当前位置:文档之家› 高分子材料增强其拉伸强度

高分子材料增强其拉伸强度

高分子材料增强其拉伸强度
高分子材料增强其拉伸强度

高分子材料里填充玻璃纤维可增强其拉伸强度,对其导电性能不知有无影响?

2011-9-24 11:07

满意回答

CaCO3不能增加强度,仅能降低成本。玻璃纤维是增强的主要手段。对导电性的影响与其添加量有关,需要你进行实验研究后加以综合平衡。

追问

哦!这样啊!玻纤,碳纤以及硼纤等哪一种增强效果比较好?哪种成本比较低啊?还有哪种更为实惠的填充剂!

回答

增强效果各种纤维比较类似。但取决于你改性的方法。不同的纤维与你所用的高分子基体材料的相容性是不同的,因此还需要用不同的改性方法。纤维中玻璃纤维是最便宜的,碳纤、硼纤以及各种盐类晶须价格会高些,成本相对而言比玻纤高。增强的效果也是与添加量、预处理方法等因素有关的,需要通过研究。

如果不用纤维,加入炭黑也可以提高力学性能,又比较便宜,对导电性影响可能也比较小。你可以试试。

最后,还是要请你辩证地看问题,关注一下你的目的是什么,并非强度越强越好,成本越低越好。很多性能间往往是相互制约的,需要综合平衡。

我想请问下,高分子材料当中哪种材料抗冲击性能最好呢?比如:TPE TPU PU 供作汽车保险杠等大型部件专用的、以玻璃纤维增强的可提高刚性和冲击性的增强

追问

可以的,只是成本太高

|评论

2011-9-24 22:28 禾叶kiss|四级

没多大影响的。玻纤起增强作用。一般塑料都是不导电的,加抗静电剂或者导电炭黑才会导电的

追问

我的意思是我的产品是导电塑料,导电系数是5,加入玻纤后导电系能会不会下降为9?

回答

不会的

追问

怎么说?这里有什么学问在?还有加caco3不是很好吗?也是增加强度,降低成本。

回答

是啊,碳酸钙也是可以的。也是目前做填料用得最普遍的。如果是普通制品,要求不高,用碳酸钙是有增强的效果。但是其效果不如用无碱或者低碱的玻璃纤维。。还有碳纤维和硼纤维都是增强的好材料

追问

用玻纤成本太高了!但是,在PP做拉丝时候,想增加其拉伸强度,添加什么比较好呢?

高分子材料的力学性能及表征方法

高分子材料的力学性能及表征方法 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。 采用摆锤式冲击试验机,按一定标准制备样品,在恒定温度、湿度下,用摆锤迅速冲击被测试样,根据摆锤的质量和刚好使试样产生裂痕或破坏时的临界下落高度及被测样品的截面积,按一定公式计算聚合物试样的冲击强度(或冲击韧性单位为J/cm2)。 (4)聚合物单分子链的力学性能。 用原子力显微镜(AFM)。将聚合物样品配成稀溶液,铺展在干净玻璃片上,除去溶剂后得到一吸附在玻璃片上的聚合物薄膜(厚度约90mm)。用原子力显微镜针尖接触、扫描样品膜,由于针间与样品中高分子的相互作用,高分子链将被拉起,记录单个高分子链被拉伸时拉力的变化,直至拉力突然降至为零。可得到若干高分子链被拉伸时的拉伸力和拉伸长度曲线,由此曲线可估算单个高分子链的长度和单个高分子从凝聚态中被拉出时的“抗张强度”。所用仪器 万能材料试验机 摆锤式冲击试验机

高分子材料冲击强度的测定

实验十六 高分子材料冲击强度的测定 抗冲强度(冲击强度)是材料突然受到冲击而断裂时,每单位横截面上材料可吸收的能量的量度。它反映材料抗冲击作用的能力,是一个衡量材料韧性的指标。冲击强度小,材料较脆。 一、目的要求 1. 掌握XCJ-50型冲击试验机的使用。 2. 测定聚丙烯、聚氯乙烯型材的冲击强度。 二、实验原理 国内对塑料冲击强度的测定一般采用简支梁式摆锤冲击实验机进行。试样可分为无缺口和有缺口两种。有缺口的抗冲击测定是模拟材料在恶劣环境下受冲击的情况。 冲击实验时,摆锤从垂直位置挂于机架扬臂上,把扬臂提升一扬角α,摆锤就获得了一定的位能。释放摆锤,让其自由落下,将放于支架上的样条冲断,向反向回升时,推动指针,从刻度盘读数读出冲断试样所消耗的功A ,就可计算出冲击强度: A bd σ= (公斤?厘米/厘米2) b 、d 分别为试样宽及厚,对有缺口试样,d 为除去缺口部分所余的厚度。从刻度盘上读出的数值,是冲击试样所消耗的功,这里面也包括了样品的"飞出功",以关系式表示为: ()()2 1 1cos 1cos 2W L W L A A A m V αβαβ-=-++++ W 为摆锤重,L 为摆锤摆长,α、β分别为摆锤冲击前后的扬角;A 为冲击试样所耗功;A α、A β分别为摆锤在α、β角度内克服空气阻力所消耗的功;2 12m V 为“飞出功”,一般认为后三项可以忽略不计,因而可以简写成: ()cos cos A WL βα=- 对于一固定仪器,α、W 、L 均为已知,因而可据β大小,绘制出读数盘,直接读出冲击试样所耗功。实际上,飞出功部分因试样情况不同,试验仪器情况不同而有较大差别,有时甚至占读数A 的50%。脆性材料,飞出功往往很大,厚样品的飞出功亦比薄样大。因而测试情况不同时,数值往往难以定量比较,只适宜同一材料,同一测定条件下的比较。 试样断裂所吸收的能量部分,表面上似乎是面积现象,实际上它涉及到参加吸收冲击能的体积有多大,是一种体积现象。若某种材料在某一负荷下(屈服强度)产生链段运动,因而使参与承受外力的链段数增加,即参加吸收冲击能的体积增加,

