当前位置:文档之家› 中南大学钢桥课程设计

中南大学钢桥课程设计

中南大学钢桥课程设计
中南大学钢桥课程设计

《钢桥》课程设计任务书

(土木工程10 级 2013-2014 学年第1 学期)

一、设计题目

跨度L=68m 单线铁路下承式简支栓焊钢桁梁设计

二、设计依据

1. 相关规范

铁道部《铁路桥涵设计基本规范》(TB10002.1-2005)

铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005)

2. 结构基本尺寸

计算跨度L=68m;桥跨全长L=68.10m;节间长度d=8.50m;主桁

节间数n=8;主桁架高度h=10.50m、11.00m、11.50m。

3. 钢材及基本容许应力

杆件及构件用Q345qD;高强度螺栓用20MnTiB 钢;精制螺栓用BL3;螺母及垫圈用45 号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。

4. 结构的连接方式及连接尺寸

连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接;人行道托架采用精制螺栓连接。

连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精

制螺栓的杆径为φ22,孔径为d = 23mm。

5. 设计活载等级

标准中—活载。 6. 设计恒载

主桁高度为11.00m ,主桁m kN p /50.143=,联结系4 2.80kN /m p =; 桥面

系2 6.50kN /m p =;

高强螺栓6234=++p p p p ?()

3%;检查设备5 1.00kN /m p =; 桥面111.00kN /m p =; 焊缝7234=++ 1.5%p p p p ?()

。 计算主桁恒载时,按桥面全宽恒载1234567=++++++p p p p p p p p

7 其它荷载: 风荷载、列车摇摆力、列车制动力等 三、设计内容

1. 主桁杆件内力计算(全部),并将结果汇整于3 号图上;

2. 主桁杆件截面设计与检算(交汇于E 2、A 3 节点的杆件);

3. 主桁 E 2、A 3 节点拼接计算与节点设计及检算;

4. 分别绘制主桁 E 2、A 3 节点图(两张3 号图)。 四、提交文件 1. 设计说明书 1 份; 2. 3 号图3 张。 五、要求

1. 计算书条理清楚、语句通顺、计算正确;

2. 结构图按制图要求比例恰当、粗细线条明确、尺寸标注清楚、投 影关系无误。

钢桥课程设计计算书

第一章:设计依据

一、设计规范

中华人民共和国铁道部2005年《铁路桥梁钢结构设计规范》(TB10002.2-2005);

中华人民共和国铁道部2005年《铁路桥涵设计基本规范》(TB10002.1-2005),以下简称《桥规》。

二、钢材

杆件 Q345qD。

高强螺栓 20MnTiB钢。

螺母垫圈 45号优质碳素钢。

焊缝力学性能不低于基材。

精制螺栓 BL3。

铸件 ZG25II。

辊轴锻钢35号。

三、连接方式

工厂连接采用焊接。工地连接采用高强螺栓连接。人行道托架工地连接采用精制螺栓连接。螺栓孔径一律为d=23mm。高强螺栓杆径为22

φ。四、容许应力

Q345qD的基本容许应力:

轴向应力[]=200Mpa

σ;

弯曲应力[]=210Mpa

σ;

w

剪应力[]=120Mpa

τ;

端部承压(磨光顶紧)应力[]=300Mpa c σ。 疲劳容许应力及其它的容许应力见《桥规》。

五、计算恒载

计算主桁时(每线):

桥面 []1=11.00kN /m p ; 桥面系 []2=6.50kN/m p ; 主桁架 []m kN p /5.143=; 联结系 []4=2.80kN/m p ; 检查设备 []5=1.00kN/m p ;

高强螺栓 6234=++p p p p ?()

3%; 焊缝 7234=++ 1.5%p p p p ?()

。 计算主桁恒载时,按桥面全宽恒载 1234567=++++++p p p p p p p p 。 六、活载等级

按“中华人民共和国铁路标准活载(中—活载)”。标准活载的计算图 示见《桥规》。 七、结构尺寸

计算跨度L=68.00m ;

节间长度d=8.50m ; 主桁节间数8n =;

主桁高度11.00m H =;

第二章 主桁架杆件内力计算

一、内力的组成

主桁杆件的内力有以下几部分组成:

竖向恒载所产生的内力p N p N p =∑Ω 静活载内力k N k N k =Ω 竖向活载产生的内力 (1)k N ημ+

横向风力(或列车摇摆力)所产生的内力w N 仅作用在上下弦杆,横向风力通过桥门架效应在端斜杆和下弦杆所产生的内力'w N ;纵向制动力产生内力t N 。

根据《桥规》规定,设计时候杆件轴力应该按下列情况考虑: 主力 N Ⅰ N Ⅰ=P N +(1)k N ημ+

主力加风力(或摇摆力)N Ⅱ N Ⅱ=

'1

()1.2w w N N N ++Ⅰ 主力+制动力N Ⅲ N Ⅲ=1

()1.25

t N N +Ⅰ 主桁杆件除述轴力外,还要受到弯矩作用,如节点刚性引起的次弯矩,风力和制动力在某些杆件中引起的弯矩等,这些弯矩在检算杆件截面时应和轴力一起考虑,由于本设计所有杆件的高度均不超过长度的1/10,故根据《桥规》规定,不考虑节点刚性的次内力。

二、.影响线

主桁各杆的的影响线图形及计算公式如下图1所示:

图1 主桁杆件影响线图形及计算公式

本设计中d=8.50m ,n=8,各杆影响线的计算结果见附表1。

三、恒载所产生的内力

根据第一章所提供的资料,,每片主桁所承受的恒载内力:

()765432121

p p p p p p p P ++++++=

=21

(11+6.5+4.5+2.80+1.00+0.714+0.357

=18.436kN/m

恒载布满全跨,故恒载内力为:

1sin n m n θ

-- 1sin θ

1212l l H l l

αΩ=

=

2

12

212122(1)sin (1)2(1)sin (21)2sin 1

m d n n m d

n m n d

n

θ

θ

θ

ααΩ=----Ω=

--+Ω=Ω+Ω=

==

,0.5

d αΩ==,0

2

l

αΩ==

以下弦杆24E E 为例:

∑=?=Ω=kN P N p 18.90826.49436.18

以斜杆23E A 为例:

∑-=-?=Ω=kN P N p 17.297)12.16(436.18

四、活载所产生的内力 1. 换算均布活载

换算均布活载是影响线加载长度l 与顶点位置α二者的函数。它们之间的函数关系反映在《桥规》附录所列的公式以及表中。根据l 与α从该表中查得每线换算的均布活载K ,除以2即得每片主桁承受的换算的均布活载

k 。

以下弦杆20E E 为例:

