单位代码: 10422 密 级: 学 号: 200413208 硕 士 学 位 论 文 论文题目:电力系统动态潮流计算及网络拓扑分析 作者姓名 张国衡 专业 电路与系统 指导教师姓名 专业技术职务 王良 副教授 2007 年 5 月 15 日 TM734

目录 摘要 (1) Abstract (2) 第1章绪论 (3) 1.1 课题背景 (3) 1.2 潮流计算的基本要求和要点 (3) 1.3 潮流计算程序的发展 (4) 1.4 动态潮流算法的提出 (5) 第2章潮流计算的数学模型 (6) 2.1 节点网络方程式 (6) 2.2 电力网络方程的求解方法 (8) 2.3 潮流计算的定解条件 (11) 第3章P-Q分解法的基本潮流算法 (13) 3.1 牛顿—拉夫逊法的基本原理 (13) 3.2 极坐标下的牛顿-拉夫逊法潮流计算 (15) 3.3 P-Q分解法的原理 (18) 3.4 P-Q分解法的特点 (20) 3.5 P-Q分解法的潮流计算步骤 (21) 第4章基于电网频率计算的动态潮流 (22) 4.1电力系统的频率特性和一次调频 (23) 4.2频率计算 (27) 4.3微分方程的求解 (28) 4.4频率计算和潮流计算的联合 (30) I

第5章基于面向对象的动态潮流程序 (32) 5.1 面向对象的编程思想 (32) 5.2 对象模型的建立 (32) 5.3 类的处理和实现 (34) 5.4 生成应用程序 (40) 5.5 算例分析 (42) 5.5 一次调频的手工算例 (46) 5.6 结论 (48) 第6章电力系统的网络拓扑分析 (49) 6.1 离线数据准备 (49) 6.2 网络拓扑分析 (50) 6.3 电网拓扑分析的例题 (53) 6.4 拓扑分析和潮流计算的接口 (56) 第7章动态潮流综合算例分析 (57) 7.1 程序流程图 (57) 7.2 Ⅰ型考题综合算例 (59) 7.3 华北电网综合算例 (63) 7.4结束语 (65) 参考文献 (66) 附录 (67) 致谢 (78) 攻读硕士学位期间发表的学术论文 (79) II

低压电力线载波通信

PL2102--功能特征 PL2000A/B 是专为电力线通讯网络设计的半双工异步调制解调器,是PL2000 的升级产品。它仅由单一的 +5V 电源供电,以及一个外部的接口电路与电力线耦合。PL2000A/B 除具备原有系统基本的通讯控制功能外,还内置了四种常用的功能电路:32 Bytes SRAM,电压监测,看门狗定时器及复位电路,它们通过标准的 I2C接口与外部的微处理器相联。PL2000B内建高灵敏度放大器及四象限模拟乘法器,进一步提高了集成度(无需外部模拟混频器)。 PL2000A/B 是特别针对中国电力网恶劣的信道环境所研制开发的低压电力线载波通信芯片,低信噪比数据传输性能比 PL2000 有了大幅度的提高,同时将数据传输速率提升一倍。由于采用了直接序列扩频、数字信号处理、直接数字频率合成等新技术,以及大规模数字 /模拟混合 0.5um CMOS 工艺制作,所以在抗干扰、抗衰落性能以及国内外同类产品性能价格比等方面有着更加出众的表现。