1高分子材料拉伸强度测定

实验1 高分子材料拉伸强度测定 一、实验目的 1、测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线; 2、观察结晶性高聚物的拉伸特征; 3、掌握高聚物的静载拉伸实验方法。 二、实验原理 1、应力—应变曲线 本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。 拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。 结晶性高聚物的应力—应变曲线分三个区域,如图1所示。 (1)OA段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。即: σ=?ε 式中σ——应力,MPa; ε——应变,%; Ε——弹性模量,MP 。 A为屈服点,所对应力屈服应力或屈服强度。 (2)BC段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。 (3)CD段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而

增大,直到断裂点D,试样被拉断,D点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为: σ=P/(b×d) (MPa) 式中P——最大破坏载荷,N; b——试样宽度,mm; d——试样厚度,mm; 断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算: ε=(F-G)/G×100% 式中 G——试样标线间的距离,mm; F——试样断裂时标线间的距离,mm。 三、实验设备、用具及试样 1、电子式万能材料试验机WDT-20KN。 2、游标卡尺一把 3、聚丙烯(PP)标准试样6条,拉伸样条的形状(双铲型)如图2所示。 L——总长度(最小),150mm; b——试样中间平行部分宽度,10±0.2mm; C——夹具间距离,115mm; d——试样厚度,2~10mm; G——试样标线间的距离,50±0.5mm; h——试样端部宽度,20±0.2mm; R——半径,60mm。 四、实验步骤 准备两组试样,每组三个样条,且用一种速度,A组25mm/min,B组5mm/min。 1、熟悉万能试验机的结构,操作规程和注意事项。 2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。 3、实验参数设定 接通电源,启动试验机按钮,启动计算机; 双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。 设定试验编号;注意试验编号不能重复使用;

高分子材料论文

高分子材料与成形 14商贸2班梅文祥10号 摘要: 高分子,即高分子化合物,是由千百万个原子彼此以共价起来的大分子,因此又称为高聚物或聚合物。髙分子的特点是分子量大,高达104~106,并且分子量具有多分散性,其相对分子质量一般都在几万到几百万。通常把相对分子质量在一万以上的分子称为高子。高分子是用相对分子质量、聚合度(重复的结构单元数)或分子链的长度来描述的。高分子材料的性能不仅与聚合物的化学性质有关,而且还与诸如结晶的程度和分布,高分子链长的分布,添加剂(如填料,增强剂和增塑剂等)的性质和用量等许多因素有关。 关键词:塑料、纤维、增塑剂、聚合物 前言:高分子,即高分子化合物,是由千百万个原子彼此以共价起来的大分子,因此又称为高聚物或聚合物。髙分子的特点是分子量大,高达104~106,并且分子量具有多分散性,其相对分子质量一般都在几万到几百万。通常把相对分子质量在一万以上的分子称为高分子。高分子是用相对分子质量、聚合度(重复的结构单元数)或分子链的长度来描述的。高分子材料的性能不仅与聚合物的化学性质有关,而且还与诸如结晶的程度和分布,高分子链长的分布,添加剂(如填料,增强剂和增塑剂等)的性质和用量等许多因素有关。 高分子材料的分类有:塑料、橡胶、纤维等;

高分子材料的添加剂有:增塑剂、防老剂、填充剂、阻燃剂等。 正文: 1-1 高分子材料的分类 一、塑料 塑料分为热塑性和热固性塑料。热塑性塑料是指在一定温度围具有可反复加热软化、冷却后硬化定型的塑料。常用的热塑性塑料有聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。热固性塑料是指经加热(或不加热)就变成永久的固定形状,一旦成形,就不可能再熔融成形的塑料。常用的热固性塑料有酚醛塑料、脲醛塑料等。塑料按使用情况又分为通用塑料、工程塑料及特种塑料。通用塑料价格便宜、产量大、成型性好,广泛用于日用品、包装、农业等领域,如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、酚醛和脲醛塑料。工程塑料指能承受一定的外力作用,具有较高的强度和刚度并具有较好的尺寸稳定性,如聚甲醛、聚砜、聚碳酸酯、聚酰胺、ABS等。特种塑料具有如耐热、自润滑等特异性能,可用于特殊要求如氟塑料、有机硅塑料、聚酰亚胺等。 二、橡胶 橡胶具有高的弹性、电绝缘性和缓冲减振性。橡胶可分为天然橡胶和合成橡胶。天然橡胶的弹性好、强度高、耐屈挠性好、绝缘性好。这些性能都是合成橡胶所不及。因此,天然橡胶至今仍是最重要的一种橡胶。天然橡胶的加工性、粘合性、混合性良好。合成橡胶的种类很多,按其性能和用途可分为通用合成橡胶和特种合成橡胶。通用合成橡胶一般用以代替天然橡胶来制造轮胎及其它常用橡胶制品,如丁

