当前位置:文档之家› 大学物理章-热力学基础-试题

大学物理章-热力学基础-试题

大学物理章-热力学基础-试题
大学物理章-热力学基础-试题

第9章 热力学基础

一、选择题

1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是

[ ] (A) 准静态过程一定是可逆过程

(B) 可逆过程一定是准静态过程

(C) 二者都是理想化的过程

(D) 二者实质上是热力学中的同一个概念

2. 对于物体的热力学过程, 下列说法中正确的是

[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关

(B) 摩尔热容量的大小与所经历的过程无关

(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高

(D) 以上说法都不对

3. 有关热量, 下列说法中正确的是

[ ] (A) 热是一种物质

(B) 热能是物质系统的状态参量

(C) 热量是表征物质系统固有属性的物理量

(D) 热传递是改变物质系统内能的一种形式

4. 关于功的下列各说法中, 错误的是

[ ] (A) 功是能量变化的一种量度

(B) 功是描写系统与外界相互作用的物理量

(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样

(D) 系统具有的能量等于系统对外作的功

5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示

[ ] (A) 等温过程 (B) 等压过程

(C) 等体过程 (D) 绝热过程

6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式

[ ] (A) 等温过程 (B) 等压过程

(C) 等体过程 (D) 绝热过程

7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表

[ ] (A) 等温过程 (B) 等压过程

(C) 等体过程 (D) 绝热过程

8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式V p p V M

R T d d d +=μ表示

[ ] (A) 等温过程 (B) 等压过程

(C) 等体过程 (D) 任意过程

9. 热力学第一定律表明:

[ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量

(B) 系统内能的增量等于系统从外界吸收的热量

(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功

不等于系统传给外界的热量

(D) 热机的效率不可能等于1

10. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者

同时为正的过程是

[ ] (A) 等温膨胀 (B) 等容膨胀

(C) 等压膨胀 (D) 绝热膨胀

11. 对理想气体的等压压缩过程,下列表述正确的是

[ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0

(C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 0

12. 功的计算式A p V V =?d 适用于

[ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,

(V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2

V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较

14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为

[ ] (A) 121ln V V RT (B) 2

11ln V V RT

(C) )(121V V p - (D) 1122V p V p -

15. 如果W 表示气体等温压缩至给定体积所作的功, Q 表示在此过程中气体吸收

的热量, A 表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [ ] (A) W +Q -A (B) Q -W -A (C) A -W -Q (D) Q +A -W

16. 理想气体内能增量的表示式T C E V ?=?ν适用于

[ ] (A) 等体过程 (B) 等压过程 (C) 绝热过程 (D) 任何过程

17. 刚性双原子分子气体的定压比热与定体比热之比在高温时为

[ ] (A) 1.0 (B) 1.2 (C) 1.3 (D) 1.4

18. 公式R C C V p +=在什么条件下成立?

[ ] (A) 气体的质量为1 kg (B) 气体的压强不太高

(C) 气体的温度不太低 (D) 理想气体

19. 同一种气体的定压摩尔热容大于定体摩尔热容, 其原因是

[ ] (A) 膨胀系数不同 (B) 温度不同

(C) 气体膨胀需要作功 (D) 分子引力不同

20. 摩尔数相同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气

体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体

[ ] (A) 从外界吸热和内能的增量均相同

(B) 从外界吸热和内能的增量均不相同

(C) 从外界吸热相同, 内能的增量不相同

(D) 从外界吸热不同, 内能的增量相同

21. 两气缸装有同样的理想气体, 初态相同.经等体过程后, 其中一缸气体的压强变

为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热

[ ] (A) 相同 (B) 不相同, 前一种情况吸热多

(C) 不相同, 后一种情况吸热较多 (D) 吸热多少无法判断

22. 摩尔数相同的理想气体H 2和He, 从同一初态开始经等压膨胀到体积增大一倍时

[ ] (A) H 2对外作的功大于He 对外作的功

(B) H 2对外作的功小于He 对外作的功

(C) H 2的吸热大于He 的吸热

(D) H 2的吸热小于He 的吸热

23. 摩尔数相同的两种理想气体, 一种是单原子分子, 另一种是双原子分子, 从同

一状态开始经等压膨胀到原体积的两倍.在此过程中, 两气体

[ ] (A) 对外作功和从外界吸热均相同

(B) 对外作功和从外界吸热均不相同

(C) 对外作功相同, 从外界吸热不同

(D) 对外作功不同, 从外界吸热相同

24. 摩尔数相同但分子自由度不同的两种理想气体从同一初态开始作等温膨胀, 若

膨胀后体积相同, 则两气体在此过程中

[ ] (A) 对外作功相同, 吸热不同

(B) 对外作功不同, 吸热相同

(C) 对外作功和吸热均相同

(D) 对外作功和吸热均不相同

25. 两气缸装有同样的理想气体, 初始状态相同.等温膨胀后, 其中一气缸的体积膨

胀为原来的两倍, 另一气缸内气体的压强减小到原来的一半.在其变化过程中, 两气体对外作功

[ ] (A) 相同 (B) 不相同, 前一种情况作功较大

(C) 不相同, 后一种情况作功较大 (D) 作功大小无法判断

26. 理想气体由初状态( p 1、V 1、T 1)绝热膨胀到末状态( p 2、V 2、T 2),对外作的功为 [ ] (A) )(12T T C M

V -μ

(B) )(12T T C M p -μ (C) )(12T T C M V --μ (D) )(12T T C M p --μ

27. 在273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.将此气体绝热

压缩至体积为16.8升, 需要作多少功?

