当前位置:文档之家› 磁粉基础知识

磁粉基础知识

磁粉基础知识
磁粉基础知识

磁粉检测

第一章绪论

1.1磁粉检测的发展简史和现状

1.2漏磁场检测分类

磁粉检测是利用漏磁场原理进行检测的。

漏磁场:铁磁材料被磁化后,在不连续性处或磁路截面变化处,磁感应先离开和进入工件表面形成的磁场称为漏磁场。

所谓不连续性,就是工件正常组织结构或外形的任何间断,这种间断可能也可能不影响工件的使用性能。

缺陷:通常把影响工件使用性能的不连续性称为缺陷。

缺陷包含于不连续性,所有不连续性并不一定是缺陷,只有影响工件使用性能的不连续性才是缺陷。

漏磁场检测:利用某种传感器件,直接对漏磁场进行检测的方法。

漏磁场检测分为磁粉检测与检测元件检测。二者的区别就是磁场的传感器不同。

磁粉检测--磁粉(铁磁性粉末)

检测元件检测--磁带、霍尔元件、磁敏二极管或感应线圈

1、磁粉检测(MT)

磁粉检测法:用磁粉作为漏磁场的检测介质,利用磁化后工件缺陷处漏磁场吸引磁粉形成的磁痕显示,从而确定缺陷存在的一种检测方法。

(1)磁粉检测原理

①(条件)铁磁材料被磁化后,②(原因)由于不连

续性的存在,③(后果)在工件表面和近表面的磁力

线发生畸变而产生漏磁场,吸附施加在工件表面的

磁粉,④(现象)在合适的光照下形成目视可见的磁

痕,从而显示出不连续性的位置、大小、形状和严

重程度。

(2)磁粉检测的适用范围

1)适用于铁磁材料。

不适用于非铁磁材料和奥氏体不锈钢。

2)适用于检测表面和近表面缺陷,如裂纹、夹杂、发纹、

白点、折叠、冷隔和疏松等缺陷,缺陷显现直观,可以一目了

然地观察到它的形状、大小和位置。根据缺陷的形态及加工特

点,还可以大致确定缺陷是什么性质(裂纹、非金属夹杂、气

孔等)。

不适用于检测宽而浅的划痕、针孔状缺陷、埋藏较深的内部缺陷和延伸方向与磁力线方向夹角小于20°的缺陷。?

3)适用于未加工的原材料(如钢坯),加工后的半成品、成

品及在役或使用中的零部件。

4)适用于管材、棒材、板材、型材和锻钢件、铸钢件和焊接件。

所以标准规定的适用范围

1 范围

JB/T 4730的本部分规定了承压设备磁粉检测方法及质量分级要求。

本部分适用于铁磁性材料制承压设备的原材料、零部件和焊接接头表面、近表面缺陷的检测,不适用于奥氏体不锈钢和其它非铁磁性材料的检测。

与承压设备有关的支承件和结构件,如有要求也可参照本部分进行磁粉检测。

(3)磁粉检测程序

3.2 磁粉检测程序

磁粉检测程序如下:

1)预处理;

2)磁化;

3)施加磁粉或磁悬液;

4)磁痕的观察与记录;

5)缺陷评级;

6)退磁;

7)后处理。

(4)磁粉检测的优点和局限性

磁粉检测的优点:

1)检测铁磁材料的表面和近表面(开口或不开口)缺陷。

2)能直观地显示缺陷的位置、形状、大小和严重程度。

3)具有很高的检测灵敏度,可检测微米级宽度的缺陷。

所以标准规定

4.1.3 铁磁性材料表面检测时,宜采用磁粉检测。

4)单个工件检测速度快,工艺简单,成本低廉,污染少。

5)采用合适的磁化方法,几乎可以检测到工件表面的各个部位,基本上不受工件大小和几何形状的限制。

6)缺陷检测重复性好。

7)可检测受腐蚀的表面。

磁粉检测的局限性

1)只适用于铁磁性材料,不适用于非铁磁材料和奥氏体不

锈钢、奥氏体不锈钢焊缝。

2)适用于检测表面和近表面缺陷,不适用于埋藏较深的内

部缺陷。

3)检测时的灵敏度与磁力线的方向有很大关系、若缺陷延

伸方向与磁力线方向夹角小于20°,缺陷就很难发现。另外,

宽而浅的划痕、针孔状缺陷、锻造邹折也不易发现。

4)受几何形状影响,易产生非相关显示。?

5)若工件表面有覆盖层,将对磁粉检测有影响。用通电法

和触头法磁化时,易产生电弧,烧伤工件。因此,电接触部位

的非导电覆盖层必须打磨掉。

所以标准规定

3.8.4 触头法

3.8.

4.2 采用触头法时,电极间距应控制在75mm~200mm

之间。磁场的有效宽度为触头中心线两侧1/4极距,通电时间

不应太长,电极与工件之间应保持良好的接触,以免烧伤工件。

6)部分磁化后具有较大剩磁的工件需进行退磁处理。

1.3表面无损检测方法的比较

磁粉检测、渗透检测和涡流检测都属于表面无损检测方法,但其方法原理和适用范围区别很大,有各自的优点和局限性,在使用时互相补充。应该很好掌握各种检测方法,并能根据工件材料、状态和检测要求,选择合理的方法进行检测。对于钢铁材料制成的工件,磁粉检测不管是在灵敏度还是在检测方法及检测成本上都占有相当的优势,只有在因材料或工件形状等原因不能采用磁粉检测时,方使用渗透检测或涡流检测。

表1-1 表面无损检测方法的比较

第2章磁粉检测物理基础

2.1磁现象和磁场

2.1.1磁的基本现象

没有磁性的物体得到磁性的现象叫磁化

采用什么方法能够使物体磁化?

2.1.2磁场与磁感应线

2.7.3影响漏磁场的因素

真实的缺陷具有复杂的几何形状,计算其漏磁场是困难的。但这并不是说漏磁场是不可以认识的。可以对影响缺陷漏磁场的一般规律进行探讨。影响缺陷漏磁场的主要因素有:

1、外加磁化场的影响

从钢铁的磁化曲线中可知,外加磁场的大小和方向直接影响磁感应强度的变化。而缺陷的漏磁场大小与工件材料的磁化程度有关。一般说来,在材料未达到近饱和前,漏磁场的反应是不充分的。这时磁路中的磁导率μ一般都比较大,磁化不充分,则磁感应线多数向下部材料处“压缩”。而当材料接近磁饱和时,磁导率已呈下降趋势,此时漏磁场将迅速增加,如图所示。

2、缺陷位置及形状的影响

钢铁材料表面和近表面的缺陷都会产生漏磁场。同样的缺陷在不同的位置及不同形状的缺陷在相同磁化条件下漏磁场的反映是不同的。表面缺陷产生的漏磁场较大,表面下的缺陷(近表面缺陷)漏磁场较小,埋藏深度过深时,被弯曲的磁感应线难以逸出表面,很难形成漏磁场。缺陷埋藏深度对漏磁场的影响见图

缺陷方向同样对漏磁场大小有影响。当缺陷倾角方向与磁化场方向垂直时,缺陷所阻挡的磁通最多,漏磁场最强也最有利于缺陷的检出。而缺陷方向与磁化场成某一角度时,漏磁场主要由磁感应强度的法线分量决定。缺陷倾角方向与磁化场方向平行时,所产生的漏磁场

最小,接近于零。其下降曲线类似于正弦波曲线(图中虚

线)。图表示了缺陷倾角与漏磁场大小的关系。

同样宽度的表面缺陷,如果深度不同,产生的漏磁场也不一样。在一定范围内,缺陷深度与漏磁场增加成正比关系。同样深度缺陷,缺陷宽度较小时,则漏磁场易于表现。缺陷深度与宽度之比值(深宽比)是影响漏磁场的重要因素。深宽比愈大,漏磁场也愈强,缺陷也易于被发现。若宽度过大时,漏磁通反而会有所减小,并且在缺陷两侧各出现一条磁痕。一般要求缺陷深宽比应大于5。表面下的缺陷也是一样,气孔比横向裂纹产生的漏磁场小。球孔、柱孔、链孔等形状都不利于产生大的漏磁场。图表示了剩磁法时缺陷深宽比与检出的所需磁场的关系。

3、钢材表面覆盖层的影响

工件表面覆盖层会导致漏磁场在表面上的减小,如图为漆层厚度对漏磁场的影响。若工件表面进行了喷丸强化处理,由于处理

层的缺陷被强化处理所掩盖,漏磁场的强度也将大大降低,有时甚至影响缺陷的检出。

4、工件材料磁性的影响

不同钢铁材料的磁性是不同的。在同样磁化场条件下,它们的磁

性各不相同,磁路中的磁阻也不一样。一般说来,易于磁化的材料容易产生漏磁场。

5、磁化电流类型的影响

不同种类的电流对工件磁化的效果不同。交流电磁化时,由于集肤效应的影响,表面磁场最大,表面缺陷反映灵敏,但随着表面向里延伸,漏磁场显著减弱。直流电磁化时渗透深度最深,能发现一些埋藏较深的缺陷。因此,对表面下的缺陷,直流电产生的漏磁场比交流电产生的漏磁场要大。