■0.35um CMOS 数摸混合集成电路 ■直序扩频半双工异步调制解调器 ■二相相移键控,120KHz载频,带宽15KHz,传输速率500 bps ■接收灵敏度:100μVRMS ■15位伪码长度,可编程同步捕获门限 ■I2C串行通信接口 ■32Bytes SRAM (电池维护) ■可编程实时钟(秒/分/时/日/月/星期/年) (电池维护),支持数字频率校正 ■上电复位/电压监测电路及看门狗定时器 ■单+5V供电,I/O 口带 2500V ESD 保护 ■工业级温度标准: -40oC ~ +85oC ■SOP20 / SOP24 / SOP28 封装 典型应用图: 基于PL2101的单片机低压电力线载波通信接口扩展 发布:2011-09-05 | 作者: | 来源: menglongfei | 查看:328次 | 用户关注: 本文介绍了低压电力线通信接口芯片PL2101与MSP430F149的接口。早期的低压电力线载波通信芯片的接口电路相对复杂、抗干扰能力差,且多为国外产品,性价比低,因此,单片机系统较少采用低压电力线载波通信。随着通信技术的发展,新型低压电力线载波通信接口芯片解决了以上缺点,使得单片机系统采用低压电

电力通信网络管理探讨

电力通信网络管理探讨 摘要: 随着我国信息技术的发展,我国各行业均呈现出新的发展趋势。电力通信网络技术也发挥了一定应用作用,电力通信网运行能提升网络运行的可靠性,确保通信资源的最优配置。本文将对电力通信网网络管理及规划做简要探讨,为电力生产提供保障支撑。 关键词: 电力通信;网络管理;对策研究 正文: 电力通信网的可靠性、安全性均会影响到电力通信网络的有效运行,通过电力通信网的运用可促进电力通信网通信质量的提升,电力企业要想提高通信网的安全性、实时性,应建立一套有效的管理方式。 一、电力通信网络 电力通信又称为电力线载波通信,是一种数据传输方式。电力通信业务按业务属性可分为生产业务、管理业务;按业务流类型可分为数据、语音、多媒体业务;按时延可划分为实时业务、非实时业务;按业务分布可分为均匀性、集中性业务、相邻性业务;按用户对象则可分为电网公司、变电站业务、营业所、供电局;按电力二次系统可划分I、II、III、IV等业务。 二、电力通信网络应用技术 在人们的日常生活与社会生产中,电能属于一种常用能源。就电力系统而言,其不仅有配电与发电等相关的设备,而且有通信与用电

保护系统,在系统中存在诸多设备,获得国内很多领域的普遍认可。近几年,伴随电力系统的不断扩大,机组容量也日益增加,使得电网的规模不断扩大,这在很大程度上会阻碍了电力系统安全运行,严重者会引起安全事故,所以为保证电力系统运行稳定性,需要相关人员深入分析电力系统的稳定标准。 (一)通信技术 与传统电路交换网不同,IP化优势更加显著,电力结构相对单一。宽带化:现阶段,HDTV等业务层出不穷,移动化:通信技术主要体现在接入层面,越来越多的用户开展了移动接入业务,使行业发展的重心从固定网向移动网转移,移动网的用户数、业务量和业务收入均呈现出增长势头。 (二)同步网络技术 同步网包括频率同步网与时间同步网,主要有三种方式,即:DCLS+E1方式、NTP方式、1PPS+STM-N方式。DCLS+E1方式拥有了较成熟的同步组网技术,利用SDH网络EI通道将信息传输到同步节点,如图一。而1PPS+STM-N这种方式依然处于开发阶段,将时间同步与频率同步的有机结合,避免时延产生。同步网络技术在实际应用中,网元客户端会向服务器发送NTP数据包,当数据包发送时,客户端时间标签为T1,该数据包中所含时间标签3个:当服务器接到数据包后,时间标签为T2,服务器数据包时间标签为T3。客户端接受数据包后,时间标签为T4,客户间的传输时延和时钟偏差式如下: (三)软交换技术