[ ] (A) 330 J (B) 680 J (C) 719 J (D) 223 J

28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到

E 2 .在上述三过程中, 气体的

[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同

(C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同

29. 如果使系统从初态变到位于同一绝热线上的另一终态则

[ ] (A) 系统的总内能不变

(B) 联结这两态有许多绝热路径

(C) 联结这两态只可能有一个绝热路径

(D) 由于没有热量的传递, 所以没有作功

30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时,

绝热压缩比等温压缩的终态压强

[ ] (A) 较高 (B) 较低 (C) 相等 (D) 无法比较

31. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过

程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大, 这个过程应是

[ ] (A) 绝热过程 (B) 等温过程

(C) 等压过程 (D) 绝热过程或等温过程均可

32. 视为理想气体的0.04 kg 的氦气(原子量为4), 温度由290K 升为300K .若在升

温过程中对外膨胀作功831 J, 则此过程是

[ ] (A) 等体过程 (B) 等压过程

(C) 绝热过程 (D) 等体过程和等压过程均可能

33. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的?

[ ] (A) 等温压缩 (B) 等体降压

(C) 等压压缩 (D) 等压膨胀

34. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V .在这个循环中, 气体必然

[ ] (A) 内能增加 (B) 内能减少

(C) 向外界放热 (D) 对外界作功

35. 提高实际热机的效率, 下面几种设想中不可行的是

[ ] (A) 采用摩尔热容量较大的气体作工作物质

(B) 提高高温热源的温度

(C) 使循环尽量接近卡诺循环

(D) 力求减少热损失、摩擦等不可逆因素

36. 在下面节约与开拓能源的几个设想中, 理论上可行的是

[ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100%

(B) 利用海面与海面下的海水温差进行热机循环作功

(C) 从一个热源吸热, 不断作等温膨胀, 对外作功

(D) 从一个热源吸热, 不断作绝热膨胀, 对外作功

37. 下列说法中唯一正确的是

[ ] (A) 任何热机的效率均可表示为吸

Q A =η (B) 任何可逆热机的效率均可表示为高

低T T -=1η

T 9-1-34图

(C) 一条等温线与一条绝热线可以相交两次

(D) 两条绝热线与一条等温线可以构成一个循环

38. 卡诺循环的特点是

[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成

(B) 完成一次卡诺循环必须有高温和低温两个热源

(C) 卡诺循环的效率只与高温和低温热源的温度有关

(D) 完成一次卡诺循环系统对外界作的净功一定大于0

39. 在功与热的转变过程中, 下面说法中正确的是

[ ] (A) 可逆卡诺机的效率最高, 但恒小于1

(B) 可逆卡诺机的效率最高, 可达到1

(C) 功可以全部变为热量, 而热量不能全部变为功

(D) 绝热过程对外作功, 系统的内能必增加

40. 两个恒温热源的温度分别为T 和t , 如果T >t , 则在这两个热源之间进行的卡

诺循环热机的效率为 [ ] (A)

t T T - (B) t t T - (C) T t T - (D) T

t T + 41. 对于热传递, 下列叙述中正确的是

[ ] (A) 热量不能从低温物体向高温物体传递

(B) 热量从高温物体向低温物体传递是不可逆的

(C) 热传递的不可逆性不同于热功转换的不可逆性

(D) 理想气体等温膨胀时本身内能不变, 所以该过程也不会传热

42. 根据热力学第二定律可知, 下列说法中唯一正确的是

[ ] (A) 功可以全部转换为热, 但热不能全部转换为功

(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体

(C) 不可逆过程就是不能沿相反方向进行的过程

(D) 一切自发过程都是不可逆过程

43. 根据热力学第二定律判断, 下列哪种说法是正确的

[ ] (A) 热量能从高温物体传到低温物体, 但不能从低温物体传到高温物体

(B) 功可以全部变为热, 但热不能全部变为功

(C) 气体能够自由膨胀, 但不能自由压缩

(D) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能量不能变

为有规则运动的能量

44. 热力学第二定律表明:

[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功

(B) 在一个可逆过程中, 工作物质净吸热等于对外作的功

(C) 摩擦生热的过程是不可逆的

(D) 热量不可能从温度低的物体传到温度高的物体

45. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外作功.”对

此说法, 有以下几种评论, 哪一种是正确的?

[ ] (A) 不违反热力学第一定律, 但违反热力学第二定律

(B) 不违反热力学第二定律, 但违反热力学第一定律

(C) 不违反热力学第一定律, 也不违反热力学第二定律

(D) 违反热力学第一定律, 也违反热力学第二定律

46. 有人设计了一台卡诺热机(可逆的).每循环一次可从400K 的高温热源吸收1800J

的热量, 向300K 的低温热源放热800J, 同时对外作功1000J .这样的设计是

[ ] (A) 可以的, 符合热力学第一定律

(B) 可以的, 符合热力学第二定律

(C) 不行的, 卡诺循环所作的功不能大于向低温热源放出的热量

(D) 不行的, 这个热机的效率超过了理论值

47. 1mol 的单原子分子理想气体从状态A 变为状态B, 如果变化过程不知道, 但A 、B

两态的压强、温度、体积都知道, 则可求出

[ ] (A) 气体所作的功 (B) 气体内能的变化

(C) 气体传给外界的热量 (D) 气体的质量

48. 如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循

环abcda 与da c b a ''所作的功和热机效率变化情况是:

[ ] (A) 净功增大,效率提高

(B) 净功增大,效率降低

(C) 净功和效率都不变

(D) 净功增大,效率不变

49. 用两种方法: 使高温热源的温度T 1升高△T ;

使低温热源的温度T 2降低同样的△T 值;分别可使卡诺循环的效率升高1η?和 2η?,两者相比:

[ ] (A) 1η?>2η? (B) 2η?>1η?

(C) 1η?=2η? (D) 无法确定哪个大

50. 下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在

理论上可能实现的循环过程的图的符号.