第3章磁化电流、磁化方法与磁化规范

3.1磁化电流

在磁粉检测中是用电流来产生磁场的,常用不同的电流对工件进行磁化。这种为在工件上形成磁化磁场而采用的电流叫做磁化电流。由于不同电流随时间变化的特性不同,在磁化时所表现出的性质也不一样,因此在选择磁化设备与确定工艺参数时,应该考虑不同电流种类的影响。常用的磁化电流有交流电流、直流电流、整流电流(单项半波整流电、单相全波整流电、三项半波整流电和三相全波整流),在一些特殊的地方,还使用高压脉冲电流。

3.1.1交流电流(AC)

交流电具有大小和方向的周期变化,在磁场特性上也是随时间作有规律变化。交流电具有集肤效应,其表面附近的磁场较为显著,可以提高工件表面缺陷检查的灵敏度,而且工件磁化后也容易退磁。

交流电具有集肤效应的原因是由于导体在变化的磁场里因电磁感应而产生涡流。材料的电导率和相对磁导率增加时,或交流电的频率提高时,都会使集肤效应更加明显。50Hz交流电的集肤深度,大约2mm。

3、交流电的优点和局限性P52

(6)对截面变化的工件磁化时易用交流电。

(9)对在用设备用交流电好于直流电。

4、交流电断电相位的影响

3.3.3 断电相位控制器

采用剩磁法检测时,交流探伤机应配备断电相位控制器。

目的得到最大的剩磁。

3.1.5如何选择磁化电流

对于钢铁的磁化来说,起作用的不是磁化电流的有效值或平均值,而是峰值。由于探伤机上的电流表多用有效值(交流)和平均值(直流)进行计算,因此存在一个峰值与其它值间的转换关系

P56

1)表面缺陷-交流电

2)铸造工件干法-单项半波整流电

3)表面或近表面缺陷-三相全波整流

3.2 磁化方法

目的是使工件得到什么样的磁场,最好的方法是缺陷与磁场垂直,也就是最佳的方法。

3.2.1缺陷磁粉显示和检测灵敏度

磁粉检测效果是用磁粉的堆积来显示的,是以工件上不允许存在的表面和近表面缺陷能否得到充分的显示来评定的。而这种显示又与缺陷处的漏磁场的大小和方向有密切关系。检测时被检材料表面细小缺陷磁粉显现的程度叫做检测灵敏度,或叫做磁粉检测灵敏度。

根据工件上缺陷显现的情况,磁粉的显示可分为四种情况:(1)显示不清。磁粉聚集微弱,磁痕浅而淡,不能显示缺陷全部情况,重复性不好,容易漏检,其检测灵敏度也是最低,不能作为判断缺陷的依据。

(2)基本显示。磁粉聚集细而弱,能显示缺陷全部形状和性质,重复性一般。其检测灵敏度表现亦欠佳,做为缺陷判断依据效果不佳。(3)清晰显示。磁粉聚集紧密、集中、鲜明,能显示全部缺陷形状和性质,重复性良好,能达到需要的检测灵敏度。这是磁粉检测判断的标准。

(4)假显示。缺陷处磁粉聚集过密,在没有缺陷的表面上有较明显的磁粉片或点状附着物。有时金属流线、组织及成分偏析、应力集中、局部冷作硬化等成分组织的不均匀现象也有所显示。伪显示影响缺陷的正常判断,是检测灵敏度显示过度的反映,应该注意排除。

以上四种显示并不是孤立的,在不同的检测条件下各种缺陷显现的情况并不一致,检测灵敏度也不一样。一般情况下较大的缺陷显示较为清晰,而细微缺陷磁痕则较模糊或不能显示。应该根据产品设计要求及工艺制度等来确定磁粉检测的检测灵敏度,使在工艺许可的条

件下规定检查的缺陷的磁痕能够清晰显示。

影响磁粉检测灵敏度的主要因素有:

①正确的磁化参数(包括工件磁化的方向和磁场大小的确定);

②合适的检测时机;

③适当的磁化方法和检验方法;

④磁粉的性能和磁悬液浓度及质量;

⑤检测设备的性能;

⑥工件形状与表面粗糙度;

⑦缺陷的性质、形状和埋藏深度;

⑧正确的工艺操作;

⑨检测人员的素质;

⑩照明条件等。

?其中,合理地选择磁化方法和磁化规范的工艺参数是保证磁粉检测灵敏度的关键因素。即是说,要保证磁粉检测灵敏度,必须选择能够显示缺陷的最佳磁化方向的方法,以及能够在这种方法下清晰显示缺陷的磁化电流规范。

3.2.2最佳磁化方向的选择

1)磁场方向与发现缺陷的关系

工件磁化时,与磁场方向垂直的缺陷最容易产生足够的漏磁场,也就最容易吸附磁粉而显现缺陷的形状。当缺陷方向与磁场方向大于45°角时,磁化仍然有效;当缺陷方向平行于或接近平行于磁场方向时,缺陷漏磁场很少或没有,发现不了缺陷造成漏检。必须对工件的

磁化最佳方向进行选择,使缺陷方向与磁场方向垂直或接近垂直,以获得最大的漏磁场。但是,工件中的缺陷方向是不确定的,可能有各种取向。这些方向有时难于预计。为了发现所有的缺陷,于是发展了各种不同的磁化方法,以便在工件上建立各种不同方向的磁场。磁粉探伤时,应该根据工件的加工工艺和使用历史对缺陷作一个预计,以寻找合适的磁化方向,即在工件上建立适合的工作磁路,以得到需要的磁化场。

2)选择磁化方法应考虑的因素

选择工件磁化方法实际就是选择工件的最佳磁化方向。一般说来,选择工件磁化方法主要应考虑的因素有:

(1)工件的尺寸大小。对于尺寸较小的工件,通常选用整体磁化的方法;而对于尺寸较大的工件,则选择局部磁化方法。

(2)工件的外形结构。外形结构简单的工件,通常采用单一的磁化方法。而形状比较复杂的工件,往往采用一种磁化方法缺陷难于完全显示,有必要采用多种磁化方法或多向磁化的方法。特别是一些体积较大而形状又较复杂的工件更是如此。

(3)工件的表面状态。工件表面比较粗糙的工件可以采用直接通电的磁化方法。但有的工件直接通电会影响工件表面形态或使用效果,则只能采用感应磁化的方法。

(4)工件检查的数量。对于数量较少的工件,可采用一般规定的磁化方法(如分两次或多次磁化);但对于大批量的检查,则往往采用多向磁化或半自动化检查方法。

(5)预计工件可能产生缺陷的方向。如原材料缺陷多采用周向磁化,使用中的工件多考虑应力集中处的疲劳裂纹常采用纵向磁化或多向磁化等。

对于以上因素,其基本要求都是要根据工件设计要求和过去使用中断裂的情况,结合材料应力和加工中容易出现的缺陷方向,选择适当的磁化方法。

3.2.3磁化方法的分类

根据工件磁化时磁场的方向,可以分为周向磁化、纵向磁化、多向磁化和辅助通电法。

如图所示的是周向磁化主要磁化方法。

纵向磁化的纵向磁场可由磁化线圈(螺线管)产生,也可由电磁轭或永久磁铁产生,其主要磁化方式如图所示。

为了能够一次磁化发现工件各个方向上的缺陷,根据磁场叠加的原理,可以采用两个或两个以上变化的磁场对工件同时进行磁化。当叠加的合成磁场方向不断变化时,工件中产生了一个大小及方向随时间成圆形、椭圆形或其它形状轨迹的多向组合磁场。因此可以发现多于一个方向上的缺陷。多向磁化方法又称组合磁化法或复合磁化法。主要有螺旋形摆动磁场磁化法、十字交叉磁轭旋转磁场磁化法以及线圈交叉旋转磁场磁化法等。

周向磁化和纵向磁化是指磁化时磁场的方向,通电磁化和间接磁化(通磁磁化)是指工件磁化时电流磁场产生的方式。

所谓通电磁化,是指工件在磁化时自身全部或局部通过电流,工件的磁化是由通过工件电流的磁场完成的。这种磁化的方法有轴向通电磁化法、直角通电磁化法、触头通电磁化法以及感应电流磁化法等。前三种方法中工件作为电路的一部分由专门电极磁化;后一种则是利用电磁感应的原理在工件上感应出电流,使工件得到磁化。

间接磁化是利用磁场感应原理将铁磁工件磁化,所以也叫通磁磁化。这种磁化磁场可以是周向磁场(中心导体法),也可以是纵向磁场(线圈或磁轭),可能是由电流导体产生,也可由永久磁铁所产生。当工件置于这种磁场中,工件本身将被磁化。磁化工件的磁场又叫磁化场,它是外加的,不管有无工件这种磁化场都存在,除非人为取消它;而通电磁化的磁场在电流通过工件时产生,电流消失就没有了。这是二者的差别。

通电磁化的磁场多属周向磁化,而感应磁化的磁场有可能是周向磁场,也可能是纵向磁场。

3.2.4、磁化规范分级及其确定原则

要保证磁粉检测的灵敏度,必须要合理地选择磁化方法和磁化规范。所谓磁化规范,是在工件上建立必要的工作磁通时所选择的合适的磁化磁场或磁化电流值。

实际应用时,磁化规范按照检测灵敏度一般可分为三个等级:

(1)标准磁化规范。在这种情况下,能清楚显示工件上所有的缺陷,如深度超过0.05mm的裂纹,表面较小的发纹及非金属夹杂物等,一般在要求较高的工件检测中采用。通常把标准磁化规范叫做标准灵敏度规范。