L=68.00m 125.0=α,m kN k /93.47=查表可得 以斜杆21E A 为例:

m L 29.581=m /kN 18.49k ,125.0==查表得α m L 71.91=m /kN 87.73k ,125.0==查表得α 2. 静活载所产生的内力

为了求得最大活载内力,换算均布活载k 应布满同号影响线全长。 以下弦杆24E E 为例:

∑=?=Ω=kN k N k 78.224726.4963.45

以斜杆23E A 为例,产生最大活载内力的加载情况有两种:活载布满后 段1l 长度产生最大压力,活载布满左段2l 长度产生最大拉力。故分别加载后得:

∑=?=Ω=kN k N k 94.1358632.2718.4911 ∑-=-?=Ω=kN

k N k 73.56)768.0(87.7322

3. 冲击系数1+μ

根据《桥规》规定,钢桁梁的冲击系数1+μ按下式计算: 28

1+140L

μ=+

+ 式中 L —承受局部活载杆件为影响线加载长度 弦杆冲击系数: 259.168

4028

1402811=++=++

=+L μ 挂杆的冲击系数: 491.117

4028

11=++

=+μ 斜杆21E A 的冲击系数: 285.129

.584028

111=++

=+μ

563.171

.94028

112=++=+μ

4. 活载发展的均衡系数η

《桥规》要求:所有杆件因活载产生的轴向力、弯矩、剪力在计算主力组合时,均应乘以活载发展均衡系数η:

()a a m -6

1+1=η ()k

p

N N a μ+=

1

——式中 m a —全部杆件a 值中代数值之最大者。 下弦杆20E E : 306.024.1387825

.423==

a

()0030.1306.0324.06

11=-+=η 斜杆12A E :

284.024

.1746265

.4951==a

585.567

.88265

.4952-=-=

a 0067.1)284.0324.0(6

111=-+=η 9848.1)585.5324.0(6

112=++=η 5. 活载产生的内力:

考虑冲击作用和活载发展均衡系数在内时,活载所产生的内力 为:()k N μη+1

下弦杆20E E :

()kN N k 40.139186.1101259.10030.11=??=+μη 斜杆23E A :

()kN N k 88.175794.1358285.10067.11=??=+μη ()kN N k 40.139186.1101259.10030.11=??=+μη 五、横向荷载(风力或摇摆力)所产生的内力 1平纵联效应的弦杆附加力

风压W =K 1K 2K 3W 0=1.0×1.25kPa=1.25kPa, 故有车风压W '=0.8W =1.0kPa 。

(1) 下平纵联的有车均布风荷载 桁高H =11.00m ,

w 下=[0.5×0.4×H+ (1-0.4)×(321h h h ++)]W ' =[0.5×0.4×11+ (1-0.4)×(1.29+4+3)]×1.0 =5.014kN/m

(2) 上平纵联的有车均布风荷载

w 上=[0.5×0.4×H+ 0.2×(1-0.4)×(321h h h ++)]W ' =[0.5×0.4×11+ 0.2×(1-0.4)×(1.29+0.4+3)]×1.0 =2.763kN/m

(3) 作用在上平纵联上的列车摇摆力分布集度为: m k /kN 1.15.52.0=?=上

(4)作用在下平纵联的列车摇摆力分布集度为: m k /kN 5.55.50.1=?=下

由于风力与摇摆力同时达到上述最大值的可能性很小,故二者不能叠加计算,只取其较大值计算。

对上平纵联取2.763kN/m 进行计算,对下平纵联取5.5kN/m 进行计算。 (5)弦杆内力

主桁中心距B=5.75m

上弦杆A1A3 在均布风荷载w 上作用下的内力为:

Nw 上=Ωw 上=12 yLw 上=12 ×75.55125

.3875.12??×51×2.763=117.18kN

上弦杆43A A 在均布风荷载w 上作用下的内力为:

Nw 上=Ωw 上=12 yLw 上=12 ×75

.51.525

.2175.29??×51×2.763=151.89kN

下弦杆E 0E 2在摇摆力作用下的内力为:

Nw 下=Ωw 下=12 yLw 下=12 ×75.56825

.5575.12??×68×5.5=336.90kN

下弦杆42E E 在摇摆力作用下的内力为:

Nw 下=Ωw 下=12 yLw 下=12 ××68×5.5=544.23kN

2 桥门架效应的端斜杆和端下弦杆附加力

将桥门架看成平面钢架,其腿杆(主桁端斜杆)下端可假定嵌固在下弦端节点上。作用在桥门架上的水平力:

Hw =12 L w 上=1

2 ×2.763×51=70.46kN

这里可取l=13.90m,c =8.04m(课程设计可取此c 值), 端斜杆反弯点位置

l0=c(c+2l)2(2c+l) =()

()m 77.490.1304.82290.13204.804.8=+???+?

腿杆的水平反力H 和竖直反力V 分别为:

H=

2w H =kN 23.352

46

.70= V=H w (l-l 0)B =

()

kN 20.10875.577.46.1346.70=-? 竖直反力V 使下弦杆产生的附加力力

kN

V N w 63.676

.135.820.108cos =?=="

θ

水平反力使端斜杆产生附加弯矩

M F =H(c-l 0)= 35.23×(8.04-4.77)=115.20m kN ? M K =H(21

0h l -)= 35.23×(4.77-1.292 )=145.32m kN ? 其中,取桥面系横梁的高度1h =1.29m 计算结果列在附表1 中。

六、制动力作用下的主桁杆件附加力 1 下弦杆制动力计算

以下弦杆E2E4 为例,将活载作如图所示的布置,根据结构力学方法,当三角形影响线顶点左边的活载之和等于右边之和时,为产生最大杆力的活载布置位置。

由 R a a =R b

b

可得:

()()5

.425.128030925

.25922205x x x +?+-?=+?