低压电力线载波通信报告1

低压电力线载波通信 1.引言: 电力线载波通信(PLC)是电力系统特有的、基本的通信方式。早在20世纪20年代,电力载波通信就开始应用到10 kV配电网络线路通信中,并形成了相关的国际标准和国家标准。对于低压配电网来说,利用电力线来传输用户用电数据,实现及时有效收集和统计,是国内外公认的最佳方案。但在早期的实际应用中,由于我国电网环境恶劣,电力线信道高衰减、强干扰和波动范围大等特点,导致数据采集的成功率和实时性不能完全满足实际通信的需求。近年来,随着许多新兴的数字技术,例如扩频通信、数字信号处理和网络中继拓扑等技术的大力发展,提高和改善低压配电网电力载波通信的可用性和可靠性成为可能,电力载波通信技术的应用前景变得更为广阔。 2.国内外现状: 2.1国外现状: 国外低压电力线载波通信开展较早,美国联邦通信委员会FCC规定了电力线频带宽度为100~450 kHz;欧洲电气标准委员会的EN 50065-1规定电力载波频带为3.0~148.5 kHz。这些标准的建立为电力载波技术的发展做出了显著的贡献。20世纪90年代,一些欧洲公司进行涉及电力线数据传输的试验,实验结果好坏参半,但随着通信技术的不断进步与互联网业务的蓬勃发展,电力线载波通信技术也得到了显著增长。在美国,弗吉尼亚州马纳萨斯市首次开始大范围部署PLC的服务,提供抄表、上网等业务,速率达到了10Mbit/s。 国外利用电力线传输信号已经有一百多年的历史。如早在1838年,埃德华戴维就提出了用遥控电表来监测伦敦利物浦无人地点的电压等级。直到20世纪20年代,国外一些著名的公司和研究机构才开始对低压电力载波通信技术进行研究。1930年西门子公司在德国波茨坦建立了用于低压配电网络和传输媒介的波纹载波系统(RCS系统)。该系统能够以最小的损耗通过低压配电网实现对终端设备的管理。1958至1959年间,美国德克萨斯元件公司的Jack Kilby和Fairchild半导体公司的Robert Noyce最早发明了电力线载波通信集成电路。1971年Intel公司的Ted Hoff发明了低功耗的电力线通信微处理器。Intellon公司在2000年2月7日召开的DEM200会议上展示了其高速达1Mbps的Power PacketTM 住宅网络技术

神经网络在人工智能中的应用

神经网络在人工智能中的应用 摘要:人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关键词:人工智能,神经网络 一、人工智能 “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。 二、神经网络

神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。 人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。 与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。三.神经网络在人工智能中的应用专家系统

教你一分钟详细了解电力系统通信(图)

教你一分钟详细了解电力系统通信(图) 电气专业毕业之后便进入电网公司从事电力系统通信工作5年,作者嘱托英大君给新员工朋友们带个话:学习好和工作干好是不同的概念,任何学历,任何经历,在工作面前一律平等。所以我有八个字与大家共勉:踏实干活,抬头看路。 近期“互联网+”概念炒的火热,英大君思来想去,“互联网+”对电网意味着什么?首先是电网的互联网化、或者智能化,电力系统通信在这个过程中会起到非常重要的作用,那么平时不常被提及的电力系统通信主要做什么、都有哪些设备呢?让我们一起解开它的神秘面纱。 本文将从电力通信中常用的设备说起,向大家概括性地介绍下电力通信的大致情况,不打算大篇幅讲通信原理,旨在通过此文,让即将从事电力系统通信岗位的新员工,能够从一个系统框架的角度去认识电力通信设备,少走一些弯路。 为什么要有电力系统通信? 电力系统通信为电力系统正常运行提供全面的支撑,如调度和站用内线电话,2M及光纤通信等。其主要作用是为保护、自动化等设备提供优质可用的通道,供站与站之间的设备进行通信,并将站内信号上传到局端。 听起来好像很复杂的样子,那么 他们是如何工作的呢? 要解答这个问题,需要了解电力通信中常见的设备。 首先来认识一下电力通信的最常用设备:配线架。如果用电力系统的概念来解释这个名词,就是通信系统用的母线。依照通信方式的不同,分为音频配线架、数字配线架和光纤配线架,英文简称分别为VDF、DDF、ODF。