(2)严格磁化规范。在这种规范下,可以显示出工件上深度在

0.05mm 以内的微细裂纹,皮下发纹以及其它的表面与近表面缺陷。适用于特殊要求的场合,如承受高负荷、应力集中及受力状态复杂的工件,或者为了进一步了解缺陷性质而采用。这种规范下处理不好时可能会出现伪像。严格磁化规范有时也叫做高灵敏度规范。

(3)放宽磁化规范。在这种规范下,能清晰地显示出各种性质的裂纹和其它较大的缺陷。适用于要求不高工件的磁粉检测。由于其检测灵敏度较上两种低,故有时也叫做低灵敏度规范。

根据工件磁化时磁场产生的方向,通常又将磁化规范分为周向磁化规范和纵向磁化规范两大类。而根据检测时的检验方法又有连续法磁化和剩磁法磁化规范之分,不同的方法所得到的检测灵敏度也不尽

相同。以连续法与剩磁法为例,连续法是在工件磁化的同时施加磁粉介质的方法,它适用于各种磁性材料,能在工件表面获得最大的检测灵敏度,但若磁化不当时也可能产生磁粉的假显示;剩磁法是利用材料磁化后的剩余磁场进行检测的,它能得到足够的检测灵敏度,但这是在工件材料保证有充分剩磁的情况下才有可能。另外,磁粉检测中的多向磁化是在各单向磁化磁场合成的基础上进行的,选取磁化规范时应注意在磁场变化周期内的各个瞬时的合成磁场矢量对工件的磁化情况。

根据磁粉检测的原理可知道,工件表面下的磁感应强度是决定缺陷漏磁场大小的主要因素。换句话说,应根据工件磁化时所需要的磁感应强度(磁通密度)的数值来确定相应的外加磁化场强度的大小。

在制定一个工件的磁化规范时,需要综合考虑被检测工件的材质、热处理状态、形状与几何尺寸、技术要求及磁化方法等多种因素。具体地说,制定一个工件的磁化规范时,首先要根据材料的磁特性和热处理情况,确定是采用连续法还是剩磁法进行检验,然后根据工件尺寸、形状、表面粗糙度以及缺陷可能存在的位置及形状大小确定磁化的方法,最后再根据磁化后工件表面应达到的有效磁场值及检验的要求确定磁化电流类型并计算出大小。不同的工件所采用的不同的方法以及不同的技术要求检测条件所选取磁化规范是不相同的。但根本的目的都是使工件得到技术条件许可下的最充分磁化。

3.3 周向磁化方法及磁场分布

3.3.1通电磁化法

磁粉检测全部+

第一章 绪论 1.1、能形成磁粉显示的零件结构或形状上的间断叫做---------不连续性 1.2、磁粉检测与渗透检测元件检测主要区别是---------检测原理不同 1.3、以下关于磁敏元件检测法的叙述中,正确的是--------- 磁敏元件检 测法获得不连续性(包括缺陷)深度的信息。 1.4、磁粉检测在下列哪种缺陷的检测不可靠--------埋藏的很深的气孔, 工件表面浅而宽的划伤,针孔状的缺陷和延伸方向与磁感应线方向夹角小于20度角的缺陷。 1.5、磁粉检测优于涡流检测的地方--------能直观的显示出缺陷的位置、 形状、大小和严重程度-。 1.6、磁粉检测优于渗透检测的地方---------能检出表面夹有外来材料的表 面不连续性;对单个零件检测快,可检出近表面的不连续性。 1.7、承压设备对铁磁性材料工件表面和近表面缺陷的检测宜优先选择磁粉 检测,主要是因为---------磁粉检测对铁磁性材料攻坚的表面和近表面缺陷具有很高的灵敏度,可发现微米级宽度的小缺陷。 1.8、对检测有色金属管子表面缺陷最合适的方法是---------涡流法。 1.9、被磁化的工件表面有一裂纹,使裂纹吸引磁粉的原因是------漏磁场。 1.10、漏磁场检测的试件必须具备的条件是--------- 试件有磁性。 1.15、通常把影响工件使用的不连续性称为缺陷,所以不连续性和缺陷的概 念不是不同的。 1.16、磁粉检测和检测元件检测都属于漏磁场检测。 1.17、磁粉检测的基础是不连续性处漏磁场与磁粉的磁相互作用。 1.18、磁粉检测可以检测沉淀硬化不锈钢材料,不能检测奥氏体不锈钢材料 1.19、采用磁敏元件检测工件表面的漏磁场时,探测的灵敏度和检查速度及 工件大小无关。 1.20、如果被磁化的试件表面存在裂纹,使裂纹产生漏磁场的原因是磁力线 的不连续性导致磁力线发生弯曲。 1.21、磁粉检测对铁磁性材料表面开口气孔的检测灵敏度要低于渗透检测。 1.22、简述磁粉检测的原理?--------- 答:磁粉检测是指铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置,形状和大小的一种检测方法。 1.23、简述磁粉检测使用范围?--------- 答:磁粉检测适用于铁磁性材料表面和近表面尺寸很小,间隙极窄,目视难以看出的不连续性。 1.24、简述磁粉检测的局限性?--------- 答:①只能检测铁磁性材料及其工件,不能检测奥氏体不锈钢材料和奥氏体

无损检测基础知识

一、无损检测基础知识 1.1无损检测概况 1.1.1无损检测的定义和分类 什么叫无损检测,从文字上面理解,无损检测就是指在不损坏试件的前提下,对试件进行检查和测试的方法。但是这并不是严格意义上的无损检测的定义,对现代无损检测的定义是:在不损坏试件的前提下,以物理或化学为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。在无损检测技术发展过程中出现三个名称,即:无损探伤(Non-destructive lnspction),无损检测(Non-destructive Testing),无损评价( Non-destructive Evaluation)。一般认为,这三个名称体现了无损检测技术发展的三个阶段,其中无损探伤是早期阶段的名称,其内涵是探测和发现缺陷;无损检测是当前阶段的名称,其内涵不仅仅是探测缺陷,还包括探测试件的一些其它信息。而无损评价则是即将进入或正在进入的发展阶段,无损评价包涵更广泛,更深刻的内容,它不仅要求发现缺陷,探测试件的结构、性质、状态,还要求获取全面的、更准确的、综合的信息。 射线检测(Radiographyic Testing,,简称RT),超声波检测(Uitrasonic Testing,简称UT),磁粉检测(Magnetic Testing 简称MT),渗透检测(Penetrant Testing,简称PT)是开发较早,应用较广泛的探测缺陷的方法,称为四大常规检测方法,到目前为止,这四种方法仍是锅炉压力容器制造质量检验和再用检验最常用的无损检测方法,其中RT和UT 主要用于检测试件内部缺陷。PT主要用于检测试件表面缺陷,MT主要用于检测试件表面及近表面缺陷。其它用于锅炉压力容器的无损检测方法有涡流检测(Eddy current Testing,简称ET)、声发射检测(Acoustic Emission,简称AE)。 1.1.2无损检测的目的 用无损检测技术,通常是为了达到以下目的: 1、保证产品质量; 2、保障使用安全; 3、改进制造工艺; 4、降低生产成本。 1.1.3无损检测应用的特点 无损检测应用时,应掌握以下几个方面的特点: 1、无损检测要与破坏性检测配合; 2、正确选用实施无损检测的时机;

磁粉探伤操作流程

磁粉探伤操作流程 1、做好仪器的准备工作。 2、记录被探伤件的规格、材质、编号、用途等参数以及探伤机型号、灵敏度试片型号等。 3、对被探伤件表面进行表面处理,一般采用砂纸打磨后,用洗涤剂清洗。 4、接好电源并对仪器进行预热,预热时间要求10分钟以上。 5、配制磁悬液,并将配制好的磁悬液滴出几滴在工件上,看其浓度及润湿性是否合适,若不合适,磁悬液需重新配制。 6、检查探伤机的提升力是否符合要求。 7、校验灵敏度:将灵敏度试片用洗涤剂清洗,用胶水把试片紧贴在工件上,再对工件进行磁化,同时施加磁悬液。观察试片上各个方向的磁度是否显示出来,并以此确定磁化次数。 8、对工件进行探伤,并注意对同部位需要垂直交叉磁化,以及要有复查间距,探伤后关掉电源。 9、观察磁痕显示,进行磁痕解释、定性、定位及记录磁痕。 10、取下试片擦洗、涂上防锈油,放回原处。 11、整理、清点设备、出具报告。 (6)着色探伤的操作程序 1、做好仪器的准备工作。 2、到现场后,应检查工作场地的通风条件及有无火原等。

3、记录被探伤件的规格、材质、编号、用途等参数,以及探伤剂型号及灵敏度试块型号。 4、对被探伤件进行表面处理,如去除氧化皮、铁锈等。 5、对工件和试块进行预清洗,一般采用丙酮或清洗剂,然后进行自然干燥。 6、待工件和试块表面干燥后,施加渗透剂,喷嘴应距工件和试块表面20-30mm。 7、渗透时间应根据使用说明,一般为15-30分钟,这期间应保持探伤面被渗透剂充分湿润。 8、渗透后,清洗掉多余的渗透剂,注意不要造成清洗不足或过清洗。 9、待工件和试块表面干燥后,均匀的喷洒显象剂,在施显象剂之前,应用力摇晃显象剂,使其呈雾状喷出。并注意喷嘴应距探伤表面300-400mm。 10、显象时间应根据使用说明,一般为15-30分钟。 11、显象时间过后,观察、记录、评定结果。 12、进行后清洗、试块放回原处。 13、清点、整理设备,出具报告。