年轻的材料——高分子材料

年轻的材料——高分子材料 年轻的材料——高分子材料 〈1〉耐化学侵蚀 〈2〉具光泽,部份透明或半透明 〈3〉大部分为良好绝缘体 〈4〉重量轻且坚固 〈5〉加工容易可大量生产,价格便宜 〈6〉用途广泛、效用多、容易着色、部分耐高温 塑料也区分为泛用性塑料及工程塑料,主要是用途的广泛性来界定,如PE、PP价格便宜,可用在多种不同型态的机器上生产。工程塑料则价格较昂贵,但原料稳性及物理物性均好很多,一般而言,其同时具有刚性与韧性两种特性。 大部分塑料的抗腐蚀能力强,不与酸、碱反应。塑料制造成本低。耐用、防水、质轻容易被塑制成不同形状。是良好的绝缘体。塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。 而其也有很多不足之处,比如回收利用废弃塑料时,分类十分困难,而且经济上不合算。塑料容易燃烧,燃烧时产生有毒气体。塑料是由石油炼制的产品制成的,石油资源是有限的。 根据各种塑料不同的理化特性,可以把塑料分为热固性塑料和热塑料性塑料两种类型。 塑料的成型加工是指由合成树脂制造厂制造的聚合物制成最终塑料制品的过程。加工方法(通常称为塑料的一次加工)包括压塑(模

压成型)、挤塑(挤出成型)、注塑(注射成型)、吹塑(中空成型)、压延等。 中国塑料工业经过长期的奋斗和面向全球的开放,已形成门类较齐全的工业体系,成为与钢材、水泥、木材并驾齐驱的基础材料产业,作为一种新型材料,其使用领域已远远超越上述三种材料进入21世纪以来,中国塑料工业取得了令世人瞩目的成就,实现了历史性的跨越。作为轻工行业支柱产业之一的塑料行业,近几年增长速度一直保持在10%以上,在保持较快发展速度的同时,经济效益也有新的提高。塑料制品行业规模以上企业产值总额在轻工19个主要行业中位居第 三,实现产品销售率9 7.8%,高于轻工行业平均水平。从合成树脂、塑料机械和塑料制品生产来看,都显示了中国塑料工业强劲的发展势头。 塑料技术的发展日新月异,针对全新应用的新材料开发,针对已有材料市场的性能完善,以及针对特殊应用的性能提高可谓新材料开发与应用创新的几个重要方向。 1 新型高热传导率生物塑料,这种生物塑料除导热性能好外,还具有质量轻、易成型、对环境污染小等优点,可用于生产轻薄型的电脑、手机等电子产品的外框。 2 可变色塑料薄膜,这种薄膜把天然光学效果和人造光学效果结合在一起,实际上是让物体精确改变颜色的一种新途径。 3 塑料血液,英国设菲尔德大学的研究人员开发出一种人造塑料血,外形就像浓稠的糨糊,只要将其溶于水后就可以给病人输血,可作为急救过程中的血液替代品。

高分子材料拉伸性能实验

高分子材料拉伸性能实验 1. 实验目的 了解高分子材料的拉伸强度、模量及断裂伸长率的意义和测试方法,通过应力-应变曲线,判断不同高分子材料的性能特征。 2. 实验原理 拉伸强度是用规定的实验温度、湿度和作用力速度,在试样的两端以拉力将试样拉至断裂时所需的负荷力,同时可得到断裂伸长率和拉伸弹性模量。 将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力-应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。 3. 实验材料 实验原料:GPPS、PP、PC。 (1)拉伸样条:哑铃型样条,测试标准:ASTM D638。样条如下:

4. 实验设备 万能材料实验机及夹具 5. 实验条件 不同的材料由于尺寸效应不同,故应尽量减少缺陷和结构不均匀性对测定结果的影响,按表2选用国家标准规定的拉伸试样类型以及相应的实验速度。 表 2 拉伸试样类型以及相应的实验速度 ①Ⅲ试样仅用来测试拉伸强度 实验速度为以下九种: A: 1mm/min ±50% B: 2mm/min ±20% C: 5mm/min ±20% D: 10mm/min ±20% E: 20mm/min ±10% F: 50mm/min ±10% G: 100mm/min ±10% H: 200mm/min ±10% I: 500mm/min ±10% 6.实验步骤 (1)实验环境:温度23℃,相对湿度50%,气压86~106KPa。 (2)测量试样中间平行部分的宽度和厚度,精确到0.01mm,每个试样测量三点,取算术平均值。