解得x=11.65m

故桥上活载总重=5× 220 + 30 × 92 + (12.5 +11.65) ×80 = 5792 kN

在主力作用下的内力已计入冲击 系数,制动力按静活载的7%计算:

制动力:T =5792×0.07=405.44kN

E2E4 制动力作用附加内力NT =±T/2=±202.72kN 其下弦杆件内力见表1 2 端斜杆制动力计算

E 0E 1 杆力影响线顶点位置离左端点支点8.5m ,设将列车荷载的第4轴重Pl 置于影响线顶点处。因为影响线为三角形,故根据结构力学所述的法则,若满足下列条件,则该活载位置是产生最大杆力时的荷载

由 可得:

R a +P 1a =53.1035.82202203=+?>R a b =7.845.5980

5.269030220=?+?+

R a a =5.82203?=77.65

.595040

220+=88.40 将第3 轴重或第5 放到顶点位置上均不满足上述条件,故将上述活载即为产生最大杆力时的活载。

制动力T=7

100 (5 ×220+30 ×92+80 ×26.5)=418.6kN

制动力所生的杆件内力N T 和M 2: 轴向力N T =T 2 =26

.418=209.3kN

七、疲劳内力

疲劳荷载组合包括设计载荷中的恒载和活载(包括冲击力、离心力,但不考虑活载发展系数)。列车竖向活载包括竖向动力作用时,应将列车竖向静活载乘以运营动力系数(1+μf )。同时,第4.3.5 条又规定,焊接及非焊接(栓接)构件及连接均需进行疲劳强度检算,当疲劳应力均为压应力时,可不检算疲劳。

疲劳计算采用动力运营系数 弦杆:167.168

4018

11=++=+f μ 吊杆:316.117

4018

11=++=+f μ E 2E 4 :

N max =N p +(1+μf ) N k =908.18+1.167×2247.78=1709.33kN N min = N p =908.18kN 八、主珩杆件的内力组合

以上算出的主桁杆件所受单项轴力列于表1。按照《桥规》要求,各单项轴力应按照附表1进行组合,三种组合内力中之大者为控制杆件强度与稳定的计算内力。反复荷载出现拉力作用杆件,应检算疲劳,控制计算内力不考虑活载发展及附加力影响。各项检算结果参见附表1。

第三章 主桁杆件设计

一、主桁杆件得检算内容及设计步骤

主桁杆件根据受力性质的不同,应进行下表所列项目的检算。

表1 各类杆件的检算内容

用试算法设计各类杆件的步骤:

1. 参考性质相近(只内力性质及大小,杆长及截面式样,材料和连接方式)的已有设计资料,初步拟定截面尺寸;

2. 根据初步拟定的截面尺寸,算出进行各类检算所需的截面几何特征数据;

3. 按上表要求进行各项检算。如初选截面不合适,则进行修改,重新计算,直至符合要求;

4. 为了减少杆件类型,以简化制造,同类杆件的内力相差不大者应尽量采用相同的截面

二、主桁杆件截面几何特征计算

本设计只对围绕节点的主桁杆件截面进行选择和设计。由于H 形截面在制造、安装、运营等方面比较优越,本设计主桁杆件全部采用H 形截面,杆宽为460mm ,杆高最大为460mm ,该值小于杆长的1/10,按《桥规》要求可免算节点刚性次应力。例如:

1.

下弦杆42A E 的设计

设计资料:

设计最大内力:3740.30kN ;

设计疲劳内力:max N =3530.59kN ;kN N 18.908min = 杆件长度:8.5m 材料:Q345qD

因铁路简支钢桁梁桥的主桁下弦杆都是受拉杆件,内力较大且反 复变化,一般由疲劳强度控制设计。

I.计算所需的净截面面积。查的疲劳容许应力幅[]MPa 7.130=?σ,取

0.1=γ,根据疲劳强度条件可知所需的净截面积为:

[]2min max 3.200647

.1300.118

.90859.3530mm N N A j =?-=?-=

σγ

根据设计经验,估计杆件的毛截面面积: 21.2360585

.0mm A A j m ==

II.选取截面形式为H 型,截面组成为 竖板:2-460mm ×22mm ; 水平板:1-416mm ×12mm ; 每侧布置4排栓孔,孔径d=23mm ; 提供毛截面面积:

22523212416224602mm A m =?+??= 栓孔削弱后的面积: 2404822238mm A =??=? 净截面面积:

223.2006421184404825232mm mm A A A m j >=-=?-=(可) 截面惯性矩计算结果:

481043.10mm I x ?= , 481057.3mm I y ?= 截面回转半径计算结果: mm r mm r y x 94.118,31.203== III.强度和刚度检算。 强度检算:

MPa MPa A N j 20056.17621184

1020.37403

max <=?==σ 由于实际净截面面积大于所需净截面面积,疲劳强度自动满足,故不必验算。

刚度验算: []1008.4131

.2038500=<===λλx ox x r l []10046.7194

.1188500

=<==

=

λλy

oy y r l 2.

上弦杆31A A 的设计

设计资料:

设计最大内力:-3027.22kN ; 杆件长度:8.5m 材料:Q345qD

因上弦杆都是受压杆件,由整体稳定控制设计

I.选定H 型截面,并假定杆件的长细比λ=60查表可得整体稳定容许应力折减系数677.01=?,则所需的毛截面面积为:

[]23

16.22357200

677.01022.3027mm N

A m =??==σ?

II.选取截面形式为H 型,截面组成为 竖板:2-460mm ×24mm ; 水平板:1-412mm ×12mm ; 每侧布置4排栓孔,孔径d=23mm ; 提供毛截面面积:

226.223572702412412244602mm mm A m >=?+??= 截面惯性矩计算结果:

481020.11mm I x ?= , 481089.3mm I y ?= 截面回转半径计算结果: mm r mm r y x 04.120,58.203== III.整体稳定性检算

杆件计算长度m l l l oy ox 5.8===,长细比: 75.4158

.2038500===x ox x r l λ 81.7004

.1208500

==

=

y

oy y r l λ 由λ=70.81查表得1?=0.649,则:

MPa MPa A N m 20060.17227024

649.01022.30273

1<=??=?(可) IV.局部稳定检算。

竖板:当杆件的长细比50>λ时,《桥规》要求板件的宽厚比,现 91.14581.7014.033.924

224

=+?<==

t

b

(可)

水平板:当杆件的长细比50>λ时,《桥规》要求板件的宽厚比

32.381081.704.03.3412

412

=+?<==t b (可) V.刚度检算。

长细比[]10081.70max =<=λλ (可) 3.