1配线架 音频配线架(VDF) 如下图所示,此为站内常用的音频配线架。它的作用是连接用64k速度传输的设备。

如上图所示的打满线的第一排端子,通常被称为是设备侧,通向PCM(后文将有介绍)。 如上图所示,第一排下口零散分布的一对一对线,则是通向站内的自动化设备,视通信方式的制定而选择接入对应的端子。用户侧常见设备:自动化所用的调度、集控主备用设备、站内电话、计量电话、调度直通和集控直通电话。 一般情况下,现场工作是将站内所有的用户设备通过一根网线或是多股电缆传送至VDF,并在VDF的一排打满,然后再通过音频线跳接至相应的端口。以前有些老站也是通过端子排挂到综合配线柜上再跳接的办法。具体如何接线,视现场条件和运行方式的规定而调整。 数字配线架(DDF) 虽然是换了种形式,但实质上的作用和VDF类似,也是有设备侧和用户侧,设备侧通常指的是光端机,用户侧则主要是指带着业务的PCM设备,以及少量的调度数据网路由器。

低压电力线载波通信传输线参数测试与分析

SPWMcontrolbasedoncompensationfunctionformatrixconverter WANGRutian,WANGJianze,JIYanchao,ZENGFanpeng (SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,China) Abstract:Non-controlledrectificationandSPWM(SinePulseWidthModulation)areappliedtothevirtualrectifierandvirtualinverterofmatrixconverterequivalentAC/DC/ACmodelrespectively.VirtualrectifiergeneratesfluctuantDCvoltagewhensymmetricorunsymmetricthree-phasevoltagesaresupplied.InordertoeliminatetheeffectofthefluctuantDCvoltageontheSPWMoutputvoltageandcurrentofvirtualinverter,thecompensationfunctionisdeducedformodulationwavebasedontheconceptofswitchingfunction.Theprincipleisthat,asinewave,whichfollowsthefluctuantDCvoltagewithreversedpolarity,isinjectedtothemodulationwavetoeliminatethelowharmonicsofoutputvoltage.Thismethodisalsoapplicabletounsymmetricinputvoltageconditionanditsrealizationisverysimple.SimulationswithMatlab/Simulinkshowthat,highqualityoutputvoltagesareobtainedunderbothsymmetricandunsymmetricthree-phaseinputvoltageconditions,whichverifiesthevalidityandeffectivenessoftheproposedcontrolmethod. Keywords:matrixconverter;indirectconversion;switchingfunction;compensationfunction 0引言 低压配电网电力线通信是一个日益看好的数字 通信网络,逐步在工业和民用系统中得到应用。但是,低压配电网电力线通信稳定性有待于进一步提高。电力线信道特性的分析是当前电力线载波通信研究的一个重要内容,也是作为提高稳定性研究的非常重要的组成部分。国内外一些专家学者在信道估计与选择、信道编码、滤波设计、功率分配等方面作了 较为深入的研究[1-12]。在进行信道估算时的一个主要问题在于低压配电网负载复杂,存在输入阻抗不匹配问题,信号衰减严重。所以,有必要对电力线通信传输线的阻抗特性参数进行理论分析、总结和实际测试。在文献[2]中对在40kHz ̄1.5MHz频率范围内的10kV中压电力线信道传输特性进行了测试,并根据测量结果,结合传输线的基本模型,对信道的传输特性作了深入分析。该文对于中压电力线通信的传输特性研究具有研究方法上的指导意义,同样,对于研究低压电力线的传输特性也有参考意义。现从传输线阻抗特性出发,分别对基于理想均匀传输线理论、集肤效应传输线理论条件下的电力线传输特 低压电力线载波通信传输线 参数测试与分析 黄文焕1,戚佳金2,黄南天3,李 琰2 (1.吉林化工学院化工与材料工程学院,吉林吉林132022; 2.哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001; 3.吉林化工学院信息与控制工程学院,吉林吉林132022) 摘要:为给低压配电网电力线载波通信信道估算提供参考依据,有必要对电力线通信传输线的阻抗特性参数进行理论分析和实际测试研究。在简述配电网电力线载波通信传输线理论和传输线方程的基础上,总结了理想均匀传输线理论下和考虑集肤效应的电力线参数模型。使用HP4194阻抗相位增益分析仪对3+1芯交联聚乙烯绝缘聚氯乙烯护套钢带铠装电力电缆线进行实际测试,并根据测试结果使用Matlab计算出单位长度导线的电阻、电感以及两导线间的电容和电导,验证了电力线物理参数模型公式的准确性和其实际可使用性。同时,这些实测参数也为电力线通信信道特性分析和估算提供了一定的参考依据。 关键词:电力线通信;传输线方程;阻抗特性中图分类号:TN913.6;TM934 文献标识码:A 文章编号:1006-6047(2008)04-0041-04收稿日期:2007-07-16;修回日期:2007-09-13基金项目:黑龙江省自然科学基金资助(F200508) 电力自动化设备 ElectricPowerAutomationEquipment Vol.28No.4Apr.2008 第28卷第4期2008年4月 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 41

