当前位置:文档之家› (完整版)随机过程习题

(完整版)随机过程习题

(完整版)随机过程习题
(完整版)随机过程习题

随机过程复习

一、回答: 1、 什么是宽平稳随机过程?

2、 平稳随机过程自相关函数与功率谱的关系?

3、 窄带随机过程的相位服从什么分布?包络服从什么分布?

4、

什么是白噪声?性质?

二、计算:

1、随机过程t A t X ωcos )(=+t B ωsin ,其中ω是常数,A 、B 是相互独立统计的高斯变量,并且E[A]=E[B]=0,E[2A ]=E[2B ]=2σ。求:)(t X 的数学期望和自相关函数?

2、判断随机过程)cos()(φω+=t A t X 是否平稳?其中ω是常数,A 、φ分别为均匀分布和瑞利分布的随机变量,且相互独立。

π

?φ21

)(=f π?20ππ; 2

22

)(σσa A e

a

a f -

=

0φa

3、求随机相位正弦函数)cos()(0φω+=t A t X 的功率谱密度,其中A 、0ω是常数,φ为[0,2π]内均匀分布的随机变量。

4、求用)(t X 自相关函数及功率谱表示的)cos()()(0φω+=t t X t Y 的自相关函数及谱密度。其中,φ为[0,2π]内均匀分布的随机变量,)(t X 是与φ相互独立的随机过程。

5、设随机过程}),cos()({0+∞<<-∞+=t Y t A t X ω,其中0ω是常数,A 与Y 是相互独立的随机变量,Y 服从区间)2,0(π上的均匀分布,A 服从瑞利分布,其概率密度为

??

?

??≤>=-0

00)(2

2

22x x e

x x f x A σσ

试证明)(t X 为宽平稳过程。

解:(1))}{cos()()}cos({)(00Y t E A E Y t A E t m X +=+=ωω

??

=+=∞

+-

π

σωσ20

00

22

2

0)cos(2

2dy y t dx e

x

x 与t 无关

(2) )()}({cos )()}cos({)}({)(20222022

A E Y t E A E Y t A E t X E t X

≤+=+==ωωψ dt e t

dx e x

A E t x ?

?

+-

+-

=

=0

22

2

22

3

2

2

2

221)(σσ

σ

σ

σ

2022

20

22|2|

2

2

2

σσσσ

σ

=-=+-=∞+-

+-

+-

?t t t

e

dt e

te

所以+∞<=)}({)(22

t X E t X

ψ (3))]}cos()][cos({[),(201021Y t A Y t A E t t R X ++=ωω )}cos(){cos(][20102Y t Y t E A E ++=ωω dy t t y t t π

ωωωσ

π

21)](cos )[cos(212120201020

2

--++=?

)(cos 1202t t -=ωσ 只与时间间隔有关,所以)(t X 为宽平稳过程。

6、 设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间

上的均匀分布。

(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。

【理论基础】

(1)?∞-=x

dt t f x F )()(,则)(t f 为密度函数;

(2))(t X 为),(b a 上的均匀分布,概率密度函数??

???<<-=其他,0,1

)(b

x a a

b x f ,分布函数

??

???

>≤≤--<=b x b x a a

b a x a x x F ,1,,0)(,2)(b

a x E +=

,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数?

??<≥=-0,00

,)(x x e x f x λλ,分布函

??

?<≥-=-0

,00,1)(x x e x F x λ,λ1)(=x E ,21

)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数

<<-∞=

--x e x f x ,21

)(2

22)(σμπσ,分布函数

∞<<-∞=

?

---

x dt e

x F x

t ,21)(2

22)(σμπ

σ,若1,0==σμ时,其为标准正态分布。

【解答】

(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。由

R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度???

??+≤≤=其他,0,1)(t C x C t x f ,一维分布函数?????

+>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;

(2)根据相关定义,均值函数C t

t EX t m X +==2

)()(;

相关函数2)(2

31)]()([),(C t s C

st t X s X E t s R X +++==;

协方差函数12

)]}()()][()({[),(st

t m t X s m s X E t s B X X X =--=(当t s =时为方差

函数)

7.设随机过程()cos 2,(,),X t X t t =∈-∞+∞X 是标准正态分布的随机变量。试求数学期望()t E X ,方差()t D X ,相关函数12(,)X R t t ,协方差12(,)X C t t 。 解:因为2()cos 2,(,),~(0,1),()0,()()1X t X t t X N E X D X E X =∈-∞+∞===,(1) 所以

()(cos 2)cos 2()0,t E X E X t t E X ==?=

(2)

22()(cos 2)cos 2()cos 2,

t D X D X t t D X t ==?=

(2)

21212(,)[()()][cos 2cos 2]cos 2,

X R t t E X t X t E X t X t t ==?=

(2)

212121212(,)(,)()()(,)cos 2.