磁粉探伤检验方法

磁粉探伤检验方法 1 适用范围 1.1 本方法规定了铁磁性材料和零件磁粉检验时工艺的一般要求和详细要求。 1.2 本方法适用于铁磁性材料及其成品、半成品零件的磁粉探伤检验。不适用于非铁磁性材料的检验,也不适用于母材为铁磁材料但用奥氏体焊条焊接的焊缝的检验。 2 定义 磁悬液磁粉和载液(磁粉分散剂)按一定比例混合而成的悬浮液叫磁悬液。 连续法在工件磁化的同时浇洒磁粉或磁悬液的检验方法叫连续法。 剩磁法先将工件进行磁化,然后在工件上浇浸磁悬液的检验方法叫剩磁法。 3 检验人员 3.1 检验人员必须取得相关部门颁发的无损检测人员技术资格证书(磁粉专业)。签发 检验报告的人员必须持有Ⅱ级或Ⅱ级以上磁粉检验技术资格证书。编制磁粉检验工艺 (或工艺图表)的人员必须持有磁粉检验Ⅱ级或Ⅱ级以上技术资格证书,且应由磁粉检 验Ⅲ级人员或主管工程师审核。各级人员只能从事与自己技术资格等级相适应的工作。3.2 色盲、近距离矫正视力在5.0以下者,不得参与磁粉检验结果评定。 3.3 为防止强电及紫外线的危害,必须配备有关防护用品;同时,必须遵守有关安全操作规程。 4 设备和仪器 4.1 检验设备 检验设备应能满足受检材料和零部件磁粉检验要求,并能满足安全操作的要求。 4.1.1 检验设备有便携式、移动式、固定式和专用设备,设备应具备对工件完成磁化、 施加磁粉或磁悬液、提供观察条件及退磁等功能,有必要时,退磁装置亦可另外单独配置;检验设备应按零件形状、尺寸和技术要求配备,同时满足相应技术及安全操作的要求。 4.1.2 磁化装置应有足够的磁化电流或提升力,能满足零件磁粉检验的要求;其他辅助 装置(如指示仪表、夹头、搅拌喷淋器等)均应能适应检验的实际需要。 4.1.3 当采用剩磁法检验时,交流探伤机应配备断电相位控制器。直流和三相全波整 流探伤机应配备通电时间控制继电器。 4.1.4 半自动化磁粉检验装置应配备检验工件是否磁化的控制装置及报警装置。 4.1.5 当采用荧光磁粉检验时,应有能产生波长在320nm~400nm范围内,中心波长为365nm的紫外线照射装置。检验时应有足够的紫外线辐照度,一般规定在距光源380mm 处,紫外线辐照度应不低于1000μw/cm2。荧光磁粉检验暗区的环境光照度应不大于 20lx。 4.1.6 当采用非荧光磁粉检验时,被检零件表面的可见光照度应不小于1000lx。 4.1.7 检验设备应安装在灰尘较少、整洁的地点,并有良好的通风排气设施,检验地 点应有专门的照明装置并符合零件磁粉检验的要求。 4.2 退磁设备

无损检测基础知识

无损检测概论 1、定义和分类: 就是指在不损坏试件的前提下,对试件进行检查和测试的方法。 现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。 2、无损检测方法有: 射线检测(RT)、超声波检测(UT)、磁粉检测(MT)、渗透检测(PT)、涡流检测(ET)和声发射检测(AT)等。在目前核工业上还有目视检测、检漏检测等。 3、无损检测的目的: 应用无损检测技术,是为了达到以下目的 A、保证产品质量。应用无损检测技术,可以探测到肉眼无法看到的试件内部的缺陷;在对试件表面质量进行检验时,通过无损检测方法可以探测出许多肉眼很难看见的细小缺陷。 B、保障使用安全。即使是设计和制造质量完全符合规范要求的设备,在经过一段时间使用后,也有可能发生破坏事故,这是由于苛刻的运行条件使设备状态发生变化,由于高温和应力的作用导致材料蠕变;由于温度、压力的波动产生交变应力,使设备的应力集中部位产生疲劳;由于腐蚀作用使材质劣化;这些原因有可能使设备中原来存在的制造规范允许的缺陷扩展开裂,或使设备中原来没有缺陷的地方产生新生的缺陷,最终导致设备失效。而无损检测就是在用设备定期检验的主要内容和发现缺陷最有效的手段。 C、改进制造工艺。在产品生产中,为了了解制造工艺是否适宜,必须事先进行工艺试验。在工艺试验中,经常对工艺试样进行无损检测,并根据检测结果改进制造工艺,最终确定理想的制造工艺。如,为了确定焊接工艺规范,对焊接试验的焊接试样进行射线照相,并根据检测结果修正焊接参数,最终得到能够达到质量要求的焊接工艺。 D、降低生产成本。在产品制造过程中进行无损检测,往往被认为要增加检查费用,从而使制造成本增加。可是如果在制造过程中间的环节正确地进行无损检测,就是防止以后的工序浪费,减少返工,降低废品率,从而降低制造成本。 一、射线检测基础知识 射线的种类很多,其中易穿透物质的X射线、γ射线、中子射线三种。这三种射线都被用于无损检测,其中X射线和γ射线广泛用于锅炉压力容器压力管道焊缝和其他工业产品、结构材料的缺陷检测,而中子射线仅用于一些特殊场合。 射线检测是工业无损检测的一个重要专业。最主要的应用是探测试件内部的宏观几何缺陷(探伤)。按照不同特征可将射线检测分为许多种不同的方法,例如使用的射线种类、记录的器材、探伤工艺和技术特点等。 射线照相法是指X射线或γ射线穿透试件,以胶片作为记录信息的无损检测方法,是最基本、应用最广泛的一种射线检测方法。 1、射线照相的原理: 射线照相法是利用射线透过物质时,会发生吸收和散射这一特征,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的。X射线和γ射线通过物质时,其强度逐渐减弱。一般认为是由光电效应引起的吸收、康普顿效应引起的散射和电子对效应引起的吸收三种原因造成的。射线还有一个重要性质,就是能使胶片感光,当X射线或γ射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜象中心,经过显影和定影后就黑化,接收射线越多的部位黑化程度越高,这个作用叫做射线的照相作用。因为X射线或γ射线使卤化银感光作用比普通光线小得多,所以必须使用特殊的X射线胶片,还使用一种能加强感光

磁粉探伤磁悬液的配置方法

磁粉探伤磁悬液的配置方法

b、配制方法: 1#配方——将磁粉分散剂YF-3混和均匀后按用量称取出来,先用少量的水稀释后加入磁粉搅拌均匀至完全顺湿,再加入少量的水充稀后加入硝酸钠,搅拌均匀后加入其余的水充分混和后即可使用。 2#配方——取少量的水将肥皂溶化,再加入适量的水及硝酸钠及磁粉搅拌均匀后加入其余的水充分混和后即可使用。 4#配方——将100#浓乳加入到1升50度的温水中,搅拌至完全溶解,再加入三乙醇胺、亚硝酸钠和消泡剂,每加入一种成分后都要搅拌均匀。加磁粉时,先取少量分散剂与磁粉混合,使磁粉全部顺湿,再加入其它分散剂。 三、荧光油磁悬液的配制 荧光磁粉是以磁性氧化铁粉、工业纯铁粉、羟基铁粉等为核心,外面包覆一层而制成的。 荧光磁粉与非荧光磁粉相比,荧光磁粉在紫外光激发下呈黄绿色荧光,色泽鲜明容易观察,可见度和对比度均好,零件缺陷显示更清晰,使用于任何颜色的

四、荧光水磁悬液的配制 配制荧光磁粉磁悬液的水分散剂要严格选择,除了满足水分散剂的各项性能要求外,还不应使荧光磁粉结团,溶解和变质。 建议YC—2型荧光磁粉可使用YF型磁粉散剂或采用下述配方: (JFC)5克 亚硝酸钠15克 消泡剂(28#)~1克 荧光磁粉1~2克 水1升 配制方法:将乳化剂与消泡剂搅拌均匀,并按比例加足水,成为水分散剂,用少量水分散剂与磁粉搅拌均匀,再加入余量的分散剂,然后加亚硝酸钠。 磁悬液的浓度是指每升液体中含磁粉的克数。浓度太低,小缺陷会漏检;浓度太高,会使降低衬度,而且会在工件的磁极上沾附过量的磁粉,干扰缺陷的显示,所以配制浓度要适宜。 第三节磁悬液浓度的测定 在磁粉探伤检测过程中,每个被检工件在磁化后,都要吸附一定数量的磁粉,因此,磁悬液使用一段时间后,应该测定磁悬液的浓度,以保证磁粉探伤的检测精度和可靠性。 一、用磁悬液浓度检测管测定 检测磁悬液浓度的准确方法是应用磁悬液浓度测定管——即磁粉沉淀管。 1、开启设备油泵十五分钟,待储液桶的磁悬液充分搅拌、均匀后,从油枪或喷淋系统取样100ml,装入磁悬液沉淀管,垂直静置放置。 2、煤油磁悬液和水剂磁悬液放置60分钟,变压器油和10#机油磁悬液放置24小时。 3、时间到后,观测磁粉沉淀管的磁粉沉淀刻度。