[ ]

T9-1-48图 2T 1T a b b 'c '

c d V

O O p 等温 绝热 绝热O V p 绝热 绝热等压等温等容 绝热p 等温 绝热容等V p

51. 在T9-1-51图中,I c II 为理想气体绝热过程,I a II

和I b II 是任意过程.此两任意过程中气体作功与吸收热量的情况是:

[ ] (A) I a II 过程放热,作负功;I b II 过程放热,作负功 (B) I a II 过程吸热,作负功;I b II 过程放热,作负功 (C) I a II 过程吸热,作正功;I b II 过程吸热,作负功 (D) I a II 过程放热,作正功;I b II 过程吸热,作正功

52. 给定理想气体,从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到3倍.膨胀后

温度T 、压强p 与标准状态时T 0、p 0之关系为(为比热比) [ ] (A) 01)31(T T -=γ, 0)31(p p γ= (B) 0)31(T T γ=,01)3

1(p p -=γ (C) 0)31(T T γ-=,01)31(p p -=γ (D) 01)31(T T -=γ,0)3

1(p p γ-=

53. 甲说:“由热力学第一定律可证明任何热机的效率不可能等于1.”乙说:“热力学

第二定律可表述为效率等于 100%的热机不可能制造成功.”丙说:“由热力学第一定律可

证明任何卡诺循环的效率都等于)1(1

2T T -

.”丁说:“由热力学第一定律可证明理想气体卡诺热机(可逆的)循环的效率等于)1(12T T -.”对以上说法,有如下几种评论,哪种是正确的? [ ] (A) 甲、乙、丙、丁全对 (B) 甲、乙、丙、丁全错

(C) 甲、乙、丁对,丙错 (D) 乙、丁对,甲、丙错

54. 某理想气体分别进行了如T9-1-54图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源处吸的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量为Q ',则 [ ] (A) Q Q '<'<,ηη (B) Q Q '>'<,ηη (C) Q Q '<'>,ηη (D) Q Q '>'>,ηη

55. 两个完全相同的气缸内盛有同种气体,设其初始状态相

同.今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:

[ ] (A) 气缸1和气缸2内气体的温度变化相同

(B) 气缸1内的气体较气缸2内的气体的温度变化大

(C) 气缸1内的气体较气缸2内的气体的温度变化小

(D) 气缸1和气缸2内的气体的温度无变化

二、填空题 T9-1-51图 a b II I c V O

T9-1-54图

a b b 'c 'c d V O p a 'd '

1. 不等量的氢气和氦气从相同的初态作等压膨胀, 体积变为原来的两倍.在这过程

中, 氢气和氦气对外作的功之比为 . 2. 1mol 的单原子分子理想气体, 在1atm 的恒定压力下从273K 加热到373K, 气体的

内能改变了 .

3. 各为1摩尔的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积

变为2V , 氦气膨胀后压强变为

2p , 则氢气和氦气从外界吸收的热量之比为 .

4. 两个相同的容器, 一个装氢气, 一个装氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等.现将6J 热量传给氦气, 使之温度升高.若使氢气也升高同样的温度, 则应向氢气传递的热量为 .

5. 1摩尔的单原子分子理想气体, 在1个大气压的恒定压力作用下从273K 加热到

373K, 此过程中气体作的功为 .

6. 273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为 .

7. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外作功300 J . 若冷凝器的温度为7C, 则热源的温度为 .

8. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中

阴影部分)分别为1S 和2S ,则二者的大小关系

是 .

9. 一卡诺机(可逆的),低温热源的温度为C 27ο,热机效率为

40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .

10. 一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷系数2

12T T T w -=

,则η与w 的关系为 .

11. 1mol 理想气体(设V P C C =γ为已知)的循环过程如T -V 图所示,其中CA 为绝热

过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:

p V 1S 2S O T9-2-8图

=C V ,

=C T ,

=C p .

12. 一定量的理想气体,从A 状态),2(11V p 经历如T9-2-12

图所示的直线过程变到B 状态),(11V p ,则AB 过程中系统作功

___________, 内能改变△E =_________________.

13. 质量为M 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .

14. 有ν摩尔理想气体,作如T9-2-14图所示的循环过程

abca ,其中acb 为半圆弧,b -a 为等压过程,a c p p 2=,在此

循环过程中气体净吸热量为Q νC p )(a b T T -(填入:> , <或=).

15. 一定量的理想气体经历acb 过程时吸热550 J .则

经历acbea 过程时,吸热为 .

16. 一定量理想气体,从同一状态开始使其体积由V 1

膨胀到2V 1,分别经历以下三种过程: 等压过程; 等温过程; 绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.

17. 一定量的理想气体,从状态a 出发,分别经历等压、等温、

绝热三种过程由体积V 1膨胀到体积V 2,试在T9-2-17图中示意地画

出这三种过程的p -V 图曲线.在上述三种过程中: (1) 气体的内能增加的是__________过程;

(2) 气体的内能减少的是__________过程.

A p 121p

B 1V 12V V O T9-2-12图

p c p V O b V c a b a p a

V T9-2-14图 Pa 105?p 33m 10-O 4c a b 1 T9-2-15图

1d e p V O a 1V

T9-2-17图

2V

18. 如T9-2-18图所示,已知图中两部分的面积分别为S 1

和S 2. 如果气体的膨胀过程为a 1

b ,则气体对外做功W =________; 如果气体进行a 1b 2a 的循环过程,则它对外做功W =_______________.

19. 如T9-2-19图所示,一定量的理想气体经历c

b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化E ?.则Q 和E ? >0或<0或= 0的情况是: Q _________, E __________.

20. 将热量Q 传给一定量的理想气体, (1) 若气体的体积不变,则其热量转化为 ;

(2) 若气体的温度不变,则其热量转化为 ;

(3) 若气体的压强不变,则其热量转化为 .

21. 一能量为1012 eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,

若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K .(1 eV =1.60×1019J ,普适气体常量R =8.31 J/(mol K))

22. 有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-73℃的

低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3 kg mol -1,普适气体常量R =8.311

1K mol J --??) 23. 一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热c V

=0.314 k J ·kg 1·K 1,则氩原子的质量m =__________.