X x x C t t R t t E t E t R t t t =-==

(2)

8、有随机过程{ξ (t ),-∞

t +Θ),η (t )=B sin(ω t +Θ+φ), 其中A ,B ,ω,φ为实常数,Θ均

匀分布于[0,2π],试求R ξ η(s ,t )

1.解:()1

,0220,f θπ

θπΘ?≤≤?=???其它

()()()()()()()()()()()20

201

,sin sin d 21cos cos 2d 41

cos ,,2

R s t E s t A s B t AB t s t s AB t s s t π

ξηπ

ξηωθωθ?θ

π

ω?ωθ?θπω?==

+++??????=-+-+++??=

-+-∞<<+∞?

?g

9、随机过程ξ (t )=A cos(ωt +Φ ),-∞

()()[]()[]()[]

()+∞

<<∞-==+?

=Φ+=Φ+==??--

t m d t d t E EA t A E t E t m def

,0cos 2012cos cos 55

ξπ

πξ?

?ωωπ

ωωξ

()()()[]()()()

[]

()()()[]

()()()()[]()ττ

τωωτ?

?ωτωωτωπ

?

?τω?ωωπτωωτωωτξξτξπ

ππ

πξR d d t d d t t d t t E A E t A t A E t t E t t R def ===+++=+++=Φ++Φ+=Φ++Φ+=+=+?????--

--

-5sin 54cos 20822cos cos 408cos cos 208cos cos cos cos ,5

55

5

552

所以具有平稳性。

()()ξωωωξm T T

A

dt t A T

t T T T

T ==Φ=Φ+=+∞→-+∞→?0cos sin lim

cos 21

lim

故均值具有各态历经性。

()()

()()()()()()()

t R A dt

t t T

A

dt

t A t A T t t T

T

T T

T

T ξωττωωτωωτξξ≠=Φ++Φ+=Φ++Φ+=+??-+∞

→-+∞→cos 2

cos cos 2lim cos cos 21

lim 2

2

故相关函数不具有各态历经性。

三、 分析求证

1、已知随机过程)cos()(φω+=t A t X ,φ为[0,2π

]内均匀分布的随机变量,

A 可能是常数、时间函数或随机变量。A 满足什么条件时,)(t X 是各态历经过程?

2、某商店顾客的到来服从强度为4人每小时的Poisson 过程,已知商店9:00开门,试求:

(1)在开门半小时中,无顾客到来的概率;

(2)若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。

3、解:设顾客到来过程为{N(t), t>=0},依题意N(t)是参数为λ的Poisson 过程。

(1)在开门半小时中,无顾客到来的概率为:

1

422102P N e e -?-????=== ? ?????

(2)在开门半小时中无顾客到来可表示为102N ????=?? ???

?

?

,在未来半小

时仍无顾客到来可表示为()1102N N ????-=?? ?????

,从而所求概率为: ()1412

211(1)0|02211(1)0|00221(1)02P N N N P N N N N P N N e e ?

?

-?- ?-????????-== ? ? ?

??????

??????

=-=-= ? ? ???????

????

=-=== ? ?????

3、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数。假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟

3人的泊松过程。

(1) 试求到某时刻t 时到达商场的总人数的分布;

(2) 在已知t 时刻以有50人到达的条件下,试求其中恰有30位妇

女的概率,平均有多少个女性顾客?

解:设12(),(),()N t N t N t 分别为(0,t )时段内到达商场的男顾客数、女顾客数及总人数。

(1) 由已知,1()N t 为强度12λ=的泊松过程,2()N t 为强度23λ=的泊

松过程;

故,()N t 为强度125λλλ=+=的泊松过程;于是,

5(5)(())!

k t

t P N t k e k -== 0,1,2,k =L (5分) (2) 22(()30,()50)

(()30()50)(()50)

P N t N t P N t N t P N t =====

=

30320221505(()30)(()20)(3)/30!(2)/20!