电力系统网络拓扑结构识别

学院 毕业设计(论文)题目:电力系统网络拓扑结构识别 学生姓名:学号: 学部(系):机械与电气工程学部 专业年级:电气工程及其自动化 指导教师:职称或学位:教授

目录 摘要 (3) ABSTRACT (4) 一绪论 (6) 1.1课题背景及意义 (6) 1.2研究现状 (6) 1.3本论文研究的主要工作 (7) 二电力系统网络拓扑结构 (7) 2.1电网拓扑模型 (7) 2.2拓扑模型的表达 (9) 2.3广义乘法与广义加法 (10) 2.4拓扑的传递性质 (11) 三矩阵方法在电力系统网络拓扑的应用 (13) 3.1网络拓扑的基本概念 (13) 3.1.1规定 (13) 3.1.2定义 (14) 3.1.3连通域的分离 (14) 3.2电网元件的等值方法 (15) 3.2.1厂站级两络拓扑 (15) 3.2.2元件级网络拓扑 (16) 3.3矩阵方法与传统方法的比较 (16) 四基于关联矩阵的网络拓扑结构识别方法研究 (17) 4.1关联矩阵 (17) 4.1.1算法 (17) 4.1.2定义 (17) 4.1.3算法基础 (18)

4.2拓扑识别 (19) 4.3主接线拓扑辨识原理 (20) 4.4算法的简化与加速 (24) 4.5流程图 (25) 4.5.1算法流程图 (25) 4.5.2节点编号的优化 (26) 4.5.3消去中间节点和开关支路 (26) 4.5.4算法的实现 (27) 4.6分布式拓扑辨识法 (27) 4.7举例和扩展 (28) 五全文总结 (29) 参考文献 (30) 致 (31) 摘要 电力系统拓扑分析是电力能量流(生产、传输、使用)流动过程中,对用于转换、保护、控制这一过程的元件(在电力系统分析中认为阻抗近似为0的元件)状态的分析,目的是形成便于电网分析与计算的模型,它界于EMS底层和高层之间。就调度自动化而言,底层信息(如SCADA)是拓扑分析的基础,高层应用(如状态估计、安全调度等[1])是拓扑分析的目的。可见,电力系统在实时运行中,这些元件的状态变化决定了运行方式的变化。如何依据厂站实时信息,快速、准确地跟踪这些变化,是实现电力系统调度自动化过程中基础而关键的工作[2]。拓扑分析在电力系统调度自动化中如此重要的地位,至少应该作到如下几点。 (1)拓扑分析的正确性:对任何情形下的运行方式,由元件状态的状况,针对各种电气接线关系,如单、双母线接线及旁路母线、3/2接线、角型接线等,均能

人工智能之人工神经网络(PDF 23页)