高分子材料常见知识简答

简单题: 1.超高分子量聚乙烯的性能特点,加工特点? 答:超高分子量聚乙烯为线型结构,其具有极佳的耐磨性,突出额高模量,高韧性,优良的自润滑性以及耐环境应力开裂性,摩擦系数低,同时还具有优异的化学稳定性和抗疲劳性。由于其相对分子质量极高,因而它的熔体粘度就极大,熔体流动性能非常差,几乎不流动,所以其不宜采用注射成型,宜采用粉末压制烧结。其与中相对分子质量聚乙烯、低相对分子质量聚乙烯、液晶材料或助剂共混后,具有了流动性。 2.硅烷交联两步法(水解、接枝) 两步法的原理是首先将乙烯基硅烷在熔融状态下接枝到聚乙烯分子上,在接枝过程中通常采用有机过氧化物作为引发剂。过氧化物受热分解产生的自由基能夺取聚乙烯分子链上的氢原子,所产生的聚乙烯大分子链自由基就能与硅烷分子中的双键发生接枝反应。接枝后的硅烷可通过热水或水蒸气水解而交联成网状的结构。 3.论述聚丙烯结构与性能特点,加工特性? 聚丙烯具有优良的抗弯曲疲劳性,强度、刚度、硬度比较高,具有优异的电绝缘性能,主要用于电信电缆的绝缘和电气外壳,具有良好的耐热性,在室温下不溶于任何溶剂,但可在某些溶剂中发生溶胀。耐候性差,易燃烧。 加工性能:

①其吸水率低,因此成型加工前不需要对粒料进行干燥处理。 ②聚丙烯的熔体接近于非牛顿流体,粘度对剪切速率和温度都比较敏感,提高压力或增加温度可以改善其熔体流动性。 ③聚丙烯是结晶类聚合物,所以成型收缩率比较大,且具有较明显的后收缩性。 ④聚丙烯受热时容易氧化降解,在高温下对氧特别敏感,为防止其在加工过程中发生热降解,一般在树脂合成时即加入抗氧剂。 ⑤聚丙烯一次成型性优良,几乎所有的成型加工方法都可适用,其中最常采用的是注射成型和挤出成型。 4.简述聚1-丁烯与其它聚烯烃相比,聚1-丁烯的特点? 1、具有刚性 2、较高的拉伸强度 3、好的耐热性 4、良好的化学腐蚀性以及抗应力开裂性,在油、洗涤剂和其它溶剂中,不会像高密度聚乙烯等其它聚烯烃一样产生脆化,只有在98%浓硫酸,发烟硝酸,液体溴等强度氧化剂的作用下,才会产生应力开裂。 5、优良的抗蠕变性,反复绕缠而不断,即使在提高温度时,也具有特别好的抗蠕变性 6、具有超高相对质量聚乙烯相媲美的非常好的耐磨性 7、可容纳大量的填料,在90-100℃下可长期使用。 5.论述聚氯乙烯结构与性质的关系?

有机高分子材料概述

有机高分子材料概述和发展趋势 陈彪 2011327120112 材料科学与工程11(1)班 摘要:有机高分子材料包括木材、棉花、皮革等天然高分子材料和朔料、合成纤维及合成橡胶等有机聚合物合成材料。它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型的代表,此外,还有涂料和粘合剂等。 关键词:有机高分子材料;发展趋势 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机高分子化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能够形成稳定的共价键组成高分子化合物。 人们使用高分子材料的历史很早,由于它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快,自20世纪20年代以来,就已经发展了人工合成的各种高分子材料。 高分子材料有各种不同的分类方法。例如,按来源可以分为天然高分子材料和合成高分子材料。按大分子主连接结构可分为碳链高分子材料、杂链高分子材料及元素有机高分子材料等。最常用的是根据高分子材料的性能和用途进行分类。 根据性能和用途,高分子材料可分为橡胶、塑料、纤维、粘合剂、涂料、功能高分子材料以及复合材料等不同的类别。 下面以介绍这几大类高分子材料为主。 1橡胶 橡胶是有机高分子弹性化合物。在很宽的温度范围内具有优异的弹性,所以又称为高弹体。按其来源可分为天然橡胶和合成橡胶两大类。天然橡胶是从自然界含胶植物制取的一种高弹物质。合成橡胶是用人工合成的方法制得的高分子弹性材料。 橡胶具有独特的高弹性,还具有良好的疲劳强度、点绝缘性、耐化学腐蚀以及耐磨性等使它成为国民经济中不可缺少和难以代替的重要材料。 2塑料 塑料是以聚合物为主要成分,在一定条件下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上包括塑料的半成品,如压塑粉等。 作为塑料基础组分的聚合物,不仅决定塑料的类型而且决定塑料的主要性能。一般而言,塑料用聚合物的内聚能介于纤维与橡胶之间,使用温度范围在其脆化温度和玻璃化温度之间。应当注意,同一种聚合物,由于制备方法、条件及加工方法的不同,常常既可作塑料用,也可做纤维用。 塑料是一类重要的高分子材料,具有质地轻、电绝缘、耐化学腐蚀、容易加工成型等特点,其性能可调范围宽,具有广泛的应用领域。 3纤维 纤维是指长度比直径大很多倍,并具有一定韧性的纤细物质。纤维的特点是分子间次价力大、形变能力小、模量高,一般为结晶聚合物。 纤维可分为两大类:一类是天然纤维,如棉花、羊毛、蚕丝和麻等,另一类是化学纤维,即用天然或合成高分子化合物经化学加工而制得的纤维。