(()50)(5)/50!t t t P N t P N t t e t e P N t t e ---==?===

303202303020

50505(3)/30!(2)/20!32()()(5)/50!55

t t t

t e t e C t e ---?== (5分) 一般地,50,,2,1,0,)5

2()53

(}50)(|)({50502Λ====-k C t N k t N P k k k

故平均有女性顾客 305

350}50)(|)({2=?==t N t N E 人

最新随机过程考试试题及答案详解1

随机过程考试试题及答案详解 1、(15分)设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均 匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 【理论基础】 (1)? ∞ -= x dt t f x F )()(,则)(t f 为密度函数; (2))(t X 为),(b a 上的均匀分布,概率密度函数?? ???<<-=其他,0,1 )(b x a a b x f ,分布函数 ?? ??? >≤≤--<=b x b x a a b a x a x x F ,1,,0)(,2)(b a x E += ,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数???<≥=-0,00 ,)(x x e x f x λλ,分布函数 ?? ?<≥-=-0 ,00,1)(x x e x F x λ,λ1)(=x E ,21 )(λ=x D ; (4)2 )(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞= -- x e x f x ,21 )(2 22)(σμπ σ, 分布函数∞<<-∞= ? ∞ --- x dt e x F x t ,21)(2 22)(σμπ σ,若1,0==σμ时,其为标准正态分布。 【解答】本题可参加课本习题2.1及2.2题。 (1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。由R 的取值范围可知, )(t X 为],[t C C +上的均匀分布,因此其一维概率密度?? ???+≤≤=其他,0,1 )(t C x C t x f ,一维分布 函数?? ??? +>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

最新随机过程考试真题

1、设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 2、设{ }∞<<∞-t t W ),(是参数为2 σ的维纳过程,)4,1(~N R 是正态分布随机变量; 且对任意的∞<<∞-t ,)(t W 与R 均独立。令R t W t X +=)()(,求随机过程 {}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。 3、设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个 顾客的消费额是服从参数为s 的指数分布。求一天内(8个小时)商场营业额的数学期望与方差。 4、设马尔可夫链的转移概率矩阵为: ??? ? ? ??=3.007.08.02.0007.03.0P (1)求两步转移概率矩阵) 2(P 及当初始分布为 0}3{}2{,1}1{000======X P X P X P 时,经两步转移后处于状态2的概率。 (2)求马尔可夫链的平稳分布。 5设马尔可夫链的状态空间}5,4,3,2,1{=I ,转移概率矩阵为: ??? ??? ? ? ? ?=010007.03.0000 0001 00004.06.0003.04 .03.0P

求状态的分类、各常返闭集的平稳分布及各状态的平均返回时间。 6、设{}(),0N t t ≥是参数为λ的泊松过程,计算[]()()E N t N t s +。 7、考虑一个从底层启动上升的电梯。以i N 记在i 第层进入电梯的人数。假定i N 相互独立,且i N 是均值为i λ的泊松变量。在第i 层进入的各个人相互独立地以概率ij p 在第j 层离开电梯, 1ij j i p >=∑。令j O =在第j 层离开电梯的人数。 (1)计算()j E O (2)j O 的分布是什么 (3)j O 与k O 的联合分布是什么 8、一质点在1,2,3点上作随机游动。若在时刻t 质点位于这三个点之一,则在),[h t t +内, 它都以概率 )(h o h +分别转移到其它两点之一。试求质点随机游动的柯尔莫哥洛夫微分方程,转移概率)(t p j i 及平稳分布。 1有随机过程{ξ(t ),-∞

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

随机过程补充例题

随机过程补充例题 例题1 设袋中有a 个白球b 个黑球。甲、乙两个赌徒分别有n 元、m 元,他们不知道那一种球多。他们约定:每一次从袋中摸1个球,如果摸到白球甲给乙1元,如果摸到黑球乙给甲1元,直到两个人有一人输光为止。求甲输光的概率。 解 此问题是著名的具有两个吸收壁的随机游动问题,也叫赌徒输光问题。 由题知,甲赢1元的概率为b p a b =+,输1元的概率为 a q a b =+,设n f 为甲输光的概率,t X 表示赌t 次后甲的赌金, inf{:0 }t t t X or X m n τ===+,即τ 表示最终摸球次数。如果 inf{:0 }t t t X or X m n τ===+=Φ(Φ为空集),则令τ=∞。 设A =“第一局甲赢”,则()b p A a b = +,()a p A a b = +,且第一局甲赢的条件下(因甲有1n +元),甲最终输光的概率为1n f +,第一局甲输的条件下(因甲有1n -元),甲最终输光的概率为1n f -,由全概率公式,得到其次一元二次常系数差分方程与边界条件 11n n n f pf qf +-=+ 01f =,0m n f += 解具有边界条件的差分方程 由特征方程 2()p q p q λλ+=+