斜杆43E A 的设计

设计资料:

设计内力:1005.86kN ,-485.51;

设计疲劳内力:max N =893.09kN ;kN N 41.384min -= 杆件长度:13.9m 材料:Q345qD

因该斜杆是受拉兼受压杆件,由疲劳强度控制设计。

I.计算所需的净截面面积。查的疲劳容许应力幅[]MPa 7.130=?σ,取

0.1=γ,根据疲劳强度条件可知所需的净截面积为:

[]()23

min max 29.97747

.1300.11041.3846.893mm N N A j =??+=?-=σγ

II.选取截面形式为H 型,截面组成为 竖板:2-460mm ×12mm ; 水平板:1-436mm ×10mm ; 每侧布置4排栓孔,孔径d=23mm ; 提供毛截面面积: 215400mm A m = 净截面面积:

2229.977413193mm mm A A A m j >=?-=(可)

截面惯性矩计算结果:

481023.6mm I x ?= , 481095.1mm I y ?= 截面回转半径计算结果: mm r mm r y x 44.112,13.201==

由于实际净截面面积大于所需净截面面积,疲劳强度自动满足,故不必验算。 III.刚度检算

杆件的计算长度:

mm l ox 13900= mm l oy 11120139008.0=?= 长细比: []10011.6913

.20113900

=<===λλx ox x r l (可) []10089.9844

.11211200

=<==

=λλy

oy y r l (可) IV.强度验算

MPa MPa A N j 20025.7613192

1086.10053

max <=?==σ (可) V.局部稳定检算。

竖板:当杆件的长细比50>λ时,《桥规》要求板件的宽厚比,现 84.18589.9814.075.1810

225

=+?<==

t

b

(可) 水平板:当杆件的长细比50>λ时,《桥规》要求板件的宽厚比

56.491089.984.06.4310

436

=+?<==t b (可) 各杆截面尺寸及检算结果见附表二 三、杆端高强度螺栓计算

48m钢桥设计

48m钢桁架铁路桥设计 学院:土木工程学院 班级:土木0906 姓名:张宇 学号:1801090603 指导老师:方海 整理日期:2012年01月07日

——目录—— 第一章设计依据 (2) 第二章主桁架杆件内力计算 (4) 第三章主桁杆件设计 (10) 第四章弦杆拼接计算 (14) 第五章节点板设计 (16) 第六章节点板强度检算 (16)

48m钢桁架桥课程设计 一、设计目的: 跨度L=48米单线铁路下承载式简支栓焊钢桁梁桥部分设计 二、设计依据: 1. 设计《规范》 铁道部1986TB12-85《铁路桥涵设计规范》简称《桥规》。 2. 结构基本尺寸 计算跨度L=48m;桥跨全长L=48.10m;节间长度d=8.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.35m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mnq;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16kN/m;联结系P4=2.76kN/m;桥面系P2=6.81kN/m; 高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算; 4. 绘制主桁E2节点图(3号图)。 四、提交文件: 1.设计说明书; 2. 2、3号图各一张 要求:计算正确,书写条理清楚,语句通顺;结构图绘制正确,图纸采用的比例恰当,线条粗细均匀,尺寸标准清晰。

84.4m单线铁路下承式栓焊简支钢桁梁桥--课程设计

西南交通大学钢桥课程设计 单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 电话: 电子邮件: 指导老师:杨雷 设计时间:2014年

目录 第一章设计资料 (3) 第一节基本资料 (3) 第二节设计内容 (3) 第三节设计要求 (4) 第二章主桁杆件内力计算 (4) 第一节主力作用下主桁杆件内力计算 (4) 第二节横向风力作用下的主桁杆件附加力计算 (8) 第三节制动力作用下的主桁杆件附加力计算 (9) 第四节疲劳内力计算 (10) 第五节主桁杆件内力组合 (11) 第三章主桁杆件截面设计 (14) 第一节下弦杆截面设计 (14) 第二节上弦杆截面设计 (16) 第三节端斜杆截面设计 (17) 第四节中间斜杆截面设计 (19) 第五节吊杆截面设计 (20) 第六节腹杆高强度螺栓计算 (23) 第四章弦杆拼接计算和下弦端节点设计 (24) 第一节 E2节点弦杆拼接计算 (24) 第二节 E0节点弦杆拼接计算 (25) 第三节下弦端节点设计 (26) 第五章挠度计算和预拱度设计 (28) 第一节挠度计算 (28) 第二节预拱度设计 (29) 第七章设计总结 (30)

第一章设计资料 第一节基本资料 1设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。 2结构轮廓尺寸:计算跨度L=84.4m,钢梁分10个节间,节间长度d=L/10=8.44m,主桁高度H=11d/8=11×8.44/8=11.605m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵梁计算宽度B0=5.30m,采用明桥面、双侧人行道。 3材料:主桁杆件材料Q345q,板厚 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35II、辊轴采用35号锻钢。 4 活载等级:中—活载。 5恒载 (1)主桁计算 桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m, 联结系p4=2.74kN/m,检查设备p5=1.02kN/m, 螺栓、螺母和垫圈p6=0.02(p2+ p3+ p4),焊缝p7=0.015(p2+ p3+ p4); (2)纵梁、横梁计算 纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。 6风力强度W0=1.25kPa,K1K2K3=1.0。 7工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精制螺栓,栓径均为22mm、孔径均为23mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。 第二节设计内容 1. 主桁杆件内力计算:包括主力(恒载和活载)作用下主桁杆件的内力计算、横向附加力作用下主桁杆件的内力计算、纵向制动力作用下主桁杆件的内力计

中南大学微机课程设计报告交通灯课案

微机课程设计报告

目录 一、需求分析 1、系统设计的意义 (3) 2、设计内容 (3) 3、设计目的 (3) 4、设计要求 (3) 5、系统功能 (4) 二、总体设计 1、交通灯工作过程 (4) 三、设计仿真图、设计流程图 1、系统仿真图 (5) 2、流程图 (6) 3、8253、8255A结构及功能 (8) 四、系统程序分析 (10) 五、总结与体会 (13) 六、参考文献 (13)

一、需求分析 1系统设计的意义: 随着社会经济的发展,城市问题越来越引起人们的关注。人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。城市交通控制系统是用于城市交通数据检测、交通信号灯控制与交通疏通的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。 随着城市机动车量的不断增加,组多大城市如北京、上海、南京等出现了交通超负荷运行的情况,因此,自80年代后期,这些城市纷纷修建城市高速通道,在高速道路建设完成的初期,它们也曾有效地改善了交通状况。然而,随着交通量的快速增长和缺乏对高速道路的系统研究和控制,高速道路没有充分发挥出预期的作用。而城市高速道路在构造上的特点,也决定了城市高速道路的交通状况必然受高速道路与普通道路耦合处交通状况的制约。所以,如何采用合适的控制方法,最大限度利用好耗费巨资修建的城市高速通道,缓解主干道与匝道、城市同周边地区的交通拥堵状况,越来越成为交通运输管理和城市规划部门亟待解决的主要问题。 十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。那么靠什么来实现这井然秩序呢?靠的就是交通信号灯的自动指挥系统。交通灯的控制方式很多,本系统采用可编程并行I/O接口芯片8255A为中心器件来设计交通灯控制器,实现本系统的各种功能。同时,本系统实用性强,操作简单。 2、设计内容 采用8255A设计交通灯控制的接口方案,根据设计的方案搭建电路,画出程序流程图,并编写程序进行调试 3、设计目的 综合运用《微机原理与应用》课程知识,利用集成电路设计实现一些中小规模电子电路或者完成一定功能的程序,以复习巩固课堂所学的理论知识,提高程序设计能力及实现系统、绘制系统电路图的能力,为实际应用奠定一定的基础。针对此次课程设计主要是运用本课程的理论知识进行交通灯控制分析及设计,掌握8255A方式0的使用与编程方法,通从而复习巩固了课堂所学的理论知识,提高了对所学知识的综合应用能力。 4、设计要求: (1)、分别用C语言和汇编语言编程完成硬件接口功能设计; (2)、硬件电路基于80x86微机接口;