三、计算题

1. 1 mol 刚性双原子分子的理想气体,开始时处于Pa 1001.151?=p 、331m 10

-=V 的状态,然后经图示直线过程I 变到Pa 1004.452?=p 、332m 102-?=V 的状态.后又经过方程为C pV

=21(常量)的过程II 变到压强Pa 1001.1513?==p p 的状态.求: (1) 在过程I 中气体吸的热量;

(2) 整个过程气体吸的热量.

p

),(22V p ),(11V p 1

3p p =V

I I I p O a b T9-2-18图 21S 2

S 1p V O a b

T9-2-19图

c

2. 1 mol 的理想气体,完成了由两个等容过程和两个等压

过程构成的循环过程(如T9-3-2图),已知状态1的温度为1T ,

状态3的温度为3T ,且状态2和4在同一等温线上.试求

气体在这一循环过程中作的功.

3. 一卡诺热机(可逆的),当高温热源的温度为C 127ο

、低温

热源温度为C 27ο时,其每次循环对外作净功8000J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外作净功10000J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:

(1) 第二个循环热机的效率;

(2) 第二个循环的高温热源的温度.

4. 某种单原子分子的理想气体作卡诺循环,已知循环效率%20=η,试问气体在绝

热膨胀时,气体体积增大到原来的几倍?

5. 1mol 双原子分子理想气体作如T9-3-5图所示的可逆循环过程,其中1-2为直线,

2-3为绝热线,3-1为等温线.已知13128,2V V T T ==,

试求:

(1) 各过程的功,内能增量和传递的热量;(用1T 和已

知常数表示)

(2) 此循环的效率η.

(注:循环效率1Q A =η,A 为每一循环过程气体对外所作

的功,1Q 为每一循环过程气体吸收的热量)

6. 如T9-3-6图所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环. (1) 试在p -V 图上画出相应的理想循环曲线;

(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少

冰被熔化(已知冰的熔解热=λ 3.35×105 J·kg -1,普适气体常量 R = 8.31J·mol -1·K -1) 7. 比热容比=γ 1.40的理想气体,进行如T9-3-7图所

T9-3-2图 123 T9-3-5图 T9-3-6图

示的abca 循环,状态a 的温度为300 K .

(1) 求状态b 、c 的温度;

(2) 计算各过程中气体所吸收的热量、气体所作的功和气体内能的增量;

(3) 求循环效率.

8. 一台冰箱工作时,其冷冻室中的温度为-10℃,室温为15℃.若按理想卡诺致冷循

环计算,则此致冷机每消耗J 102的功,可以从冷冻室中吸出多少热量?

9. 一可逆卡诺热机低温热源的温度为7.0℃,效率为40%;若要将其效率提高50%,

则高温热源温度需提高几度?

10. 绝热容器中有一定量的气体,初始压强和体积分别为0p 和0V .用一根通有电流

的电阻丝对它加热(设电阻不随温度改变).在加热的电流和时间都相同的条件下,第一次保持体积0V 不变,压强变为1p ;第二次保持压强0p 不变,而体积变为1V .不计电阻丝的热容量,求该气体的比热容比.

11. 空气中的声速的表达式为u κρ=

,其中是气体密度,κ是体弹性模量,满足关系式V p V

κ??=-.就下列两种情况计算其声速: (1) 假定声波传播时空气的压缩和膨胀过程是一个等温过程(即等温声速模型,亦称

为牛顿模型);

(2) 假定声波传播时空气的压缩和膨胀过程是一个绝热过程(即绝热声速模型);

比较这两个结果你得出什么结论?(设空气中只有氮气)

12. 某热机循环从高温热源获得热量Q H ,并把热量Q L 排给低温热源.设高、低温热源

的温度分别为T H =2000K 和T L =300K ,试确定在下列条件下热机是可逆、不可逆或不可能存在的.

(1) Q H =1000J ,A =900J ;(2) Q H =2000J ,Q L =300J ;(3) A =1500J ,Q L =500J .

13. 研究动力循环和制冷循环是热力学的重

要应用之一.内燃机以气缸内燃烧的气体为工

质.对于四冲程火花塞点燃式汽油发动机来说,

它的理想循环是定体加热循环,称为奥托循环

(Otto cycle ).而对于四冲程压燃式柴油机来说,

它的理想循环是定压加热循环,称为狄塞耳循环

(Diesel cycle ).如T9-3-13图所示,往复式内

燃机的奥托循环经历了以下四个冲程:(1)吸气

冲程(0→1):当活塞由上止点T 向下止点B 运时,

进气阀打开,在大气压力下吸入汽油蒸气和空气

的混合气体.(2)压缩冲程:进气阀关闭,活塞向左运行,混合气体被绝热压缩(1→2);活塞移动T 点时,混合气体被电火花点燃迅速燃烧,

可以认为是定体加热过程(2→3),吸收热量1Q .(3)动力冲程:燃烧气体绝热膨胀,推动活塞对外作功(3→4);然后,气体在定体条件下降压(4→1),放出热量2Q .(4)排气冲程:活塞向左运行,残余气体从排气阀排出.假定内燃机中的工质是理想气体并保持定量,试求上述奥托循环1→2→3→4→1的效率η.

14. 绝热壁包围的气缸被一绝热的活塞分成A ,B 两室,活塞在气缸内可无摩擦自由滑动,每室内部有1摩尔的理想气体,定容热容量R c V 25=.开始时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.

(1) 加热结束后,B 室中气体的温度和体积?

(2) 求加热之后,A 、B 室中气体的体积和温度;

(3) 在这过程中A 室中的气体作了多少功?

(4) 加热器传给A 室的热量多少?

15. 如T9-3-15图所示,器壁与活塞均绝热的容器中间被一隔板

等分为两部分,其中右边贮有1摩尔处于标准状态的氦气(可视为理

想气体),左边为真空.现先把隔板拉开,待气体平衡后,再缓慢向

右推动活塞,把气体压缩到原来的体积.求氦气的温度改变量.