磁粉法对焊缝探伤

实验磁粉法对焊缝探伤 一、实验目的 1.了解磁粉探伤的基本原理; 2.掌握磁粉探伤的一般方法和检测步骤; 3.熟悉磁粉探伤的特点。 二、实验原理 1. 磁粉检测的原理 磁粉检测,是通过对被检工件施加磁场使其磁化(整体磁化或局部磁化),在工件的表面和近表面缺陷处将有磁力线逸出工件表面而形成漏磁场,有磁极的存在就能吸附施加在工件表面上的磁粉形成聚集磁痕,从而显示出缺陷的存在。如图1所示。 图1 不连续性部位的漏磁场分布 1-漏磁场;2-裂纹;3-近表面气孔;4-划伤;5-内部气孔;6-磁力线;7-工件 磁粉检测有三个必须的步骤: (1)被检验的工件必须得到磁化; (2)必须在磁化的工件上施加合适的磁粉: (3)对任何磁粉的堆积必须加以观察和解释。 漏磁场:被磁化物体内部的磁力线在缺陷或磁路截面发生突变的部位,离开或进入物体表面所形成的磁场,漏磁场的成因在于磁导率的突变。设想一被磁化的工件上存在缺陷,由于缺陷内物质的磁导率一般远低于铁磁性材料的磁导率,

因而造成缺陷附近磁力线的弯曲和压缩。如果该缺陷位于工件的表面或近表面,则部分磁力线就会在缺陷处溢出工件表面进入空气,绕过缺陷后在折回工件,由此形成缺陷的漏磁场。 漏磁场与磁粉的相互作用:磁粉检测的基础是缺陷的漏磁场与外加磁粉的磁相互作用,及通过磁粉的聚集来显示被检工件表面上出现的漏磁场,在根据磁粉聚集形成的磁痕的形状和位置分析漏磁场的成因和评价缺陷。设在被检工件表面上有漏磁场存在。如果在漏磁场处撒上磁导率很高的磁粉,因为磁力线穿过磁粉比穿过空气更容易,所以磁粉会被该漏磁场吸附,被磁化的磁粉沿缺陷漏磁场的磁力线排列。在漏磁场力的作用下,磁粉向磁力线最密集处移动,最终被吸附在缺陷上。由于缺陷的漏磁场有被实际缺陷本身大数十倍的宽度,姑而磁粉被吸附后形成的磁痕能够放大缺陷。通过分析磁痕评价缺陷,即是磁粉检测的基本原理。2.磁粉检测的适用范围 (1)未加工的原材料(如钢坯)、半成品、成品及在役与使用过的工件都可用磁粉检测技术进行检查。 (2)管材、棒材、板材、型材和锻钢件、铸钢件及焊接件都可应用磁粉检测技术来检测缺陷。 (3)被检测的表面和近表面的尺寸很小,间隙极窄的铁磁性材料,可检测出长O.lmm、宽为微米级的裂纹和目测难以发现的缺陷。 (4)可用于检测马氏体不锈钢和沉淀硬化不锈钢材料,但不适用于检测奥氏体不锈钢和用奥氏体不锈钢焊条焊接的焊缝,也不适用于检测铜、铝、镁、钛台金等非磁性材料。 (5)可用于检测工件表面和近表面的裂纹、白点、发纹、折叠、疏松、冷隔、气孔和夹杂等缺陷,但不适于检测工件表面浅而宽的划伤、针孔状缺陷、埋藏较深的内部缺陷和延伸方向与磁力线方向夹角小于20。的缺陷。 磁粉检测方法应用比较广泛,主要用以探测磁性材料表面或近表面的缺陷。多用于检测焊缝,铸件或锻件,如阀门,泵,压缩机部件,法兰,喷嘴及类似设备等。探测更深一层内表面的缺陷,则需应用射线检测或超声波检测。磁粉检测具有检测成本低,操作便利,反应快速等特点。其局限性在于仅能应用于磁性材料,且无法探知缺陷深度,工件本身的形状和尺寸也会不同程度地影响到检测结果。

探伤基础知识汇总

探伤基础知识 超声波探伤是依据定向辐射超声波束在缺陷界面上产生反射或使透过声能下降等原理,通过测量回波信息和透过声波强度变化来指示伤损的一种方法。 一37 °探头的检查方法: 37°探头主要用于检查钢轨螺孔裂纹、轨腰斜裂及轨底横向裂纹 37°探测通道灵敏度设定 探伤灵敏度的设定是钢轨检测不可缺少的重要环节,目的是发现钢轨中规定大小的缺陷,灵敏度太高,仪器接收的杂波多,探伤容易遭受干扰或误判,灵敏度低则容易造成漏检。 将一个探测通道的37°探头对准GTS60加长试块第2孔3mm37上斜裂纹前后推动仪器使螺孔回波和上斜裂纹回波等高,调整该通道灵敏度使回波高度达到满幅的80%用同样的方法调另外一个通道。 利用草状波调整探伤灵敏度 以下再介绍一种在无缝线路(没有试块、接头、螺孔)等参考反射体情况下,快速调整探伤灵敏度的方法。 将在试块上校对好灵敏度的仪器推到钢轨无接头部位,将仪器转换到单通道显示方式,仪器设置在通常状态,正常推行时,逐个调整各个通道扫描线上动态的(滚动的)草状波的平均高度,使之达到一大格,并记录下此时的衰减器dB fio 1现场灵敏度修正:(新型仪器此种方法只作为参考,下同) 短轨地段,用37°扫查到螺孔部位时,反复调整,使孔波达到80%的幅度,然后增益12---14db作为现场探伤灵敏度。 、正常钢轨内回波显示 掌握好37°探头探伤方法,必须了解正常情况下钢轨内的回波显示规律,

在熟知各种回波与探头位置对应关系的基础上,才能识别异常回波或裂纹回波 现以前37°探头探测60 kg/m 轨接头回波的显示规律为例(仪器按声程1 : 2.5调节),说明各种回波规律。后37°探头回波规律与前37°探头相反。 37°探头探测钢轨接头第一孔至轨端间,因钢轨类型、螺孔位置和轨面状的 影响,以及钢轨端面、顶角、颚部、腰部等反射作用,会产生很多固有回波,容 易与第一螺孔裂纹或轨端裂纹混淆。 1. 37°探头探测遇到第一螺孔时,A 型显示的荧光屏对应基线刻度 4.2左 右显示完整的第一螺孔回波(图位置 1),B 型显示在轨颚线下显示一斜线图 2.探头入射点移至距轨端约100 mm 处,A 型显示的荧光屏刻度6.5左右有 时会显示轨头顶角波(图位置 2); B 型显示在轨颚线下靠近轨端位置(图中虚 线),会显示一长度较短的斜线 3 ?探头入射点移至轨端约40mm 左右时,A 型显示的荧光屏刻度2.8左右 显示轨端颚部反射轨帼线 轨额线 后3/探头孔波图前sr ■採头孔波图 后3厂探头孔波移动方向 A 型显示 B 型显示 B 型显示 仪器推行方向 前阳“探头孔波移动方向 _4. 2 _______ 4. 2 轨底线 A 型显示

磁粉探伤作业指导书

磁粉探伤作业指导书

HTFA/QC—03 磁粉探伤作业指导书 磁粉探伤作业指导书 1目的 编制作业指导书的目的,是为了使探伤人员在进行磁粉探伤过程中有明确的步骤、程序,以保证检测结果的一致性和可靠性。 2 适用范围 本指导书适用于检查铁磁性材料工件及焊缝的表面或近表面裂纹和其它缺陷,对于铁磁性材料的毛坯件、半成品(钢坯、铸件和锻件)及成品也可参照执行。(本指导书主要侧重磁轭法) 3 引用标准 3.1 JB4730-94《压力容器无损检测》 3.2 GB/T1260 4.5《无损检测名词术语》 3.3 GB3721-83《磁粉探伤机》 3.4 ZBK54004-87《汽轮机铸钢件的磁粉探伤及质量分级方法》 3.5 GB/T9444-88《铸钢件磁粉探伤方法及质量分级》 3.6 ZBK54002-87《汽轮机叶片磁粉探伤方法》 3.7 JB3965-85《钢制压力容器磁粉探伤》 4 检测人员 4.1 凡从事磁粉探伤人员,都必须经过技术培训,并取得有关部门的资格证书。4.2 磁粉探伤人员按技术等级为高、中、初级。取得不同磁粉探伤的各技术等级人员,只能从事该等级相应的探伤工作,并负相应的技术责任。 4.3 凡从事磁粉探伤的人员,除具有良好的身体素质外,视力必须满足下列要求:4.3.1 校正视力不得低于1.0,并一年检查一次。 4.3. 2 从事磁粉探伤人员,不得有色盲、色弱。 5 设备 5.1 磁粉探伤设备必须符合GB3721-83的规定。 5.2 所使用磁粉探伤设备(电磁轭),当电磁轭极间距为200mm时交流电磁轭至少应有44N的提升力;直流电磁轭至少177N的提升力。