(1)当q p ≠时,上述方程有解121,q p λλ==,所以差分方程的 通解为 212()n q f c c p =+ 代入边界条件得 1()11()n n n m q p f q p +-=- - (2)当q p =时,上述方程有解121λλ==,所以差分方程的通解为 12n f c c n =+ 代入边界条件得 1n n f n m =- + 综合(1)(2)可得 1()11() 1n n m n q p p q q f p n p q n m +? -?- ≠?? -=?? ?-=? +? 若乙有无穷多的赌金,则甲最终输光概率为 () lim 1n jia n m q p q p p f p q →∞ ?>?==??≤? 由上式可知,如果赌徒只有有限的赌金,而其对手有无限的赌金,当其每局赢的概率p 不大于每局输的概率q ,即p q ≤时,

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

2017 2018期末随机过程试题及答案

《随机过程期末考试卷》 1 ?设随机变量X服从参数为■的泊松分布,则X的特征函数为 ___________ 。 2?设随机过程X(t)二Acos(「t+「),-::vt<::其中「为正常数,A和门是相互独立的随机变量,且A和“服从在区间10,1 1上的均匀分布,则X(t)的数学期望为。 3?强度为入的泊松过程的点间间距是相互独立的随机变量,且服从均值为_ 的同一指数分布。 4?设「W n ,n 一1是与泊松过程:X(t),t - 0?对应的一个等待时间序列,则W n服从分布。5?袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回, r 对每一个确定的t对应随机变量x(t)=」3’如果t时取得红球,则这个随机过 e t, 如果t时取得白球 程的状态空间__________ 。 6 ?设马氏链的一步转移概率矩阵P=(p j),n步转移矩阵P(n)=8(;)),二者之间的关系为。 7?设汉.,n -0?为马氏链,状态空间I,初始概率P i二P(X。二i),绝对概率 P j(n)二P^X n二j?,n步转移概率p j n),三者之间的关系为_____________ 。 8 .设{X(t),t 一0}是泊松过程,且对于任意t2t^ 0则 P{X ⑸= 6|X (3) = 4} = _______ t 9?更新方程K t二H t ? .°K t-s dF s解的一般形式为__________________ 。10?记二-EX n,对一切a 一0,当t—一:时,M t+a -M t > ____________ 3.设]X n,n — 0?为马尔科夫链,状态空间为I,则对任意整数n—0,仁I

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意0 12 ≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 6 18}4)3(|6)5({-===e X X P 15 3 2 6 2 3 2 92! 23 ! 2)23(! 23 }2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=? ?? ==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 6 6 2 18! 26 }2)3()5({}4)3(|6)5({--== =-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ????? ? ?? ? ????? ??? ?=434 10313131 04341 1)(P ,则167)2(12 =P ,16 1}2,2,1{210= ===X X X P

???????? ? ????? ????=48 3148 1348 436133616367164167165)1()2(2 P P 16 7)2(12= P 16 1314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 4 2++= ωωω ωS ,则)(t X 的均方值 = 212 1- 222 22 2 11221)2(2 221 1 1 22 )(+??-+?? = +- += ωωωωωS τ τ τ--- = e e R X 2 12 1)(2

通信原理期末考试试题及答案-(1).doc

通信原理期末考试试题及答案 一、填空题(总分24 ,共 12 小题,每空 1 分) 1、数字通信系统的有效性用传输频带利用率衡量,可靠性用差错率衡量。 2、模拟信号是指信号的参量可连续取值的信号,数字信号是指信号的参量可离 散取值的信号。 3、广义平均随机过程的数学期望、方差与时间无关,自相关函数只与时间间隔有 关。 4、一个均值为零方差为n2的窄带平稳高斯过程,其包络的一维分布服从瑞利分布, 相位的一维分布服从均匀分布。 5 、当无信号时,加性噪声是否存在?是乘性噪声是否存在?否。 6 、信道容量是指:信道传输信息的速率的最大值,香农公式可表示为: C B log 2 (1S ) 。 N 7、设调制信号为 f(t)载波为cos c t,则抑制载波双边带调幅信号的时域表达式为 f (t) cos c t,频域表达式为1 [ F ( c ) F ( c )]。2 8、对最高频率为 f H的调制信号 m (t )分别进行 AM 、DSB 、SSB 调制,相应已调 信号的带宽分别为2f H、2f H、 f H。 9、设系统带宽为W ,则该系统无码间干扰时最高传码率为2W波特。 10 、PSK 是用码元载波的相位来传输信息, DSP 是用前后码元载波的相位差来传 输信息,它可克服PSK 的相位模糊缺点。 11 、在数字通信中,产生误码的因素有两个:一是由传输特性不良引起的码间串 扰,二是传输中叠加的加性噪声。 12 、非均匀量化的对数压缩特性采用折线近似时, A 律对数压缩特性采用13折线 近似,律对数压缩特性采用15折线近似。