16. 如T9-3-15图所示,一固定绝热隔板将某种理想气体分成A 、B 两部分,B 的外侧是可动活塞.开始时A 、B 两部分的温度T 、体积V 、压强p 均相同,并与大气压强相平衡.现对A 、B 两部分气体缓慢地加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5.

(1) 求该气体的定体摩尔热容C V 和定压摩尔热容C p ;

(2) B 室中气体吸收的热量有百分之几用于对外作功?

17. 有两个全同的物体,其内能为(u CT C =为常数),初始时

两物体的温度分别为21T T 、.现以两物体分别为高、低温热源驱动一卡诺热机运行,最后两物体达到一共同温度f T .求(1)f T ;(2)求卡诺热机所作的功.

18. 温度为25℃、压强为1atm 的1mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R =8.31 1

--??K mol J 1,ln 3=1.0986)

(1) 计算这个过程中气体对外所作的功;

(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?

19. 图T9-3-19为一循环过程的T -V 曲线.该循环的工质为

mol μ的理想气体,其中V C 和γ均已知且为常量.已知a 点的温度

为1T ,体积为V 1,b 点的体积为V 2,ca 为绝热过程.求: T9-3-15图

He 空真 T9-3-17图

A B

(1) c 点的温度;

(2) 循环的效率.

20. 设一动力暖气装置由一台卡诺热机和一台卡诺致冷机组合而成.热机靠燃烧时释放的热量工作并向暖气系统中的水放热;同时,热机带动致冷机.致冷机自天然蓄水池中吸热,也向暖气系统放热.假定热机锅炉的温度为C 2101ο

=t ,天然蓄水池中水的温度为C 152ο=t ,暖气系统的温度为C 603ο=t ,热机从燃料燃烧时获得热量2.1×107J ,计算暖气系统所得热量.

21. 如T9-3-21图所示,一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞

的面积S =0.04 m 2,活塞与气缸壁之间不漏气,忽略摩擦.活塞左侧为大气,大气压强p 0 =1.0×105 Pa .一劲度系数k =4×104 N m -1的弹簧两端分别固定于活塞和一固定板上.开始时气缸内气体处于压强、体积分别为p 1 = p 0 =1.0×105 Pa 、V 1 = 0.016 m 3的初态.现缓慢地对气缸加热,使缸内气体缓慢地膨胀到V 2 =0.02

m 3.求此过程中气体从外界吸收的热量.

22. 如T9-3-21图所示,温差电偶的一个接口放在温度为C 27ο的空气中,另一端接口放在装冰的绝热容器里,冰的温度为C 0ο,加热器放

在右端一个装满水的加热容器里,温差电偶产生的功率

与加热器电阻消耗的功率相等。如果把电路中的全部电

阻看作集中在加热器上,水和冰的质量相等,且已知水

的比热容11K kg

kJ 2.4--??=c ,冰的熔解热1kg 335kJ -?=λ,试估算:当冰完全熔解完时水的温度升高多少?

T9-3-21图 ),(11V p 0p 水?C 0ο冰C 27空气? T9-3-22图

大学物理热学总结

大学物理热学总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理热学总结 (注:难免有疏漏和不足之处,仅供参考。 ) 教材版本:高等教育出版社《大学物理学》热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温标,即开尔文温标,T表示,单位开尔文,简称开(K)。 热力学温标的刻度单位与摄氏温标相同,他们之间的换算关系: T/K=273.15℃+ t 温度没有上限,却有下限,即热力学温标的绝对零度。温度可以无限接近0K,但永远不能达到0K。 ②压强:气体作用在容器壁单位面积上指向器壁的垂直作用力。单位帕斯卡,简称帕(Pa)。其他:标准大气压(atm)、毫米汞高(mmHg)。 1 atm =1.01325×105 Pa = 760 mmHg ③体积:气体分子运动时所能到达的空间。单位立方米(m3)、升(L) 2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统也必处于热平衡。 该定律表明:处于同一热平衡状态的所有热力学系统都具有一个共同的宏观特征,这一特征可以用一个状态参量来表示,这个状态参量既是温度。3、平衡态:对于一个孤立系统(与外界不发生任何物质和能量的交换)而言,如果宏观性质在经过充分长的时间后保持不变,也就是系统的状态参量不再岁时间改变,则此时系统所处的状态称平衡态。 通常用p—V图上的一个点表示一个平衡态。(理想概念) 4、热力学过程:系统状态发生变化的整个历程,简称过程。可分为: ①准静态过程:过程中的每个中间态都无限接近于平衡态,是实际过程进行的无限缓慢的极限情况,可用p—V图上一条曲线表示。 ②非准静态过程:中间状态为非平衡态的过程。

大学物理章热力学基础试题.doc

第 9 章热力学基础 一、选择题 1.对于准静态过程和可逆过程 , 有以下说法.其中正确的是 [ ] (A)准静态过程一定是可逆过程 (B)可逆过程一定是准静态过程 (C)二者都是理想化的过程 (D)二者实质上是热力学中的同一个概念 2.对于物体的热力学过程 , 下列说法中正确的是 [ ] (A)内能的改变只决定于初、末两个状态,与所经历的过程无关 (B)摩尔热容量的大小与所经历的过程无关 (C)在物体内 , 若单位体积内所含热量越多 , 则其温度越高 (D)以上说法都不对 3.有关热量 , 下列说法中正确的是 [ ] (A)热是一种物质 (B)热能是物质系统的状态参量 (C)热量是表征物质系统固有属性的物理量 (D)热传递是改变物质系统内能的一种形式 4.关于功的下列各说法中 , 错误的是 [ ] (A)功是能量变化的一种量度 (B)功是描写系统与外界相互作用的物理量 (C)气体从一个状态到另一个状态 , 经历的过程不同 , 则对外作的功也不一样 (D)系统具有的能量等于系统对外作的功