核电探伤基础知识

第一部分核电NDT人员基础知识习题集(闭卷) I.是非题 1.金属的强度是指金属抵抗断裂的能力。(○) 2.一般说来,钢材硬度越高,其强度也越高。(○) 3.塑性高的材料,其冲击韧性必然也高。(×) 4.一般说来,塑性指标较高的材料制成的元件比脆性材料制成的元件有更大的安全性。 (○) 5.一般说来,焊接接头咬边缺陷引起的应力集中,比气孔缺陷严重得多。(○) 6.材料的断裂韧度值KIC不仅取决于材料的成分、内部组织和结构,也与裂纹的大小、形 状和外加应力有关。(×) 7.一般说来,钢材的强度越高,对氢脆越敏感。(○) 8.应力集中的严重程度与缺口大小和根部形状有关,缺口根部曲率半径越大,应力集中系 数就越大。(×) 9.如果承压类设备的筒体不圆,则在承压时筒壁不仅承受薄膜应力,在不圆处还会出现附 加弯曲应力。(○) 10.低合金钢的应力腐蚀敏感性比低碳钢的应力腐蚀敏感性大。(○) 11.低碳钢和低合金钢组织的晶体结构属于体心立方晶格,而奥氏体不锈钢组织的晶体结构 属于面心立方晶格。(○) 12.绝大多数合金元素能使C曲线位置左移,这意味着大多数低合金钢的淬硬倾向大于低碳 钢。(×) 13.钢中的奥氏体转变成马氏体时会产生很大的相变应力,是由于马氏体的比容大于奥氏 体。(○) 14.如果高温奥氏体冷却速度过快,其中富含的碳原子来不及扩散,就会形成碳在 铁中的 过饱和固溶体,即马氏体。(○) 15.奥氏体不锈钢具有非常显著的加工硬化特性,其原因主要是在塑性变形过程中奥氏体会 转变为马氏体。(○) 16.硫是钢中的有害杂质,会引起钢的热脆。(○) 17.磷在钢中会形成低熔点共晶物,导致钢的冷脆。(×) 18.氮在低碳钢中是有害杂质,而在低合金钢中却能起提高强度、细化晶粒的作用。(○) 19.奥氏体不锈钢焊接不会产生延迟冷裂纹,但容易产生热裂纹。(○) 20.焊接电流增大,焊缝熔深增大而熔宽变化不大。(○) 21.导致埋弧自动焊接头余高过高的可能原因之一是焊丝伸出长度过长。(○) 22.在重要构件及厚度较大构件中,例如高压、超高压锅炉和压力容器环缝焊接中常用的是 双U形坡口。(○) 23.焊缝偏析发生在一次结晶过程中。(○) 24.对易淬火钢来说,其焊接接头热影响区的淬火区相当于不易淬火钢的过热区加正火区。 (○) 25.一般认为,碳当量Ceq<0.4% 时,钢材的淬硬倾向不明显,焊接性较好。(○) 26.铬镍奥氏体不锈钢焊接时一般不需预热。(○) 27.奥氏体不锈钢焊接时容易产生冷裂纹。(×)

磁粉探伤检验规范

磁粉探伤检验规范 1、适用范围 本规范叙述的是湿磁粉对铁磁性材料表面及近表面裂纹及其它 不连续的一种检测。适用于钻井工具表面和连接螺纹的磁粉检测。 2、引用标准、规范 ASME 709 磁粉检测的标准推荐操作方法 GB11522 标准对数视力表 JB/T4730.1 承压设备无损检测第1部分:通用部分 JB/T4730.4 承压设备无损检测第4部分:磁粉检测 JB/T6063 磁粉探伤用磁粉技术条件 JB/T6065 无损检测磁粉检测用试片 JB/T8290 磁粉探伤机 ASNT-TC-1A 无损检测人员的资格鉴定 3、磁粉检测人员 3.1 从业人员应按ASNT-TC-1A和《特种设备无损检查人员考核与监督管理规定》的要求,取得相应无损检测资格。 3.2 无损检测人员资格的分级为:Ⅲ(高)级、Ⅱ(中)级、Ⅰ(初)级。取得不同无损检测方法和资格级别人员,只能从事于该方法和资格级别相应的工作,并负责相应的叫声责任。 3.3 磁粉检测人员未经矫正会经矫正的近(距)视力或远(距)视力应不低于5.0(小数记录值为1.0)。测试方法应符合GB11533的规定。 3.4 无损检测人员应根据ASNT-TC-1A的规定,每年进行一次视力检查,

不得有色盲。 4、检测设备、器材和材料 4.1 磁粉探伤机 磁粉探伤机,在有效适用期内应良好的保养。交流电磁轭应有45N的提升力,直流电磁轭至少应有177N的提升力。检测周期为6个月一次。 4.2 磁悬液 磁悬液浓度应根据磁粉种类、力度、施加方法和被检工件表面状况等因素来确定。用于完全润湿工件表面的油机介质,如出现不完全润湿,要从新进行清洗或添加更多磁粉或添加更多润湿剂。 4.3 退磁装置 退磁装置应能保证退磁后,表面剩磁不大于0.3mT(240A/m)。 4.4 辅助设备 磁场强度计 标准试片A1(或CX) 磁场指示器 磁悬液浓度测试仪(管) 2~10倍放大镜。 5、被检工件表面 清洁被检工件表面,不得有油脂、铁锈、氧化皮或其他粘附磁粉的物质。被检工件表面不规则状态,不得影响检测结果的正确性和完整性。 6、检测操作规程及工艺 6.1 用磁悬液浓度沉淀管或浓度测试仪测量磁粉浓度,浓度范围见表1。

磁粉检测(MT)教材按章节配套试题与答案

磁粉检测第一章 一、是非题 1.1 磁粉检测中所谓的不连续性与缺陷,两者的概念是相同的。( ) 1.2 磁粉检测与检测元件检测都属于漏磁场检测。( ) 1.3 漏磁场检测的基础是不连续性处产生的漏磁场与磁粉的磁相互作用。( ) 1.4 工件正常组织结构或外形的任何间断称为不连续性,所有不连续性都会影响工件的使用性能。( ) 1.5 磁粉检测不能检测各种不锈钢材料,也不能检测铜、铝等非磁性材料。( ) 1.6 磁粉检测方法只能探测表面开口的缺陷,而不能探测表面闭口缺陷。( ) 1.7 磁粉检测难以发现埋藏较深的孔洞,以及与工件表面夹角小于20°的分层。( ) 1.8 采用磁敏元件探测工件表面漏磁场时,检测灵敏度与检查速度有关,与工件大小无关。( ) 1.9 如果被磁化的试件表面存在裂纹,使裂纹产生漏磁场的原因是裂纹具有高应力。( ) 1.10磁粉检测对铁磁性材料表面开口气孔的检测灵敏度要高于渗透检测。( ) 1.11一般认为对表面阳极化和有腐蚀工件的表面检测,磁粉检测通常优于渗透检测。( ) 1.12用磁粉检测方法可以检出焊缝的层间未熔合缺陷。( ) 1.13磁粉、渗透、涡流检测都属于表面缺陷无损检测方法。( ) 1.14磁粉检测可发现铁磁性材料表面和近表面微米级宽度的小缺陷。( ) 二、选择题 1.1 能形成磁粉显示的零件结构或形状上的间断叫做:( ) A.不连续性 B.缺陷 C.显示 D.变形 1.2 磁粉检测与检测元件检测主要区别是:( ) A.两者的检测原理不同 B.两者的检测程序不同 C.两者用于探测磁场的传感器不同 D.以上都是 1.3 以下关于磁敏元件探测法的叙述中,正确的是:( ) A.磁敏元件探测法的灵敏度与检查速度及工件大小有关 B.磁敏元件探测法获得不连续性(包括缺陷)深度的信息 C.探测时应根据需要调节磁敏元件与工件表面之间的距离,以判断漏磁场的变化情况 D.以上都是 1.4 磁粉检测对下列哪种缺陷的检测不可靠?( ) A.表面折叠 B.埋藏很深的气孔 C.表面裂纹 D.表面缝隙 1.5 下列哪一条是磁粉检测优于涡流检测的地方?( ) A.能检出所有金属材料的表面不连续性 B.对单个零件检验快 C.能直观地显示出缺陷的位置、形状、大小和严重程度 D.以上都是 1.6 下列哪一条是磁粉检测优于渗透检测的地方?( ) A.能检出表面夹有外来材料的表面不连续性 B.对单个零件检验快