实验十二 聚合物拉伸性能测试

实验十二聚合物拉伸性能测试 一、实验目的 (1)熟悉电子力学试验机的原理及使用方法; (2)绘制聚合物的应力-应变曲线,测定其拉伸强度、断裂强度和断裂伸长率。 二、实验原理 拉伸性能是聚合物力学性能中最重要、最基本的性能之一。拉伸性能的好坏,可以通过拉伸试验来检验。 拉伸试验是在规定的试验温度、湿度和速度条件下,对标准试样盐纵轴方向施加静态拉伸负荷,直至试样被拉断为止。用于聚合物应力—应变曲线测定的电子拉力机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘处试样在拉伸形变过程中的应力-应变曲线。从应力-应变曲线上可得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、拉伸弹性模量、断裂伸长率等。通过拉伸试验提供的数据,可对高分子材料的拉伸性能做出评价,从而为质量控制,研究、开发与工程设计及其他项目提供参考。 应力-应变曲线一般分为两个部分:弹性变形区和塑性变形区。在弹性变形区,材料发生可完全恢复的弹性变形,应力与应变呈线性关系,符合胡克定律。在塑性变形区,形变是不可逆的塑性形变,应力和应变增加不再呈正比关系,最后出现断裂。图12-1为典型的聚合物拉伸应力-应变曲线。 图12-1 典型的聚合物拉伸应力—应变曲线 不同的高聚物材料、不同的测定条件,分别呈现不同的应力-应变行为。根据应力-应变曲线的形状,目前可大致归纳为五种类型,如图12-2所示。 (1)软而韧拉伸强度低,弹性模量小,且伸长率也不大,如溶胀的凝胶等。 (2)硬而脆拉伸强度和弹性模量较大,断裂伸长率小,如聚苯乙烯等。 (3)硬而强拉伸强度和弹性模量较大,且有适当的伸长率,如硬聚氯乙烯等。 (4)软而韧断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。 (5)硬而韧弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等。