中南大学隧道工程课程设计

铁路山岭隧道课程设计指示书 . 隧道教研室. (注:可供公路隧道设计者参考,基本方法一样。) 一、原始资料 (一) 地质及水文地质条件 沙口坳隧道穿越地段岩层为石灰岩,地下水不发育。其地貌为一丘陵区,海拔约为150米。(详细地质资料示于隧道地质纵断面图中)。 (二) 线路条件 本隧道系Ⅰ级干线改造工程,单线电力(或非电力)牵引,远期最高行车速度为160公里/小时,外轨最大超高值为15厘米,线路上部构造为次重型,碎石道床,内轨顶面标高与路基面标高之间的高差为Δ=70厘米,线路坡度及平、纵面见附图,洞门外路堑底宽度约为11米,洞口附近内轨顶面标高: 进口:52.00米出口:50.00米 (三) 施工条件 具有一般常用的施工机具及设备, 交通方便, 原材料供应正常, 工期不受控制。附:(1) 1:500的洞口附近地形平面图二张; (2) 隧道地质纵断面图(附有纵断面总布置图)一张。 二、设计任务及要求 (一) 确定隧道进、出口洞门位置,定出隧道长度; (二) 在1:500的地形平面图上绘制隧道进口、出口边坡及仰坡开挖线; (三) 确定洞身支护结构类型及相应长度,并绘制Ⅳ类围岩地段复合式衬砌横断面图一张(比例1:50); (四) 布置避车洞位置; (五) 按所给定的地质资料及技术条件选择适当的施工方法,并绘制施工方案横断面

分块图及纵断面工序展开图; (六) 将设计选定的有关数据分别填入隧道纵断面总布置图的相应栏中,并写出设计说明书一份。 三、应完成的设计文件 所有的图纸均应按工程制图要求绘制,应有图框和图标。最后交出设计文件及图纸如下: (一) 标明了洞门位置及边、仰坡开挖线的1:500洞口附近地形平面图两张,图名为“沙口坳隧道进口洞门位置布置图”和“沙口坳隧道出口洞门位置布置图”; (二) 参照标准图绘制的1:50衬砌横断面图一张,图名为“Ⅳ类围岩衬砌结构图”; (三) 隧道纵断面总布置图一张,图名为“沙口坳隧道纵断面布置图”; (四) 设计说明书一份,主要内容有: 1.原始资料 ①地质及水文地质条件; ②线路条件; ③施工条件等。 2.设计任务及要求 3.设计步骤 ①确定洞口位置及绘制边仰坡开挖线的过程 应列出有关参数如b、c、d等值的计算,详细表述清楚各开挖面的开挖过程; ②洞门及洞身支护结构的选择,标明各分段里程、不同加宽的里程; ③大小避车洞的布置; ④施工方案比选: 包括施工方法的横断面分块图及纵断面工序展开图。 四、设计步骤 (一) 隧道洞门位置的确定 洞门位置的确定与洞门结构形式、边仰坡开挖方式、洞口附近地形、地质及水文地质条件有关。通常采用先在1:500的洞口地形平面图上用作图法初步确定洞门位置, 然后在实地加以核对和修正。 为了保证施工及运营的安全, 《隧规》提出了“在一般情况下,隧道宜早进洞,

计算机网络课程设计实验报告

中南大学课程设计报告 课程:计算机网络课程设计 题目:基于Winpcap的网络流量统计分析 指导教师:张伟 目录 第一章总体设计 一、实体类设计 --------P3 二、功能类设计 --------P3 三、界面设计 --------P3

第二章详细设计 一、实体类实现 --------P4 二、功能类实现 --------P4 三、界面实现 --------P5 第三章源代码清单及说明 一、CaptureUtil.java --------P7 二、MyPcapPacketHandler.java --------P9 三、PacketMatch.java --------P9 四、Windows.java --------P13 第四章运行结果 --------P19 第五章心得体会 --------P21 第一章总体设计 一、实体类设计 TCP、UPD、ICMP、ARP、广播数据包五个包的数据结构设计 二、功能类设计 (1)网卡获取 (2)包的抓捕

(3)包的处理 三、界面设计 (1)布局 (2)按钮功能连接 第二章第二章详细设计 一、实体类实现 TCP、UPD、ICMP、ARP、广播数据包五个包的数据结构设计。 本程序采用Java编写,基于win10pcap。Win10pcap是winpcap在win10系统上的适用版本。Java对于winpcap使用jnetpcap进行支持。对于TCP、UPD、ICMP、ARP、广播数据包五种类型的包,在jnetpcap的jar包中大部分已经封装好了相关的实体类型。对应如下:ARP 实体类:https://www.doczj.com/doc/a816797651.html,work.Arp; UPD 实体类:https://www.doczj.com/doc/a816797651.html,work.Icmp;

中南大学课程设计车间照明系统

电气工程基础课程设计 车间动力及照明设计 专业:电气工程及其自动化 班级: 学生姓名: 指导教师: 完成时间:

目录 摘要 (3) 1设计任务 (4) 1.1设计题目 (4) 1.2设计要求 (4) 1.3设计依据 (4) 2车间变电所负荷计算 (5) 2.1车间负荷计算 (5) 2.2 无功补偿计算 (8) 3车间变电所系统设计 (9) 3.1变电所主变压器台数和容量确定 (9) 3.2车间变电所的所址和型式 (11) 3.3车间变电所主接线方案设计 (12) 3.4短路电流的计算 (14) 3.4变电所一次设备的选择 (16) 3.5电缆型号与敷设方式选择 (20) 4二次回路与继电保护 (23) 4.1二次回路方案的选择 (23) 4.2二次回路方案的选择与继电保护的整定 (24) 4.3变电所防雷保护和接地装置 (26) 4.4变电所电气照明 (28) 4.5车间配电线路布线方案的确定 (28) 4.6线路导线及其配电设备和保护设备的选择 (29) 5结束语 (33) 6参考资料 (34)