磁粉探伤原里及方法

磁粉探伤原理及方法 本文章详细介绍了磁粉探伤仪及磁粉探伤机在磁粉探伤中常用的几种探伤方法及原理,本文章摘录于《磁粉检测(第2版)》。并推荐磁粉探伤仪及磁粉探伤机使用单位购买《磁粉检测(第2版)》。 磁粉探伤的原理及其主要特点 有表面或近表面缺陷的工件被磁化后,当缺陷方向与磁场方向成一定角度时,由于缺陷处的磁导率的变化,磁力线逸出工件表面,产生漏磁场,吸附磁粉形成磁痕。用磁粉探伤检验表面裂纹,与超声探伤和射线探伤比较,其灵敏度高、操作简单、结果可靠、重复性好、缺陷容易辨认。但这种方法仅适用于检验铁磁性材料的表面和近表面缺陷。 一、周向磁化法 周向磁化法又称环形磁化法,使工件产生周向磁化,形成周向磁场。周向磁化法能有效的检出与工件轴线平行或近似平行的缺陷即与轴线夹角小于45度的轴向缺陷(纵向缺陷)或源盘工件的径向缺陷。对大多数工件,周向磁化比较容易控制。常用的周向磁化法有轴向通电法,触头法,中心导体法和平行电缆法。 1 触头法 触头法又称支杆法、磁锥法、电极触点法、刺入法。是一种工件直接通电磁化法。即电流通过两个触头直接通人工件,使工件局部磁化产生以两触头为圆心的局部轴向磁场,检测与两触头连线平行和近于平行(夹角小于45度)的缺陷。 (1)触头法的优缺点:设备简单,操作方便,检测效率高。触头法磁化形成基本为轴周向磁场,适于大工件的局部磁化或形状复杂的工件磁化,检测灵敏度较高。工件直接通电,触头与工件接触容易引起过热。 (2)磁化电流:交流电与直流电、 (3)磁化规范:触头法可以用较小的电流产生较强的基本为轴向的磁场,对大工件局部进行有效地磁化,磁化规范与两触头间距L及工件的厚度T有关。一般用I等于4L选择磁化电流。 (4)有效磁场范围:触头法有效磁场在两触头间。 2 轴向通电法 轴向通电法是一种直接通电的磁化方法,即沿工件轴向通电而磁化工件的方法。 (1)轴向通电法磁化的优缺点:轴向通电灵敏度可在一定范围内选择,调整使用性广。工件直接通电,容易烧损工件且不太安全,且对于轴套类工件由于磁屏蔽效应内壁裂纹几乎不能检测。 (2)磁化电流种类:交流电,直流电。 (3)磁化规范:不同资料介绍的磁化规范步不尽相同,甚至相差很大,请参见相关书籍。确定磁化规范的方法主要有三种: a.按照工件材料的磁化曲线; b.用磁粉探伤灵敏度试块或试片通过实验确定; c.按照技术标准.法规等技术规范确定。 (4)磁粉探伤灵敏度试块,试板或试片确定磁化规范,是一种简便,可靠而有直观的方法,把灵敏度试片或试块试板放在被检工件表面上,调节磁化电流以在灵敏度试片或试块试板上对应的人工缺陷产生清晰磁痕显示的磁化规范为准。 (5)实心圆柱体工件的磁场强度,随着与轴线距离的增加而增大,工件表面的磁场强度最

磁粉探伤介绍

磁粉探伤介绍 1技术原理 magnetic particle testing 磁粉探伤,是通过磁粉在缺陷附近漏磁场中的堆积以检测铁磁性材料表面或近表面处缺陷的一种无损检测方法。将钢铁等磁性材料制作的工件予以磁化,利用其缺陷部位的漏磁能吸附磁粉的特征,依磁粉分布显示被探测物件表面缺陷和近表面缺陷的探伤方法。该探伤方法的特点是简便、显示直观。利用了工件缺陷处的漏磁场与磁粉的相互作用,它利用了钢铁制品表面和近表面缺陷(如裂纹,夹渣,发纹等)磁导率和钢铁磁导率的差异,磁化后这些材料不连续处的磁场将发生崎变,形成部分磁通泄漏处工件表面产生了漏磁场,从而吸引磁粉形成缺陷处的磁粉堆积——磁痕,在适当的光照条件下,显现出缺陷位置和形状,对这些磁粉的堆积加以观察和解释,就实现了磁粉探伤。 磁粉探伤与利用霍耳元件、磁敏半导体元件的探伤法,利用磁带的录磁探伤法,利用线圈感应电动势探伤法同属磁力探伤方法。 2主要分类 磁粉探伤种类: 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法 和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流 磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 4、按照工件上施加磁粉的时间不同,可分为连续法和剩磁法。 3操作方法 将待测物体置于强磁场中或通以大电流使之磁化,

磁粉探伤 若物体表面或表面附近有缺陷(裂纹、折叠、夹杂物等)存在,由于它们是非铁磁性的,对磁力线通过的阻力很大,磁力线在这些缺陷附近会产生漏磁。当将导磁性良好的磁粉(通常为磁性氧化铁粉)施加在物体上时,缺陷附近的漏磁场就会吸住磁粉,堆集形成可见的磁粉痕迹,从而把缺陷显示出来。 第一步:预清洗 所有材料和试件的表面应无油脂及其他可能影响磁粉正常分布、影响磁粉堆积物的密集度、特性以及清晰度的杂质。 第二步:缺陷的探伤 磁粉探伤应以确保满意的测出任何方面的有害缺陷为准。使磁力线在切实可行的范围内横穿过可能存在于试件内的任何缺陷。 第三步:探伤方法的选择 1:湿法:磁悬液应采用软管浇淋或浸渍法施加于试件,使整个被检表面完全被覆盖,磁化电流应保持1/5~1/2秒,此后切断磁化电流,采用软管浇淋或浸渍法施加磁悬液。 2:干法。磁粉应直接喷或撒在被检区域,并除去过量的磁粉,轻轻地震动试件,使其获得较为均匀的磁粉分布。应注意避免使用过量的磁粉,不然会影响缺陷的有效显示。 3:检测近表面缺陷。检测近表面缺陷时,应采用湿粉连续法,因为非金属夹杂物引起的漏磁通值最小,检测大型铸件或焊接件中近表面缺陷时,可采用干粉连续法。 4:周向磁化。在检测任何圆筒形试件的内表面缺陷时,都应采用中心导体法;试件与中心导体之间应有间隙,避免彼此直接接触。当电流直接通过试件时,应注意防止在电接触面处烧伤,所有接触面都应是清洁的。

无损探伤常用知识

无损探伤常用知识 伊祖玉 一、概述 无损检测又称无损探伤,日本称“非破坏检查”。它的重要地位是由其 可靠性、安全性与经济性所决定的。可靠性是指它可以在不损坏工件完好的情况下100%地检测,所以不会产生像破坏性取样检测方法所固有的漏检问题。 安全性是指它能把隐藏在材料与结构中的危害性缺陷检测出来,因而它的使用会使被检工件能安全运行。经济效益已是国内外人所共知的事实。 由于无损检测技术的三大优越性,近年来世界各国对无损检测技术的投资也是与日俱增,美国在70年代无损检测设备的平均率就达10.5%,其中新设备增长率高达21%以上。 无损检测技术本质上属于物理检测范畴,近年来随着科学技术的发展,它成了以物理学为基础,电子学、机械学乃至化学等学科作为手段的交叉性技术学科。 无损检测大致为以下几类: ㈠涡流检测(ET) 主要原理:根据电磁感应定律,将一金属放入通以变频电流产生的交变 磁场中去,就会产生感应电流,即涡流。 涡流检测特别适用于金属材料的自动探伤,因为涡流探伤法不象超声探伤那样需要耦合剂,所以可以实现高速高温探伤。例如:管、棒、丝。 ㈡磁粉探伤(MT)

磁粉探伤主要适用于铁磁性物质的表面及近表面探伤。 原理:利用铁磁性物质内的磁导率的变化,导致切割表面或近表面磁感应线在缺陷附近,离开或进入试样表面所形成的漏磁场,通过漏磁感应在缺陷处吸引磁粉。 磁粉探伤分为干法和湿法(湿法又分为油基于水基),又分为荧光与非荧光检测,常用的是非荧光磁粉探伤及荧光磁粉探伤. 适用于锻件、铸件、焊逢的表面检测。 ㈢射线探伤(RT) 射线,这里只介绍χ射线与γ射线,此外中子射线也渐渐用于探伤,但不普及。 χ射线是靠来自χ射线管中阴极上高压电子撞击到阳极靶上而产生的。而γ射线是某些稳定元素被中子轰击后转变为不稳定的放射性同位素时放出来的。 χ射线与γ射线都是波长很短的电磁波,因而对钢铁的穿透力都很强。 射线探伤主要用于铸件与焊缝探伤。 ㈣渗透探伤(PT) 主要根据毛细管现象、是否渗透,液体及固体种类、接触面光洁度、毛细管直径等因素决定,当其它条件相同时,毛细管直径越小,液体渗透性就越强,一般深为0.02mm宽为0.001mm的表面裂纹是容易发现的。渗透法包括荧光渗透法和着色渗透法。我厂一般用着色渗透法。 主要适用于各种材料包括非金属材料表面开口缺陷的检测。 ㈤超声波探伤(UT)