功能高分子材料的特点2

功能高分子材料的特点:具有一定的力学性能,还具有某些特定功能的高分子材料。 材料的一次功能:当向材料输入的能量和信息与从材料输出的能量和信息属于同一形式时,即材料仅起能量和信息传递作用时,材料的这种功能成为一次功能。 材料的二次功能:当向材料输入和输出的能量不同形式时,材料起能量转换作用,这种功能称为二次功能。有人把只具有二次功能的材料称为功能材料。 功能高分子材料按功能性的分类:磁,热,声,机械,生物,化学,光,电 功能高分子材料和功能高分子的区别:功能高分子包括功能高分子材料。 官能团和功能高分子材料功能性的关系:1.官能团的性质对高分子的功能起主要作用。2.聚合物与官能团协同作用。3.聚合物骨架起作用。4.官能团起辅助作用。 功能高分子材料的制备:1.通过高分子或小分子的化学反应。2.通过特殊加工。3.通过普通聚合物与功能材料复合。 吸附树脂:是一类多孔性的,适度交联的高分子聚合物。 吸附树脂的成孔:1。惰性溶剂制孔。2.线性高分子制孔。3.后交联成孔。 吸附选择性:1.水溶性不大的有机化合物容易被吸附,且在水中的溶解性越差越容易被吸附。2.吸附树脂难于吸附溶于有机溶剂中的有机物。3.当化合物的极性基团增加时,树脂对其吸附能力也随之增加,如果树脂和化合物之间能发生氢键作用,吸附作用也将加强。4.在同一树脂中,树脂对体积较大的化合物的吸附作用较强。 最早的离子交换功能树脂:甲醛与苯酚和甲醛与芳香胺的缩聚产物。 树脂的物理结构分类:凝胶型,大孔型和载体型离子交换树脂。 交联聚苯乙烯球粒的制备:制备交联聚苯乙烯球粒所用的单体为苯乙烯和二乙烯苯,在热引发剂的作用下将他们在水箱中进行悬浮聚合,得到珠状苯乙烯-二乙烯苯共聚物。 树脂的外形为球形的颗粒,颗粒的大小将会影响到它的使用性能。因此树脂颗粒的直径是其重要的性能指标。。 均一系数:表示粒径均一程度的参数,其数值越小,表示颗粒大小越均匀。 树脂的含水量:水的存在一方面是树脂的离子化集团和要交换的化合物分子离子化,以便进行交换;另一方面是树脂溶胀,产生内部的凝胶孔,以利于离子能以适当的速度在其中扩散。但如果含水量太大,则会降低离子交换树脂的机械强度和体积交换容量。离子交换树脂的含水量一般为:30%~80%,随树脂的种类和用途而变。 树脂的交换容量:离子交换树脂的交换容量是指单位质量或单位体积数值在一定条件下表现出的可进行离子交换的例子集团的量。 离子交换树脂对价数较高的例子的选择性较大。离子交换树脂的性能劣化:当离子交换树脂使用一段时间后,会发生处理液的纯度下降与收得量下降等现象,这是由于离子交换树脂的性能下降造成的。其原因可能有离子交换机的化学分解,有机物及腐蚀生成物等不纯物的污染,离子交换树脂的物理破碎。 离子交换树脂在重金属的提取,水处理,化学反应的催化方面均有重要的应用。 高吸水性树脂分类(原料):天然淀粉类,纤维类衍生物,合成树脂。 合成树脂:聚丙稀酸盐系,聚乙烯醇系,聚氧化乙烯系。 什么叫絮凝剂:能吸收污染物以及待吸收物的高分子液剂。 絮凝剂分类:无机高分子絮凝剂,微生物絮凝剂,有机高分子絮凝剂。 絮凝剂的作用方式:1。带电的絮凝剂可以与带相反电荷的微粒作用使电荷中和,降低微粒的双电层厚度,促进微粒间的相互碰撞。2.一个分散微粒可以同时吸附两个以上的高分子连,在高分子链间起吸附架桥的作用,由于高分子链包覆使微粒变大而加速沉降。3.一个高分子链也可以同时吸附两个以上的微粒,高分子可以在多处与微粒结合一同下降。 影响有机高分子絮凝剂絮凝效果的因素:1.分子链结构的影响。2.悬浮体系的性质。3.使用方法的影响。 高分子分离膜的分类:分离膜分离时所选择的球粒的大小,还可分为微滤膜,超滤膜,纳滤膜,反渗透膜。 结构的分类:对称膜和不对称膜,每种膜又可由 均质膜和多孔膜或两者共同组成。 不对称膜:结合了致密膜和高选择性和多孔膜的 高渗透速率的优点。 膜的材料性能:在膜分离技术上的实现,还必须 以合理的膜组件作为载体。 分离膜的指标:选择性和透过性。分离作用主要 依靠过筛作用和溶解扩散作用两种。 多孔膜的分离机理:主要是筛分原理。 致密膜的传质和分离机理是溶解-扩散激励,即 在膜上有的溶质分子或气体分子溶解于高分子 膜界面,按扩散定律通过膜层,在下游界面脱溶。 提高透过量:增加表面积,增加膜的渗透系数和 减小膜的厚度的方法来提高膜的透过量。 高分子分离膜的材料:纤维素衍生物,聚砜类, 聚酰胺类及聚酰亚胺类,聚酯类,聚烯烃类,乙 烯基类高聚物,有机硅聚合物,含氟聚合物,甲 壳素类,高分子合金膜,液晶复合高分子膜。 高分子分离膜的制备:烧结法,拉伸法,径迹蚀 刻法,相转化法。 压力驱动膜过程:微滤,超滤,纳滤,反渗透。 浓度差驱动的膜分类:1.气体分离膜。2.渗透蒸 发膜。 材料的导电性能:材料在电场作用下能产生电流 是由于介质中存在能自由迁移的带电质点,这种 带点质点被称为载流子。 高分子材料的到点特点:导电高分子材料具有质 量轻,易成型,电阻率可调节,克通过分子设计 合成出具有不同特性的导电性等特点。 离子电导和电子电导区分:电导率的压力依赖性 来区分。 导电高分子材料分类:按照材料的结构与组成, 可分为结构性和复合型 结构性导电高分子材料主要有:1.π共轭系高分 子。2.电荷转移型高分子络合物。 复合型导电高分子材料得导电机理:随着填料浓 度增加,填料颗粒接触机会增多,电导率逐步上 升。当填料浓度达到某一临界值时,体系内的填 料颗粒相互接触形成无线电网。这个无线电网就 像金属网贯穿于高聚物中,形成导电通道,电导 率急剧上升,使聚合物成为导体。 金属填充型导电高分子材料的导电性的影响因 素:1.