电气工程课程设计——车间动力及照明设计 摘要 电能是现代工业生产的主要能源和动力。随着现代文明的发展与进步,社会生产和生活对电能供应的质量和管理提出了越来越高的要求。本次设计的题目为车间动力及照明的设计,考虑到题目的条件,决定采用建立车间变电所的方式给车间动力及照明供电。 因此,本次课程设计的主要工作为车间变电所的设计。一个安全、经济的变 电所,是极为重要的。次车间的供电设计包括:负荷的计算及无功功率的补偿;变电所主变压器台数和容量、型式的确定;变电所主接线方案的选择;进出线的选择;短路计算和开关设备的选择;二次回路方案的确定及继电器保护的选择和整定;防雷保护与接地装置的设计;车间配电线路布线方案的确定;线路导线及其配电设备和保护设备的选择;以及电气照明的设计。最后用autoCAD 给出了 电路图的绘制。

钢桥课程设计

《钢桥》课程设计任务书《钢桥》课程设计指导书 青岛理工大学土木工程学院 道桥教研室 指导老师:赵建锋 2010年12月

《钢桥》课程设计任务书 一、设计题目 单线铁路下承式简支栓焊钢桁架桥上部结构设计 二、设计目的 1. 了解钢材性能及钢桥的疲劳、防腐等问题; 2. 熟悉钢桁架梁桥的构造特点及计算方法; 3. 通过单线铁路下承式简支栓焊钢桁架桥上部结构设计计算,掌握主桁杆件内力组合及计算方法;掌握主桁杆件截面设计及验算内容; 4. 熟悉主桁节点的构造特点,掌握主桁节点设计的基本要求及设计步骤; 5. 熟悉桥面系、联结系的构造特点,掌握其内力计算和强度验算方法; 6. 熟悉钢桥的制图规范,提高绘图能力; 7. 初步了解计算机有限元计算在桥梁设计中的应用。 三、设计资料 1. 设计依据:铁路桥涵设计基本规范(TB1000 2.1-2005) 铁路桥梁钢结构设计规范(TB10002.-2008) 钢桥构造与设计 2. 结构轮廓尺寸: 计算跨度L= m ,节间长度d= 8 m ,主桁高度H= 11m ,主桁中心距B= 5.75m ,纵梁中心距b= 2.0m 。 3. 材料:主桁杆件材料Q345qD ,板厚≤40mm ,高强度螺栓采用M22。 4. 活载等级:中-活载。 5. 恒载: (1)主桁计算 桥面m kN p =1,桥面系m kN p =2,每片主桁架m kN p = 3, 联结系m kN p =4; (2)纵梁、横梁计算 纵梁(每线) m kN p = 5 (未包括桥面),横梁(每片) m kN p = 6。 6. 风力强度0.1,25.13212 0==K K K m kN W 。

学生成绩管理系统_课程设计报告

中南大学 《C语言程序设计》 课程设计报告课题名称:学生成绩管理系统 专业电气信息 学生姓名舒畅 班级0914 学号0909091424 指导教师穆帅 完成日期2010年7月10日 信息科学与工程学院

目录 1 课程设计的目的 (1) 2 设计内容与要求 (1) 3 主要技术指标及特点 (2) 3.1 登录界面显示 (2) 3.2登记学生资料 (4) 3.3保存学生资料 (5) 3.4 删除学生资料 (6) 3.5修改学生资料 (7) 3.6 查询学生资料 (8) 3.6统计学生资料(自加功能) (8) 3.8对学生资料进行排序 (9) 3.9程序主要代码 (9) 4 设计小结 (31)

成绩管理系统 1 课程设计的目的 1.加深对《C语言程序设计》课程知识的理解,掌握C语言应用程序的开发方法和步骤; 2.进一步掌握和利用C语言进行程设计的能力; 3.进一步理解和运用结构化程序设计的思想和方法; 4.初步掌握开发一个小型实用系统的基本方法; 5.学会调试一个较长程序的基本方法; 6.学会利用流程图或N-S图表示算法; 7.掌握书写程设计开发文档的能力(书写课程设计报告)。 2 设计内容与要求 设计内容:成绩管理系统 现有学生成绩信息,内容如下: 姓名学号 C 数学英语 shuchang 12 99 98 99 jiutian 32 87 68 87 changzi 33 98 89 99 jiutia 13 7 43 45 设计要求: ?封面(参见任务书最后一页) ?系统描述:分析和描述系统的基本要求和内容; ?功能模块结构:包括如何划分功能模块,各功能模块之间的结构图,以及各模块 的功能描述; ?数据结构设计:设计数据结构以满足系统的功能要求,并加以注释说明; ?主要模块的算法说明:即实现该模块的思路; ?运行结果:包括典型的界面、输入和输出数据等; ?总结:包括C语言程序设计实践中遇到的问题,解决问题的过程及体会、收获、

中南大学 钢结构 课程设计

钢结构课程设计计算说明书 一、设计资料 1.设计条件 某厂一操作平台,平台尺寸16.000×12.000m,标高4.00m,平台梁柱布置图如图1所示。该平台位于室内,楼面板采用压花钢板,平台活载按2.0kN/m2考虑。设计中仅考虑竖向荷载和活载作用。 2.设计要求 (1)板的设计(板的选择、强度验算、挠度验算) (2)选一跨次梁设计(截面设计、强度验算、刚度验算) (3)选一跨主梁设计(截面设计、强度验算、刚度验算) (4)柱的设计(截面设计、整体稳定性验算) (5)节点设计(主梁与柱的连接、主次梁的连接) (6)计算说明书,包括(1)~(5)部分内容 (7)绘制平台梁柱平面布置图、柱与主次梁截面图、2个主梁与柱连接节点详(边 柱和中柱)、2个次梁与主梁连接节点详图(边梁、中间梁)、设计说明。(2# 图纸一张),

二、设计方案 1、板的设计 (1)确定铺板尺寸 使用压花钢板,厚度取15mm ,密度为37.85/kg m (2)验算板的强度和挠度 ①铺板承受的荷载 恒载标准值:37.859.815101 1.154/k g kN m -=????= 活载标准值: 3.01 3.0/k p kN m =?= 荷载总标准值: 1.154 3.0 4.154/k k k q g p kN m =+=+= 恒载设计值: 1.154 1.2 1.385/g kN m =?= 活载设计值: 3.0 1.2 4.2/p kN m =?= 荷载总设计值: 1.385 4.2 5.585/q kN m =+= 根据规范,6000 421500 b a = =>,1230.1250,0.0375,0.095,0.1422a a a β==== 因为1213,a a a a >> 所以22max 10.1250 5.585 1.5 1.571x M M a qa kN m ===??= ②验算强度及挠度 强度验算: 3 22max max 22 66 1.5711034.91/215/1.215 x M N mm N mm t σγ??===