5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p d V M R d T 表 示 [ ] (A)等温过程(B)等压过程 (C) 等体过程(D)绝热过程 6.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 式V d p M R d T 表示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式V d p pdV 0表 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 8.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 则式 M V d p p dV R d T 表示 [ ] (A)等温过程(B)等压过程 (C)等体过程(D)任意过程 9.热力学第一定律表明 : [ ] (A)系统对外作的功不可能大于系统从外界吸收的热量 (B)系统内能的增量等于系统从外界吸收的热量 (C)不可能存在这样的循环过程,在此过程中,外界对系统所作的功

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

大学物理气体动理论热力学基础复习题集与答案解析详解

第12章 气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×5 10pa .则在温度变为37℃, 轮胎内空气的压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上 来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ; 分子间的平均距离为 。(设分子均匀等距排列) 4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 , 最概然速率为 。 5、在压强为5 1.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为2 1.3310pa ?时,氖分子1s 内的平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 图12-1

8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、2533 2192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121 121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2) 8、略 二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208) 参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础 一、选择题 1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分 子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也 升高同样的温度,则应向氦气传递的热量是 ( ) (A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J 2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定: (1)该理想气体系统在此过程中作了功; (2)在此过程中外界对该理想气体系统作了正功;

(完整word版)大学物理学热力学基础练习题

《大学物理学》热力学基础 一、选择题 13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( ) (A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。 【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+?知b 2a 过程放热,b 1a 过程吸热】 13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。 【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】 13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。 【提示:等体过程不做功,有Q E =?,而2 mol M i E R T M ?= ?,所以需传5J 】 13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( ) A () C () B () D ()

大学物理章 热力学基础 试题

第9章 热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程 (C) 二者都是理想化的过程 (D) 二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表

示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意过程 9. 热力学第一定律表明: [ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量 (C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q = d E +d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等容膨胀 (C) 等压膨胀 (D) 绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0 (C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 0 12. [ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2 ,(V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2 V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较 14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为 [ ] (A) 121ln V V RT (B) 2 11ln V V RT

大学物理第九章热力学基础历年考题

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [] (A>准静态过程一定是可逆过程 (B>可逆过程一定是准静态过程 (C>二者都是理想化的过程 (D>二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [] (A>内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B>摩尔热容量的大小与所经历的过程无关 (C>在物体内, 若单位体积内所含热量越多, 则其温度越高 (D>以上说法都不对 3. 有关热量, 下列说法中正确的是 [](A>热是一种物质 (B>热能是物质系统的状态参量 (C>热量是表征物质系统固有属性的物理量 (D>热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [](A>功是能量变化的一种量度 (B>功是描写系统与外界相互作用的物理量 (C>气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D>系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式,

则式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>任意过程 9. 热力学第一定律表明: [](A>系统对外作的功不可能大于系统从外界吸收的热量 (B>系统内能的增量等于系统从外界吸收的热量 (C>不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D>热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q= d E d A.在以下过程中, 这三者同时为正的过程是 [](A>等温膨胀(B>等容膨胀 (C>等压膨胀(D>绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [](A> d A>0, d E>0, d Q>0 (B> d A<0, d E<0, d Q<0 (C> d A<0, d E>0, d Q<0 (D> d A = 0, d E = 0, d Q = 0 12. 功的计算式适用于 [](A>理想气体(B>等压过程 (C>准静态过程(D>任何过程 13. 一定量的理想气体从状态出发, 到达另一状态.一次是等温压缩到, 外界作功A;另一次为绝热压缩到, 外界作功W.比较这两个功值的大小是 [](A>A>W(B>A = W(C>A<W (D>条件不够,不能比较 14. 1mol理想气体从初态(T1、p1、V1 >等温压缩到体积V2, 外界对气体所作的功为 [](A>(B> (C>(D> 15. 如果W表示气体等温压缩至给定体积所作的功, Q表示在此过程中气体吸收的热量, A表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [](A>W+Q-A(B>Q-W-A (C>A-W-Q(D>Q+A-W

大学物理《热力学》

哈尔滨理工大学 大学物理《热力学》作业卷(二十五) 姓名: 专业: 年级: 学号: 1、 1mol 单原子分子理想气体,经历如图所示的可逆循环, 联结 ac 两点曲线III 的方程为 p = p 0V2/V 02,a 点的 温度为T 0。(1)试以T 0、R表示I 、II 、III 过程中气体吸 收的热量;(2)求此循环的效率。(提示:循环效率的定义 式η = 1 - Q 2/Q 1,Q 1为循环中气体吸收的热量,Q 2 为循环中气体放出的热量。) 2、 在温度分别为327?C 和27?C 的高温热源之间工作的 热机,理论上的最大效率为 [ ] (A) 25% (B) 50% (C) 75% (D) 91.74% 3、 如右图所示,理想气体从状态A出发,经ABCDA 循环过 程,回到初态A点,则循环过程中气体净吸收的热量为Q= 。 4、1mol 双原子分子理想气体从状态A(p 1 V 1)沿p —V 图所示直线变化到状态B(p 2 V 2),试求:(1)气体内能的 增量;(2)气体对外界所作的功;(3)气体吸收的热量;(4) 此过程的摩尔热容。 5、理想气体向真空作绝热膨胀 [ ] (A) 膨胀后温度不变、压强减小; (B) 膨胀后温度升高、压强减小; (C) 膨胀后温度降低、压强减小; (D) 膨胀后温度不变、压强不变。 6、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外界作的功三故里均为负值? [ ] (A)等容降压过程(B)等温膨胀过程(C)绝热膨胀过程(D)等压压缩过程 7、从统计意义来解释 不可逆过程实质上是一个 的转变过程; 一切实际过程都向着 的方向进行。 8、“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。”对此说法,有如下评论,哪种是正确的? [ ] (A)不违反热力学第一定律,但违反热力学第二定律; (B)不违反热力学第二定律,但违反热力学第一定律; (C)不违反热力学第一定律,也不违反热力学第二定律; (D)违反热力学第一定律,也违反热力学第二定律。 9、 对于单原子分子理想气体,下面各式分别代表什么物理意义? ()RT 231 ()R 232 ()R 253 10、一定量的刚性双原子分子理想气体,开始时处于压强为p 0 = 1.0?105p a ,体积为V0 = 4?10-3m 3,温度为T 0 = 300K的初态后经等压膨胀过程温度上升到T 1=450K,再经绝热过程降回到T 2= 300K,求气体在整个过程中对外所作的功。