金属性质。2.金属含量。3.金属颗粒形状 与大小。4.外磁场。5.聚合物与金属颗粒的相容 性。 含碳黑聚合物导电性的影响因素:1.电场强度对 导电性的影响.2.温度对导电性的影响。3.加工方 法对导电性的影响。 结构型导电高分子材料:纯粹的结构型导电高分 子材料至今只有-聚氮化硫-(SN)X 一类。 按高分子材料的结构特征和导电机理分类:共轭 体系聚合物,高分子电解质,电荷转移络合物和 金属有机螯合物。 具有结构性共轭体系必须具备以下条件:1.分子 轨道能够强烈离域。2.分子轨道能够够互相重 叠。 共轭高聚物的导电机理:在电子导电聚合物的导 电过程中,载流子是聚合物中的自由电子或空 穴,导电过程需要载流子在电场作用下能够在聚 合物内作定向迁移形成电流。 有机聚合物成为导体的必要条件:应有能使其内 部某些电子或空穴具有跨建离域移动能力的大 共轭结构。 导电性:随着共轭高分子链的延长,π电子数增 多,高聚物的导电性能提高。 受阻共轭:共轭分子轨道上存在缺陷。 掺杂的方法:化学掺杂和物理掺杂 影响掺杂共轭高聚物导电性能的因素:1,掺杂 剂的用量及种类。2.温度的影响。聚合物电导率 与分子中共轭链长度之间的关系。 离子导电高聚物:作为固体的,必须对离子化合 物具有溶剂化作用。 材料的压电效应及表征:是不对称晶体再外加机 械力的作用下能发生极化,从而产生电压;反之, 变种晶体在高电场作用下也能产生机械的现象。 超导态特征:电阻为零;超导体内部的磁场为零; 超导电只有在临界温度以下才会出现;超导现象 存在临界磁场,磁场强度超越临界值,则超导现 象消失。 光化学第二定律:一个分子只有在吸收了一个光 量子之后,才能发生光化学反应。 光引发剂和光敏剂的异同:二者均能促进光化学 反应的进行。不同在于-光引发剂吸收光能侯跃 迁到激发态,当激发态能量高于键断裂所需的能 量时,光敏剂吸收光能后跃迁到激发态,然后发 生分子内或分子间能量转移,将能量传递给另一 个分子。光敏剂回到基态。光敏剂的作用类似于 化学反应的催化剂。 光敏剂的作用机理:能量转移激励,夺氢机理和 生成电荷转移复合物机理。 光敏涂料体系的构成:主要由光敏预聚物,光引 发剂和光敏剂,活性稀释剂以及其他添加剂等构 成。 活性稀释剂:1.单丙烯酸脂类,2。双。3.三。4. 四。 增塑性稀释剂用途:改善涂层的韧性及流动性。 光致抗蚀剂和光刻胶:在化学腐蚀阶段对氧化层 起保护作用,这一方法称为光刻工艺。具有这种 性能的感光高分子材料为题。 聚合物抗老化的基本措施和基本原理:1.对有害 光线进行屏蔽,吸收或者将光能转化成无害形 式,防治自由基的产生;2.切断光老化链式反应 的进行路线,使其对聚合物主链不产生破坏力。 高分子光稳定剂的种类:1.光屏蔽剂。2.激发态 猝灭剂。3.抗氧剂。4.聚合物型光稳定剂。 光致变色原理:1.化学过程:变色现象大多与聚 合物吸收光后的结构变化有关系。2。物理过程: 通常是有机物质吸收光而激发生成分子激发态, 主要是形成激发三线态。而某处处于激发三线态 的物质允许进行三线态。-三线态的跃迁,此时 伴随有特征的吸收光谱变化而导致光致变色。 光导电性特性一般用电导率表示。 光导电性:材料在无光照的情况下呈现电解质的 绝缘性质。电阻率非常高,而在受到一定波长的 光照射后,电阻率下降,呈现到导体或半导体性 质的现象。 载体判断:测定材料光照射面试加正电压,如果 电流增加,可以认为空穴是主要载流子;反之, 则电子是主要载流子。 光导电机理:材料内部原本处在束缚状态下的电 子,因为受到特定波长的照射后产生载流子。同 时吸收了光相对应的能量后,表现出导电能力。 形成载流子过程:第一步时光活性高分子中的基 态电子吸收光能后至激发态,即价带中的电子进 入导带。第二步再外加电场的作用下,电子-空 穴对发生解离,产生自由电子或空穴成为载流 子。 提高光导电体性能:1.在光照条件下,光激发效 率越高,激发态分子越多。2.降低辐射合肥辐射 耗散速率。3.加大电场强度。 静电复印过程:充电-光照呈像-静电显影-图像转 移,定影,加热。 静电复印:在复印过程中光导体在光的控制下收 集和释放电荷,通过静电作用吸附带相反电荷的 油墨。 生物相容性概念:是生物医用材料与人体之间相 互作用产生各种复杂的生物,物理,化学反应的 一种概念。 聚氨酯:一类物理性质变化范围广的高分子材 料。 液晶:处于液态和晶态之间的中间态称为液晶 态,处于液晶态的物质称为液晶。 液晶分类:1.向列型液晶。2.近晶型液晶态。3. 胆淄型液晶。 主链高分子液晶特点:1.主链液晶高分子具有高 强度,高模量,自增强性能。2.具有突出的耐热 性,优异的耐冷热交变性能。3.具有优良的耐腐 蚀性。4.阻燃性能好。5.优异的电性能。6.优良 的成型加工性能。7.线膨胀系数极小。8.具有优 异的耐辐射性能和对微波的良好透明性。 形成液晶的分子的条件:1.分子具有不对称的几 何形状。2.分子应含有苯环,杂环,多重键等刚 性结构。3.分子间要有适当大小的作用力。 溶致液晶:当溶解在溶液中的液晶分子的浓度达 到一定值时,分子在溶液中能够按一定有序排 列,呈现部分晶体性质。当溶解的是高分子液晶 时,称为容致型高分子液晶。 纳米材料:在三维空间上至少有一位处于纳米尺 度范围的物质。 纳米效应的表现:1.小尺寸效应。2.表面效应。 3.宏观量子隧道效应。 纳米复合材料特点:1,具有同步的增韧增强效 果。2.加入少量的纳米粒子可以大幅度提高材料 的强度和模量。3.利用纳米复合材料可以开发新 的功能性的材料。 纳米复合材料的制备:共混法,溶胶-凝胶法, 抽层法 。