钢构件磁粉探伤的聚磁成因分析

钢构件磁粉探伤的聚磁成因分析 发表时间:2018-08-15T10:49:41.200Z 来源:《防护工程》2018年第7期作者:韩冰 [导读] 本文通过使用磁粉探伤、电子探针、低倍检验等多种检验分析方法,得出了由C38N2制成的某钢构件的聚磁成因,并且从构件加工角度考虑,明确分析这一裂纹的产生原理。 中国航发哈尔滨东安发动机有限公司黑龙江哈尔滨 150066 摘要:本文通过使用磁粉探伤、电子探针、低倍检验等多种检验分析方法,得出了由C38N2制成的某钢构件的聚磁成因,并且从构件加工角度考虑,明确分析这一裂纹的产生原理。 关键词:钢构件;磁粉探伤;聚磁成因 磁粉探伤被称之为MT或者MPI,它是一种有效的探测方法,经常被应用于钢铁等磁性材料的表面探伤中。本文对聚磁误判的钢结构构件中取样展开了检验,通过磁粉探伤和低倍检验等多种方法,全面分析了聚磁现象产生的原因。 1、成因 某钢厂生产的GCr15轴承钢用于生产铁路轴承滚子,在对轴承滚子进行磁粉探伤检验时,发现个别滚子表面有聚磁现象。对该轴承钢聚磁件进行低倍检验、金相检验、电镜扫描及能谱分析,结果表明,轴承钢淬火金相组织存在隐晶马氏体区和结晶马氏体区,这是由于钢锭结晶时产生树枝状偏析造成碳和铬在成分上的不均匀所致,在加热淬火时此微区为欠热区,存在较多的未溶碳化物颗粒、较细的奥氏体晶粒和较多隐晶马氏体区,从而保留较多的残余奥氏体,产生聚磁现象。 2、取样 本次取样工作的重点是,在初次磁粉探伤的过程中,发现有磁痕而被误判的钢结构构件中,切取聚磁部位展开分析。 3、检验 3.1再次磁粉探伤 在实验过程中,将这一钢构件的聚磁部分切取下来,采取荧光湿法和横向磁化的方法再次实施磁粉探伤工作,以此确定磁痕的具体问题。等到再次确认磁粉探伤的时候可以看出,钢结构磁粉聚集现象和第一次磁粉探伤时产生的现象是一摸一样的。 3.2低倍检验 使用提示显微镜来观察试样聚磁部位的外表特点,随后实施低倍组织检验工作。 从低倍组织图可以看出,呈现的钢构件试样聚磁位置处,有着较小的裂痕,并且这种裂痕现象的实际走向是垂直于构架加工过程中的磨削方向。 3.3高倍检验 通过对该钢结构件试样切片之后,实施金相组织检验工作,根据检验结果可得出,钢材的金相组织是一种回火马氏体组织情况,其中剩余的奥氏体量比较小,并且没有任何组织发生异常现象。 从夹杂物实际检验现象可以看出来,观察到的钢构件试样夹杂物自身具有很低的等级,硫化物呈现良好的发展趋势。 3.4电子探针分析 使用电子探针分析方式对这一钢构件试样切片展开全面的分析和研究。 在3000倍下开展观察工作,从表面一直到3.0mm位置上,每间隔0.5mm便观察一次,在大约 2.0~3.0mm位置处,可以看出,组织存在一定的异常情况,呈现细微的针状马氏体形状。钢构件试样表面到3.0mm不同深度处的组织面貌如下图所示: 图十 2.0mm处的组织形貌图十一 3.0mm处的组织形貌 从以上多个图观察到的试样不同深度处组织形貌可以看出,在3.0mm范围内,试样的组织大都是较为粗大的回火马氏体,这一种物体属于钢种中频淬火之后的低温回火组织。 从电子探针观察到的现象可以看出,上述图中钢构件试样磁痕位置处具有一定的裂纹,并且这一裂纹的实际走向和硫化物方向是一样的,两者差不多都属于垂直方向,纵向的裂纹表面如下图所示,横向裂纹形貌如下:

磁粉探伤-工艺方法概述

第六章磁粉检测工艺 磁粉检测工艺流程:预处理、工件磁化(含选择磁化方法和磁化规范)、施加磁粉或磁悬液、磁痕分析及评定、退磁和探后处理等。 磁粉检测的检测方法,可分为:连续法和剩磁法、干法和湿法等。 一、预处理及检测时机 1、预处理 磁粉检测是用于检测工件的表面缺陷,工件表面状态对于磁粉检测的操作和灵敏度都有很大的影响,所以磁粉检测前,对工件表面应做好以下预处理工作: ⑴清除清除工件表面的油污、铁锈、毛刺、氧化皮、焊接飞溅物、油漆等涂层、金属屑和砂粒等;使用水磁悬液时,工件表面要认真除油;使用油磁悬液时,工件表面要认真除水;干法探伤时,工件表面应干净和干燥。 ⑵打磨(通电磁化时,工件通电的电极两端)将非导电物打磨掉。 ⑶分解装配件一般应分解后探伤,因为: ①装配件一般形状和结构复杂,磁化和退磁都很困难; ②分解后探伤容易操作; ③装配件动作面(如滚珠轴承)流进磁悬液难以清洗,易造成磨损; ④分解后能看到所有探伤面; ⑤交界处可能产生漏磁场形成磁痕,引起误判。 ⑷封堵若工件有盲孔或内腔,磁悬液流进后难以清洗者,探伤前应用非研磨性材料将孔洞堵上,封堵物勿掩盖住疲劳裂纹。 ⑸涂敷如果磁痕与工件表面颜色对比度小,或工件表面粗糙影响磁痕显示时,可在探伤前先给工件表面涂上一层反差增强剂。 2、检测时机(工序安排) ⑴磁粉检测的工序应安排在容易产生缺陷的各道工序之后进行。(如:焊接、热处理、机加工、磨削、矫正和加载试验等) ⑵对于有延迟产生裂纹倾向的材料,磁粉检测应安排在焊接完24小时后进行。 ⑶磁粉检测工序应安排在涂漆、发蓝、磷化等表面处理之前进行。 ⑷磁粉检测可以在电镀工序后进行,必要时电镀前后均应进行磁粉检测。 二、连续法 1、连续法 在外加磁场磁化的同时,将磁粉或磁悬液施加到工件上进行磁粉检测的方法。 2、应用范围 ⑴适用于所有铁磁性材料和工件的磁粉检测。 ⑵工件形状复杂不易得到所需剩磁时。 ⑶表面覆盖层较厚的工件。 ⑷使用剩磁法检验时设备功率达不到时。

探伤工基本知识(应知应会)

探伤工基本知识(初级) 一、通常所指的金属材料的性能包括哪些方面? 答:通常所指的金属材料性能包括1:使用性能:即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚性、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐腐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。2、工艺性能:即材料在被制成进行零件、设备、结构件的过程中适应各种冷、热加工的性能,例如铸造、焊接、热处理、压力加工、切削加工等方面的性能。工艺性能对制造成本、生产效率、产品质量有重要影响。 二、四种基本焊接位置是指什么? 答:四种基本焊接位置为平焊、横焊、立焊、仰焊。 三、焊接接头由哪些部分组成? 答:焊接接头由焊缝、熔合区和热影响区三部分组成。 四、金属焊接缺陷有哪些?这些缺陷有什么危害? 答:通常所说的金属焊接缺陷分为外观(表面)缺陷和内部缺陷,1、常见的外观缺陷包括:咬边、焊瘤、凹坑、未焊满、烧穿、成形不良、变形、错边、表面气孔及弧坑缩孔等,咬边减小了母材的有效截面面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源;焊瘤常伴有未熔合、夹渣缺陷,容易导致裂纹,同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中,管子内部焊瘤减小了它的内径,可能造成流动物堵塞;凹坑减小了焊缝的有效截面面积,弧坑常伴有弧坑裂纹缩孔;未焊满同样消弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等缺陷;烧穿完全破坏了焊缝,使焊接接头丧失了联接及承载能力;另外成形不良、变形、错边、表面气孔及弧坑缩孔等缺陷的存在容易造成应力集中,同时减少了焊缝的有效截面面积。2、常见的内部缺陷包括:气孔、夹渣、裂纹、未焊透、未熔合、白点等,不同缺陷的危害分别是:气孔减少了焊缝的有效截面面积,使焊缝疏松,从而且降低了接头的强度、塑性,还会引起泄露;点状夹渣的危害与气孔相似,带有尖角的夹渣会产生尖端应力集中,尖端还会发展为裂纹源,危害较大;裂纹分为热裂纹和冷裂纹,裂纹是所有焊接缺陷中危害程度最大的缺陷,尤其是冷裂纹,带来的危害是灾难性的,它使焊接接头完全丧失了应有的机械和物理性能;未焊透的危害之一是减少了焊缝的有效截面面积,是接头强度下降,其次,引起的应力集中所造成的危害比强度下降的危害大得多,未焊透严重降低焊缝的疲劳程度,可能成为裂纹源,是造成焊缝破坏的重要原因;未熔合是一种面积型缺陷,坡口及根部未熔合对承载截面积的减小都非常明显,应力集中也比较严重,其危害性仅次于裂纹;白点是由于氢集中造成的,可能促成冷裂纹产生,危害非常严重。 五、什么是无损检测?目前使用的无损检测技术主要有那几种? 答:无损检测是指在不破坏工件(试件)的前提下,以物理或者化学方法为手段,借助先进的技术手段和设备器材,对试件的内部及表面结构、性质、状态进行检查和测试的方法。 目前使用的无损检测技术主要有射线检测、超声波检测、磁粉检测、渗透检测、涡流检测和声发射检测六种。 六、无损检测的目的是什么? 答:应用无损检测技术通常是为了达到以下目的:1、保证产品质量,2、保障产品使用安全, 3、改进制造工艺, 4、降低生产成本。 七、如何正确选择实施无损检测的时机? 答:在进行无损检测时,必须根据无损检测的目的,正确选择无损检测实施的时机,例如1、锻件的超声波探伤,一般安排在锻件完成并且进行过粗加工后,钻孔、铣槽、精磨等最终机

相关主题
文本预览
相关文档 最新文档