二、简答题(总分18 ,共 4 小题) 1 、随参信道传输媒质的特点?( 3 分) 答:对信号的衰耗随时间变化、传输的时延随时间变化、多径传播 2、简述脉冲编码调制的主要过程。(6 分) 抽样是把时间连续、幅值连续的信号变换为时间离散,幅值连续的脉冲信号;量化是 把时间离散、幅值连续的脉冲信号变换为幅值离散、时间离散的多电平脉冲信号;编 码是把幅值、时间均离散的多电平脉冲信号用一组数字序列表示。 3 、简单叙述眼图和系统性能之间的关系?( 6 分) 最佳抽样时刻对应眼睛张开最大时刻;对定时误差的灵敏度有眼图斜边的斜率决定;图的阴影区的垂直高度,表示信号幅度畸变范围;图中央横轴位置对应判决门 限电平;抽样时刻上,上下阴影区的间隔距离之半为噪声容限。 4、简述低通抽样定理。( 3 分) 一个频带限制在( 0,f H)内的时间连续信号m(t) ,如果以T 1 2 f H的时间 间隔对它进行等间隔抽样,则m(t) 将被所得到的抽样值完全确定 2 、设信息序列为 100000000001100001 ,试编为 AMI 码和 HDB 3 码(第一个非零码编 为 +1 ),并画出相应波形。(6 分) 100000000001100001 AMI+10000000000-1+10000-1 HDB3 +1 0 0 0+V-B 0 0-V 0 0+1-1+B 0 0+V-1 +1 0 0 0+1-1 0 0-1 0 0+1-1+1 0 0+1-1 AMI HDB3

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

随机过程考试真题

1、设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。 (1)求)(t X 的一维概率密度与一维分布函数; (2)求)(t X 的均值函数、相关函数与协方差函数。 2、设{ }∞<<∞-t t W ),(就是参数为2 σ的维纳过程,)4,1(~N R 就是正态分布随机变量; 且对任意的∞<<∞-t ,)(t W 与R 均独立。令R t W t X +=)()(,求随机过程 {}∞<<∞-t t X ),(的均值函数、相关函数与协方差函数。 3、设到达某商场的顾客人数就是一个泊松过程,平均每小时有180人,即180=λ;且每个 顾客的消费额就是服从参数为s 的指数分布。求一天内(8个小时)商场营业额的数学期望与方差。 4、设马尔可夫链的转移概率矩阵为: ??? ? ? ??=3.007.08.02.0007.03.0P (1)求两步转移概率矩阵) 2(P 及当初始分布为 0}3{}2{, 1}1{000======X P X P X P 时,经两步转移后处于状态2的概率。 (2)求马尔可夫链的平稳分布。 5设马尔可夫链的状态空间}5,4,3,2,1{=I ,转移概率矩阵为: ??? ??? ? ? ??=010007.03.0000 0001 00004.06.0003.04 .03.0P 求状态的分类、各常返闭集的平稳分布及各状态的平均返回时间。

6、设{}(),0N t t ≥就是参数为λ的泊松过程,计算[]()()E N t N t s +。 7、考虑一个从底层启动上升的电梯。以i N 记在i 第层进入电梯的人数。假定i N 相互独立,且i N 就是均值为i λ的泊松变量。在第i 层进入的各个人相互独立地以概率ij p 在第j 层离开电梯, 1ij j i p >=∑。令j O =在第j 层离开电梯的人数。 (1)计算()j E O (2)j O 的分布就是什么 (3)j O 与k O 的联合分布就是什么 8、一质点在1,2,3点上作随机游动。若在时刻t 质点位于这三个点之一,则在),[h t t +内,它都 以概率 )(h o h +分别转移到其它两点之一。试求质点随机游动的柯尔莫哥洛夫微分方程,转移概率)(t p j i 及平稳分布。 1有随机过程{ξ(t ),-∞

随机过程复习题(含答案)演示教学

随机过程复习题(含答 案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 618}4)3(|6)5({-===e X X P 15 32 62 32 92! 23!2)23(!23}2)3()5({}2)1()3({}2)0()1({} 2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=???==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 66 218! 26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为 ),,(4 12141, ???? ?? ?? ?????? ??? ?=434 10313131 043 411)(P ,则167)2(12=P ,16 1 }2,2,1{210= ===X X X P

???????? ?????? ????=48 31481348 436133616367 164167165)1()2(2P P 16 7 )2(12=P 16 1 314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 42 ++=ωωωωS ,则)(t X 的均方值= 2 121- 222 2221 1221)2(22211122)(+??-+??=+-+= ωωωωωS ττ τ-- -=e e R X 2 12 1)(2

相关主题
文本预览
相关文档 最新文档