1 第八章人工神经网络吉林大学地面机械仿生技术教育部重点实验室 张锐

2 8.1 神经网络的基本概念及组成特性 8.1.1 生物神经元的结构与功能特性 从广义上讲,神经网络通常包括生物神经网络与人工神经网络两个方面。生物神经网络是指由动物的中枢神经系统及周围神经系统所构成的错综复杂的神经网络,它负责对动物肌体各种活动的管理,其中最重要的是脑神经系统。 人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的软、硬件处理单元,经广泛并行互连,由人工方式建立起来的网络系统。 生物神经元就通常说的神经细胞,是构成生 物神经系统的最基本单元,简称神经元。 神经元主要由三个部分构成,包括细胞体、 轴突和树突,其基本结构如图所示。 1. 生物神经元的结构 生物神经元结构 吉林大学地面机械仿生技术教育部重点实验室 张锐

3 从生物控制论的观点来看,作为控制和信息处理基本单元的神经元,具有下列一些功能与特性。 2. 神经元的功能特性 (1)时空整合功能 神经元对于不同时间通过同一突触传入的信息,具有时间整合功能;对于同一时间通过不同突触传入的信息,具有空间整合功能。两种功能相互结合,使生物神经元具有时空整合的输入信息处理功能。 (2)神经元的动态极化性 尽管不同的神经元在形状及功能上都有明显的不同,但大多数神经元都是以预知的确定方向进行信息流动的。 (3)兴奋与抑制状态 神经元具有两种常规工作状态,即兴奋状态与抑制状态。 (4)结构的可塑性 突触传递信息的特性是可变的,随着神经冲动传递方式的变化,其传递作用可强可弱,所以神经元之间的连接是柔性的,这称为结构的可塑性。 吉林大学地面机械仿生技术教育部重点实验室 张锐

智能电网大数据

智能电网和大数据 1 智能电网 智能电网(smart power grids),就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电育濒量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。 在现代电网的发展过程中,各国结合其电力工业发展的具体清况,通过不同领域的研究和实践,形成了各自的发展方向和技术路线,也反映出各国对未来电网发展模式的不同理解。近年来,随着各种先进技术在电网中的广泛应用,智能化已经成为电网发展的必然趋势,发展智能电网已在世界范围内形成共识。 从技术发展和应用的角度看,世界各国、各领域的专家、学者普遍认同以下观点:智能电网是将先进的传感测量技术、信息通信技术、分析决策技术、自动控制技术和能源电力技术相结合,并与电网基础设施高度集成而形成的新型现代化电网。 2 智能电网的发展 2.1 美国 2.1.1 电网2030规划 2003年2月,美国时任总统布什提出“电网2030规划”,指出要建设现代化电力系统,以确保经济安全,同时促进电力系统自身的安全运行。该规划的主要内容有:为所有用户提供高度安全、可靠、数字化的供电服务,在全国实现成本合

理、生产过程无污染、低碳排放的供电,经济实用的储能设备,建成超导材料的骨干网架。为有效促进智能电网建设,美国于2007年12月颁布“能源独立与安全法案2007",确立了国家层面的电网现代化政策,设立新的专责联邦委员会,并界定其职责与作用,建立问责机制,同时建立激励机制,促进股东投资。 2.1.3 奥巴马政府施政计划 美国总统奥巴马为振兴经济,从节能减排、降低污染角度提出绿色能源环境气候一体化振兴经济计划,智能电网是其中的重要组成部分。 2.2 欧洲 欧盟为应对气候变化、对能源进口依赖日益严重等挑战,向客户提供可靠便利的能源服务,正在着手制定一整套能源政策。这些政策将覆盖资源侧、输送侧以及需求侧等方面,从而推动整个产业领域深刻变革,为客户提供可持续发展的能源,形成低能耗的经济发展模式。欧洲智能电网技术研究主要包括网络资产、电网运行、需求侧和计量、发电和电能存储四个方面。 2.3国外智能电网技术研究近况 按照智能电网本身所覆盖的价值链环节,智能电网的关键技术可划分为智能用电、智能网络、新能源发电与智能企业四类。 (1)智能用电:包括智能表计、电池技术、家庭自动化、微型电网、优质供电园区等。 (2)智能网络:包括调度自动化、即插即用式智能电力设备、智能保护装置、测量监视设备、电力电子设备、海量数据处理技术和可视化技术等。 (3)新能源发电:包括可再生能源发电、微透平技术、超导储能技术等。 (4)智能企业:包括信息集成技术、通信技术等。