大学物理热学习题附答案11

一、选择题 1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ] 3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等 4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系: (A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同 (C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同 7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是 (A) (1)、(2)、(4);(B) (1)、(2)、(3);(C) (2)、(3)、(4);(D) (1)、(3) 、(4); [ ] 9.4039:设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.4041:设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2 O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则: (A) 图中a表示氧气分子的速率分布曲线; ()2O p v /()2H p v =4

大学物理 热学 复习题

大学物理热学试卷 一、选择题: 1、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为 ()()() 2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ] 2、温度为T 时,在方均根速率s /m 50) (2 12 ±v 的速率区间内,氢、氨两种气体分子数占总分 子数的百分率相比较:则有(附:麦克斯韦速率分布定律: v v v ?????? ? ? ?-?? ? ??π=?22 2 /32exp 24kT m kT m N N , 符号exp(a ),即e a .) (A) ()()22N H //N N N N ?>? (B) ()()22N H //N N N N ?=? (C) ()()22N H //N N N N ?? 温度较高时()()22N H //N N N N ?

大学物理试题库-热力学

热力学选择题 1、在气缸中装有一定质量的理想气体,下面说确的是:( ) (A ) 传给它热量,其能一定改变。 (B ) 对它做功,其能一定改变。 (C ) 它与外界交换热量又交换功,其能一定改变。 (D ) 以上说法都不对。 (3分) 答案:D 2、理想气体在下述过程中吸收热量的是( ) (A )等容降压过程 (B )等压压缩过程 (C )绝热膨胀过程 (D )等温膨胀过程 (3分) 答案:D 3、理想气体卡诺循环过程的两条绝热线下的面积大小分别为1S 和2S ,二者的关系是( ) (A )21S S > (B )21S S < (C )S 1 =S 2 (D )不能确定 (3分) 答案:C 4、有两个可逆的卡诺循环,ABCDA 和11111A B C D A ,二者循环线包围的面积相等,如图所示。设循环ABCDA 的热效率为η,每次循环从高温热源吸收热量Q ,循环11111A B C D A 的热效率为η,每次循环从高温热源吸收热量1Q ,则( ) (A )11,Q Q <<ηη (B )11,Q Q ><ηη (C )11,Q Q <>ηη (D )11,Q Q >>ηη (3分) 答案:B 5、一定量的理想气体,分别经历如图所示的abc 过程(图中虚线ac 为等温线)和 def 过程(图中虚线 df 为绝热线)。试判断这两种过程是吸热还是放热( ) (A )abc 过程吸热,def 过程放热。(C )abc 过程和 def 过程都吸热。 V P P V

(B)abc 过程放热def 过程吸热(D)abc过程和def 过程都放热。 V (3分) 答案:A 6、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、能的增量和对外做得功三者均为负值?( ) (A)等容降压过程。(B) 等温膨胀过程。(C) 绝热膨胀过程。(D) 等压压缩过程。(3分) 答案:D 7、关于可逆过程,下列说确的是() (A)可逆过程就是可以反向进行的过程。 (B)凡是可以反向进行的过程均为可逆过程。 (C)可逆过程一定是准静态过程。 (D)准静态过程一定是可逆过程。 (3分) 答案:C 8、下面正确的表述是() (A) 功可以全部转化为热,但热不能全部转化为功。 (B)热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。 (C)开尔文表述指出热功转换的可逆性。 (D)克劳修斯表述指出了热传导的不可逆性。 (3分) 答案:D 9、一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J (3分) 答案:B 10、“理想气体和单一热源接触作等温臌胀时,吸收的热量全部用来对外作功。”对此说法,有如下几种评论,哪种是正确的( ) (A)不违反热力学第一定律,但违反热力学第二定律 (B)不违反热力学第二定律,但违反热力学第一定律 (C)不违反热力学第一定律,也不违反热力学第二定律 (D)违反热力学第二定律,也违反热力学第二定律 (3分)

大学物理-热力学基础必考知识点

第九章 热力学基础主要内容 一.准静态过程(理想过程,在P-V 图中代表一条线) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态(平衡态在P-V 图中代表一个点)过程。 二.理想气体状态方程: 112212PV PV PV C T T T =→=; m PV RT M '=; P nkT = 8.31J R k mol =;231.3810J k k -=?;2316.02210A N mol -=?;A R N k = 三.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体做功 21V V W Pdv =? (规定气体对外做功>0 ) 2.Q (规定气体从外界吸收热量>0,过程量,只有在某个过程中才有意义) 3.2121()V m V m m m dE C dT E E C T T M M ''= -=- 或 (状态量,理想气体内能只取决于温度,内能变化公式适用于任意的过程。),2V m i C R =,=,P +22m i C R (i 为自由度,单原子分子自由度为3,双原子分子为5,多原子分子为6), =+,P ,m V m C C R ,气体比热容比:γ=>,,1P m V m C C 四.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 -2(V m T 2. 等压过程

?=?-=-???=?+=-=??????=-???21212121()() +2 ()2()=2p m V m m W P V V R T T M m i Q E W C T T P V M m i E C T T P V M 3.等温过程 212211 0T T E E m V m p Q W RTln RTln M V M p -=??''?===?? 1. 绝热过程 210() V m Q W E C T T ν=???=-?=--?? 绝热方程1PV C γ=, -12V T C γ= ,13P T C γγ --= 。 五.循环过程 特点:系统经历一个循环后,0E ?= 系统经历一个循环后Q W =(代数和)(代数和) 1. 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 2. 热机效率: 122 111 1Q Q Q W Q Q Q η-===- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放出的热量和; 12W Q Q =-------在一个循环中,系统对外做的功(代数和)。 卡诺热机效率(两条等温+两条绝热线构成的正循环) 2 1 1c T T η=-(效率公式要求会推导) 式中:1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 2 2 12Q = Q -Q =定义:Q e W