常用高分子材料汇总

常用高分子材料汇总

————————————————————————————————作者:————————————————————————————————日期: 2

常用高分子材料总结 塑料:1、热固性塑料 2、热塑性塑料:①通用塑料(五大通用塑料) ②工程塑料(通用工程塑料特种工程塑料) 工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性, 五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。 分 类 名称概述性能特点加工性能主要应用 酚醛树脂(PF)酚类和醛类缩聚而 成的合成树脂的总 称。最常用的是苯 酚和甲醛 力学强度高;性能稳定;坚硬耐磨; 耐热、阻燃、耐腐蚀;电绝缘性良好; 尺寸稳定性好;价格低廉;色深,难 于着色 本身很脆,成型时需排气,须加入纤 维或粉末状填料。有层压和模压 电绝缘材料(俗称电 木)、家具零件、日用品、 工艺品、耐酸用的石棉 酚醛塑料 3

热固性塑不饱和聚酯 (UP) 由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨 基 塑 料 脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电 弧性和一定的机械强度,有自熄性、 无臭、无味、耐热性、耐水性比酚醛 塑料稍差,外观美丽鲜艳,耐霉菌, 制造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低, 而且耐沸水煮,耐热性也优于脲醛塑 料一般可在150-200℃范围内使用, 并有抗果汁、洒类饮料的沾污,密胺 餐具而出名 (UMF)制品具有优良 的耐电弧性能和很高的 机械强度,以及良好的 电绝缘性和耐热性;耐 电弧防爆电器设备配 件,要求高强度的电器 开关和电动工具的绝缘三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 4

高分子材料力学性能

高分子材料的力学性能及表征方法 用途 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。

高分子材料结构特点及形成原因

高分子材料的结构特点及形成原因 刘海翔 103511072 摘要:简单综述了高分子材料的结构特点,包括高分子链结构、晶体结构和微区结构等,同时简要阐述这些结构特点是如何形成的。 关键字:高分子材料;结构特点 高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。因此,高分子材料目前已被广泛应用于各个领域。 影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。 高分子的链结构 高分子链结构是指单个高分子化合物分子的结构,链结构主要包括高分子链的组成与结构和高分子链的分子量与构象。高分子链的组成是由聚合单体决定的,通常对某一种高分子材料而言,单体的组成并不是研究的主要对象。即使高分子链具有相同的组成,材料的性能也可能不同,这可能与高分子链的形态有关。图1展示了常见的分子链形态。

高分子材料分析与测试(期末复习及答案)

高分子材料分析与测试(期末复习及答案) https://www.doczj.com/doc/a81988063.html,work Information Technology Company.2020YEAR

期末复习作业 一、名词解释 1.透湿量 透湿量即指水蒸气透过量。薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时内所透过的蒸汽量(用 θ表示) v 2.吸水性 吸水性是指材料吸收水分的能力。通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。 3.表观密度 对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用 η表示) a 对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用 ρ表示) a 4、拉伸强度 在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用 σ表示) t 5、弯曲强度 试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用 σ表示) f

6、压缩强度 指在压缩试验中试样所承受的最大压缩应力。它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用 σ表示) e 7、屈服点 应力—应变曲线上应力不随应变增加的初始点。 8、细长比 指试样的高度与试样横截面积的最小回转半径之比(用λ表示) 9、断裂伸长率 断裂时伸长的长度与原始长度之比的百分数(用 ε表示) t 10、弯曲弹性模量 比例极限内应力与应变比值(用E f表示) 11、压缩模量 指在应力—应变曲线的线性范围内压缩应力与压缩应变的比值。由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E e表示)12、弹性模量 在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示) 13、压缩变形 指试样在压缩负荷左右下高度的改变量(用?h表示)14、压缩应变

高分子材料名称及缩写全

化学名英文名商品名简称结构式型号理化性质 乙基纤维素Ethyl cellulose 乙基纤维 素 EC [C6H7O2(OC2H5)3]n白色或淡褐色粉 末,不溶于水,溶 于乙醇等有机溶 剂,粘性强. 壳多糖Chitin 甲壳素或几 丁质(C8H13NO5)n 淡黄色至白色,溶 于酸,不溶于碱和 其他有机溶剂,也 不溶于水。 聚氧乙烯脂肪酸Polyoxyethene Fatty Acid 卖泽POF A RCOOCH2(CH2OCH2)nCH2 OH 卖泽45, 49,51,52 等 溶于水,溶于热乙 醇,热油,苯和二 甲苯. 交联聚乙烯基吡咯烷酮Polyvinyl Pyrrolidone Cross-liked 交联聚维酮PVPP (C6H9N O)n 不溶于水,乙醇, 三氯甲烷或乙醚。 无嗅,有引湿性, 水合能及极强。 聚氧乙烯脂肪醇醚Polyoxyethene Aliphatic Alcohol Ether 苄泽PAAE RO(CH2OCH2)nCH2OH 苄泽 35,30 等 非离子表面活性 剂,不溶于水。 聚氧乙烯-聚氧丙烯共Polyoxyethene- Polypropylene 普朗尼克PPC HO(C2H4O)a(C3H6O)b(C2H 4 O)CH L44,F68, F87, 乙醇和水中易溶, 无水乙醇或醋酸

聚物Copolymer F108, F127等乙酯中溶解,乙醚和石油醚不容。 聚乙烯醇Polyvinyl Alcohol 聚乙烯醇PVA [CH2CH(OH)]n PVA-1788 , PVA-1799 无臭,无味。 在热水中溶解,在乙醇中微溶,在丙酮中几乎不溶。 醋酸纤维素Cellulose Acetate 醋酸纤维 素CA 白色、微黄白色或 灰白色的粉末或 颗粒;有引湿性, 甲酸、丙酮及甲醇 与二氯甲烷的等 体积混合液中溶 解,水或乙醇中几 乎不溶。 微晶纤维素Microcrystalline Cellulose 微晶纤维 素MCC (C12H22O11)n 无臭,无味,在水, 乙醇,丙酮或甲苯 中不溶。 聚丙交酯Poly-lactic Acid 聚乳酸PLA (OCHCH3CO)n 热稳定,抗溶剂性 好,还具有一定的 耐菌性、阻燃性和

相关主题
文本预览
相关文档 最新文档