电力系统网络通信作业答案教学内容

电力系统网络通信作 业答案

一、 1.通信系统的组成:通信系统由信息发送者(信源)、信息接收者(信宿)和处理、传输信息的各种设备共同组成。 2.通信网的组成:从物理结构或从硬件设施方面去看,它由终端设备、交换设备及传输链路三大要素组成。终端设备主要包括电话机、PC机、移动终端、手机和各种数字传输终端设备,如PDH端机、SDH光端机等。交换节点包括程控交换机、分组交换机、ATM交换机、移动交换机、路由器、集线器、网关、交叉连接设备等等。传输链路即为各种传输信道,如电缆信道、光缆信道、微波、卫星信道及其他无线传输信道等。 3.电力系统的主要通信方式:电力线载波通信:是利用高压输电线作为传输通路的载波通信方式,用于电力系统的调度通信、远动、保护、生产指挥、行政业务通信及各种信息传输。光纤通信:是以光波为载波,以光纤为传输媒介的一种通信方式。微波通信:是指利用微波(射频)作载波携带信息,通过无线电波空间进行中继(接力)的通信方式。卫星通信:是利用人造地球卫星作为中继站来转发无线电波,从而进行两个或多个地面站之间的通信。移动通信:是指通信的双方中至少有一方是在移动中进行信息交换的通信方式。 4.名词解释通信系统:从信息源节点(信源)到信息终节点(信宿)之间完成信息传送全过程的机、线设备的总体,包括通信终端设备及连接设备之间的传输线所构成的有机体系。 二、 1.数字通信系统模型: 2.根据是否采用调制,通信系统分为:基带传输系统和频带传输系统。

3.传输多路信号的复用方式有:频分复用(FDM)、时分复用(TDM)、码分复用(CDM)、波分复用(WDM)、空分复用(SDM)。 5.香农公式连续信道的信道容量取决于:信号的功率S;信道带宽B;信道信噪比S/N。 6.按照调制信号m(t)对载波信号c(t)不同参数的控制,调制方式分为:幅度调制、频率调制、相位调制。 7.调制的作用:(1)进行频谱搬移.把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输的已调信号.(2)实现信道多路复用,提高信道的频带利用率.(3)通过选择不同的调制方式改善系统传输的可靠性。 8.比较调制方式中调幅(AM)、抑制载波的双边带调制(DSB)、单边带调制(SSB)的功率利用率和频带利用率:AM功率利用率低,信号频带较宽,频带利用率不高;DSB节省了载波功率,功率利用率提高了,但它的频带宽度仍是调制信号带宽的2倍,频带利用率不高;SSB的功率利用率和频带利用率都较高。 9.模拟信号数字化传输的编码方式分为:波形编码:脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)、增量调制(ΔM);参数编码:线性预测编码LP;混合编码:MPLPC和CELP 10.适合基带传输的常用码型是AMI和HDB3码,比较其特点:AMI码对应的基带信号是正负极性交替的脉冲序列,而0电位保持不变的规律,AMI的功率谱中不含有直流成分,高低频分量少,能量集中在频率为1/2码速处.AMI码的编译码电路简单,便于利用传号极性交替规律观察误码情况;HDB3码保持了AMI码的优点,同时使连“0”个数不超过3个。

相关主题
文本预览
相关文档 最新文档