第6篇热力学基础练习题(大学物理11)

图1 06章 一、填空题 1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 的方向进行。 2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了_____________的过程是不可逆的,而克劳修斯表述指出了__________的过程是不可逆的。 3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 (填增加或减少),E 2—E 1= J 。 4.一定量的理想气体在等温膨胀过程中,内能 ,吸收的热量全部用于 。 5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 J 。 6、在孤立系统内部所发生的过程,总是由热力学概率 的宏观状态向热力学概率 的宏观状态进行。 7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热_______J 。 8、一定量的气体由热源吸收热量526610J ??,内能增加5 41810J ??,则气体对外作 功______J 。 9、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 。 10、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_____J 。 11、气体经历如图1所示的一个循环过程,在这个循环中, 外界传给气体的净热量是 J 。 12、一热机由温度为727℃的高温热源吸热,向温度为 527℃的低温热源放热。若热机可看作卡诺热机,且每一 循环吸热2000J,则此热机每一循环作功 J 。 13、1mol 的单原子分子理想气体,在1atm 的恒定压强下,从0℃加热到100℃,则气体的

大学物理2-1第九章(热力学基础)习题答案

大学物理2-1第九章(热力学基础)习题答案

习 题 九 9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。 (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +?= 得 A Q E -=? 在a

9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。试证此直线表示等压过程。 [证明] 设此直线斜率为k ,则此直线方程为 kv E = 又E 随温度的关系变化式为T k T C M M E v mol '=?= 所以T k kV '= 因此C k k T V =' =(C 为恒量) 又由理想气体的状态方程知,C T pV '= (C '为恒量) 所以 p 为恒量 即此过程为等压过程。 9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。(2)1→2直线。试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。 [解] (1) 在1→m →2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。 ()()J V V P A 4 3 5 2 1 2 1 101.81010013.1105020?-=???-?-=--= 由气体的内能公式T C E V ν=和理想气体的状态 方程RT pV ν=得

大学物理-热力学基础必考知识点

第九章 热力学基础主要内容 一.准静态过程(理想过程,在P-V 图中代表一条线) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态(平衡态在P-V 图中代表一个点)过程。 二.理想气体状态方程: 112212PV PV PV C T T T =→=; m PV RT M '=; P nkT = 8.31J R k mol =g ;231.3810J k k -=?;2316.02210A N mol -=?;A R N k =g 三.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体做功 21V V W Pdv =? (规定气体对外做功>0 ) 2.Q (规定气体从外界吸收热量>0,过程量,只有在某个过程中才有意义) 3.2121()V m V m m m dE C dT E E C T T M M ''=-=-g g 或 (状态量,理想气体内能只取决于温度,内能变化公式适用于任意的过程。),2V m i C R =g ,=,P +22m i C R (i 为自由度,单原子分子自由度为3,双原子分子为5,多原子分子为6), =+,P ,m V m C C R ,气体比热容比:γ=>,,1P m V m C C 四.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 2. 等压过程

3.等温过程 212 211 T T E E m V m p Q W R T ln R T ln M V M p -=??' '?===?? 1. 绝热过程 210 () V m Q W E C T T ν=???=-?=--??g 绝热方程1PV C γ=, -12V T C γ= ,13P T C γγ--= 。 五.循环过程 特点:系统经历一个循环后,0E ?= 系统经历一个循环后Q W =(代数和)(代数和) 1. 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 2. 热机效率: 122111 1Q Q Q W Q Q Q η-===- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放出的热量和; 12W Q Q =-------在一个循环中,系统对外做的功(代数和)。 卡诺热机效率(两条等温+两条绝热线构成的正循环) 2 1 1c T T η=-(效率公式要求会推导) 式中:1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 卡诺制冷机的制冷系数:2 21212 Q T e Q Q T T ==-- 六. 热力学第二定律 2 2 12 Q = Q -Q =定义:Q e W

大学物理同步训练下第10章热力学基础

第九章 热力学基础 一、选择题 1. 如图1所示,一定量的理想气体,由平衡状态A 变到平衡状态B (p A =p B ),则无论经 过的是什么过程,系统必然 (A )对外做正功 (B )内能增加 (C )从外界吸热 (D )向外界放热 答案:B 分析:功和热量为过程量,其大小、正负与过程有关,故A 、C 、D 选项错误;内能(温度)为状态量,与过程无关。由图可知,B 点内能高于A 点(由内能公式E =ipV 2?可得,式中i 为气体分子自由度,见《气体动理论》选择题1)。 2. (◇)对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W Q ?等于 (A )23? (B )12? (C )25? (D )27? 答案:C 分析:由等压过程公式?Q:?E:?W =(i +2):i:2可得W Q ?=2(3+2)=25??。 3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为 (A )1:1 (B )5:9 (C )5:7 (D )9:5 答案:C 分析:(参考选择题2)可得 ?W =2i +2?Q → ?W O 2?W He =2?Q (i O 2+2)?2?Q (i He +2)?=3+25+2=57 关于自由度i 可参考《气体动理论》选择题1。 4. 在下列理想气体过程中,哪些过程可能发生? (A )等体积加热时,内能减少,同时压强升高 (B )等温压缩时,压强升高,同时吸热 (C )等压压缩时,内能增加,同时吸热 (D )绝热压缩时,压强升高,同时内能增加 答案:D

大学物理热力学论文

大学物理热力学论文 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律即热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。 关键词: 热力学第一定律卡诺循环热力学第二定律熵 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一.热力学第一定律 1.历史渊源与科学背景 北宋时刘昼明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学

相关主题
文本预览
相关文档 最新文档