钢桥课程设计48米单线铁路下承式栓焊简支梁主桁设计

48米单线铁路下承式栓焊简支梁主桁设计

目录 第一部分设计说明书 一、设计资料----------------------------4 二、钢梁上部总体布置及尺寸拟定--------------------------4 1、钢桁架梁桥的优缺点--------------------------4 2、设计假定和计算方法---------------------------4 3、主桁杆件截面选择---------------------------5 4、节点设计原则---------------------------5 5、设计思路和步骤----------------------------5 6、参考文献 ----------------------------6 第二部分设计计算书 一、打开软件-----------------------------------7 二、创建模型-----------------------------------7 1.设定造作环境-----------------------------------7 2.定义材料和截面-----------------------------------7 3.建立节点和单元-----------------------------------8 4.输入边界条件-----------------------------------8 5.输入荷载(1)——加载自重--------------------------------9 6.运行结构分析(1)-----------------------------------10 7.查看结果-----------------------------------10 8.输入荷载(2)——活载添加-------------------------------12 9.运行结构分析(2)----------------------------------13 10.查看结果-----------------------------------13 三、主力求解-----------------------------------14 1.冲击系数-----------------------------------14 2.活载发展均衡系数-----------------------------------14

钢桥课设任务书-0812102

钢桥课程设计 设计任务书 简支上承式焊接双主梁钢桥设计 (题目) 标准跨径L=30m~50m 学生姓名 学号 班级 成绩 指导教师钱宏亮唐海红陈国芳 土木工程系2010 —2011 学年第 1 学期 2011年7月4日

一、设计题目与基本资料 1.设计题目:简支上承式焊接双主梁钢桥设计 2.设计资料: 1)桥梁跨径:30m~50m 桥宽:净9~14+2×x 2)设计荷载 公路——I级或公路——II级,人群荷载3.0kN/m2~3.5kN/m2,,每侧的栏杆及人行道构件的自重作用力为5kN/m; 计算风荷载时,按照桥梁建于山东省威海市进行考虑 3)材料 设计用钢板: 型号16Mnq,即Q345qD,其技术标准应符合《桥梁用结构钢》GB/T 714-2008 Q345qD的设计参数为:弹性模量Es=2.1×105MPa,热膨胀系数为1.2×105/°,抗拉、抗压及抗弯强度f=295MPa,剪应力f v=170MPa,剪切模量G=0.81×105MPa; 型号为A3,即Q235qD,其技术标准应符合《桥梁用结构钢》GB/T 714-2008 其他普通钢筋:采用热轧R235、HRB335钢筋,凡钢筋直径≥12mm,均采用HRB335钢筋;凡钢筋直径<12mm,均采用R235钢筋 桥面板混凝土:C50微膨胀钢纤维混凝土,容重取25kN/m3 4)设计依据 参考书: 《现代钢桥》(上册),吴冲主编,人民交通出版社,2006年9月第一版,P117~P163 《钢桥》(第二版),徐君兰,孙淑红主编,人民交通出版社,2011年4月第二版,P9~P21 《钢桥构造与设计》,苏彦江主编,西南交通大学出版社,2006年12月第一版,P12~P28 设计规范: 《公路桥涵设计通用规范》JTJ 021-89 《公路桥涵钢结构及木结构设计规范》JTJ 025-86 《公路桥涵设计通用规范》JTG D60-2004 《公路工程技术标准》JTG B01-2003 《桥梁用结构钢》GB/T 714-2008 《钢结构设计规范》GB50017-2003 其他相关规范 注:1. 可变荷载中的汽车荷载(包括车道荷载和车辆荷载)取用《公路桥涵设计通用规范》

中南大学C++课程设计实践报告!

中南大学 本科生课程设计(实践)任务书、设计报告 (C++程序设计) 题目学生成绩管理系统 学生姓名 指导教师 学院 专业班级 学生学号 计算机基础教学实验中心 年月日

学生成绩管理系统 关键字:学生成绩 MFC 编写系统 内容:定义一个结构体,存放下列信息: 学号、姓名、性别、系名、班级名、成绩等 1.学生成绩管理系统开发设计思想 要求: 一:数据输入:输入学生的相关信息,若用户输入数据或信息不正确,给出“错误”信息显示,重复刚才的操作;至少要输入10个学生的数据;可以随时插入学生信息记录; 二:每个学生数据能够进行修改并进行保存; 三:可以根据学号或者姓名删除某学生数据; 四:查询模块要求能按学号,按姓名,按班级等条件进行查询; 五:界面要求美观,提示信息准确,所有功能可以反复使用。 学生成绩管理程序从总体设计方面来看,基本的功能包括主控模块,数据输入模块,数据修改模块,数据查询模块等。 设计模块图:

2.系统功能及系统设计介绍 详细设计: 对于总体设计说明的软件模块,进一步细化,要说明各个模块的逻辑实现方法。下面逐个说明。 主控模块:主要完成初始化工作,包括屏幕的初始化,显示初始操作界面。初始界面中主要包括功能的菜单选择项。 输入处理:利用链表技术输入多名学生的数据,直到输入学生的学号以“@”开头,则结束数据的输入。程序运行流程图如下:删除处理:利用链表技术删除某学号的学生成绩信息,如果找到该学号则进行删除,否则输出“未找到”的信息。程序运行流程图略。 查找处理:利用链表技术根据学生学号或姓名等方式查找某学号

的学生成绩信息,其程序流程图略。 排序处理:利用链表技术根据学生学号对学生数据进行排序,其 部分源代码如下:/***********xuesheng.c***********/ /******头文件(.h)***********/ #include "stdio.h" /*I/O函数*/ #include "stdlib.h" /*其它说明*/ #include "string.h" /*字符串函数*/ #include "conio.h" /*屏幕操作函数*/ #include "mem.h" /*内存操作函数*/ #include "ctype.h" /*字符操作函数*/ #include "alloc.h" /*动态地址分配函数*/ #define N 3 /*定义常数*/ typedef struct z1 /*定义数据结构*/ { char no[11]; char name[15]; char sex[5]; char major[15]; char class[15];

中南大学轨道工程课程设计

轨道工程课程设计 直线尖轨直线辙叉 60kg钢轨12号单开道岔平面布置设计 班级: 姓名:

学号: 指导老师: 完成时间: 第一部分 设计任务与要求 1. 确定转辙器主要尺寸 2. 确定辙叉和护轨几何尺寸 3. 选择导曲线半径 4. 计算道岔主要几何尺寸 5. 导曲线支距计算 6. 配轨计算 7. 配置岔枕 8. 绘制道岔总平面布置图 第二部分 设计资料 一、轨道条件 钢轨60kg/m ,标准长度12.5m ,区间线路轨枕根数:1760根/公里,道岔类型:钢筋混凝土Ⅱ。 二、道岔型式 (1)转辙器 直线尖轨,跟端支距mm y 1440 ,跟端结构为间隔铁夹板连接, 夹板l =820mm

(2)辙叉及护轨 直线辙叉,N =12,辙叉角'''49454o =α,辙叉趾距mm n 2127=,辙叉跟距 mm m 3800=。 (3)导曲线 圆曲线形,不设超高。 三、物理参数: 动能损失允许值:220/65.0h km =ω 未被平衡的离心加速度容许值20/65.0s m =α 未被平衡的离心加速度时变率容许值30/5.0s m =ψ 四、过岔速度 侧向过岔速度要求:h km V s /45= 五、道岔中的轨缝值 尖轨跟端及辙叉趾端轨缝为6mm ,其余为8mm 。 第三部分 提交资料 1.计算说明书; 2.图纸; 3.如果计算说明书和图纸有电子版,需提交一份电子版。 第四部分 设计计算 一、确定转辙器的几何尺寸 1、计算尖轨长度

尖轨转折角''66.35'114565.0arcsin arcsin 0?==???? ??=s V ωβ 根据设计资料:跟端支距:mm y 1440= 则尖轨长度为:()mm y l 46.8037' '66.35'11sin 144 sin 00=?== β 根据尖轨长度的取值原则,采用接近于计算长度的整数长度,所以取 mm l 80500= 则对应的尖轨转折角''9.29'118050144 arcsin ?=?? ? ??=β 2、计算基本轨尖端前部长度 由设计资料可知mm q 2646= 3、计算基本轨后端长度'q 整个基本轨取为一个标准轨长即L=12.5m ,则: ()mm l q L q 29.1805''9.29'11cos 8050264612500cos 0'=??--=--=β 二、确定辙叉及护轨的几何尺寸 1、确定趾距n P 和跟距m P 根据设计资料知辙叉角''49'454?=α 前端长度n =2127mm 所以:趾距mm n P n 79.1762''49'454sin 212722sin 2=???=?? ? ??=α 后端长度m =3800mm 跟距mm m P m 84.3152sin 2=?? ? ??=α 2、计算护轨工作边延展长度 护轨工作边延展长度示意图如图1所示。

西南交大钢桥课程设计讲解学习

第二章 主桁杆件内力计算 第一节 主力作用下主桁杆件内力计算 1恒载 桥面 p 1=10kN/m ,桥面系p 2=6.29kN/m,主桁架 p 3=14.51,联结系p 4=2.74kN/m , 检查设备 p 5=1.02kN/m , 螺栓、螺母和垫圈 p 6=0.02(p 2+p 3+p 4),焊缝 p 7=0.015(p 2+p 3+p 4) 每片主桁所受恒载强度 P=[10+6.29+14.51+2.74+1.02+0.02(6.29+14.51+2.74)+0.015(6.29+14.51+2.74)]/2 =17.69 kN/m , 近似采用 p =18 kN/m 。 2 影响线面积计算 (1)弦杆 影响线最大纵距12 l l y lH ?= 影响线面积12 l y Ω=? A1A3: 1218.4273.68 18.42,73.68,0.2, 1.16492.112.664 l l y α-?==== =-? ()1 92.1 1.16453.582 Ω=??-=-m E2E4:1227.6364.47 27.63,64.47,0.3, 1.52792.112.664 l l y α?==== =? 1 92.1 1.52770.332 Ω=??=m 其余弦杆计算方法同上,计算结果列于表中。 (2) 斜杆 ' '22 11,,sin sin l l y y l l θθ=?=?

1 1.236 sinθ === ()() ''' 1212 11 , 22 l l y l l y Ω=+?Ω=+? 式中' 111 1 ''' 1 88 , l l l y l y y y y y - === + E0A1: 12 82.89 9.21,82.89,0.1, 1.236 1.11 92.1 l l y α ====?= 1 92.1 1.1151.23 2 Ω=??=m A3E4:' 22 55,26 55.26,29.43, 1.2360.742 92.1 l l y ===?=, ' 11 29.439.210.742 1.2360.371, 6.14 92.10.7420.371 y l ? =-?=-== + , 6.14 0.1 55.26 6.14 α== + , '' 1 3.07 9.21 6.14 3.07,0.1 27.63 3.07 lα =-=== + , () 1 6.1455.260.74222.78 2 Ω=+?=m, ()() ' 1 3.0727.630.371 5.70 2 Ω=+?-=-m, 22.78 5.7017.08 Ω=-= ∑m 其余斜杆按上述计方法计算,并将结果列于表中。 (3)吊杆 1.0 y=, 1 118.429.21 2 Ω=??=m 3恒载内力 p N p =Ω ∑,例如 02 E E:18.030.14542.54 p N kN =?= 45 E A:() 18.0 5.4497.92 p N kN =?-=- 55 A E:18.09.21165.78 p N kN =?= 4活载内力 (1)换算均布活载k

48米下承式简支栓焊钢桁梁桥课程设计讲解

现代钢桥课程设计 学院:土木工程学院 班级:1210 姓名:罗勇平 学号:1208121326 指导教师:周智辉 时间:2015年9月19日

目录 第一章设计说明 .............................................. 错误!未定义书签。第二章主桁杆件内力计算 . (5) 第三章主桁杆件截面设计与检算 (14) 第四章节点设计与检算 (23)

第一章 设计说明 一、设计题目 单线铁路下承式简支栓焊钢桁梁设计 二、设计依据 1. 设计规范 铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸 计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁 节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角?=973.53θ,809.0sin =θ,588.0cos =θ。 3. 钢材及基本容许应力 杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用 BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。 4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接; 人行道托架采用精制螺栓连接。 连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精 制螺栓的杆径为22φ,孔径为mm d 23=。 5. 设计活载等级 标准中—活载。 6. 设计恒载 主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=; 高强度螺栓%3)(4326?++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327?++=p p p p 。 计算主桁恒载时,按桥面全宽恒载7654321p p p p p p p p ++++++=。 三、设计内容 1. 确定主桁型式及主要参数; 2. 主桁杆件内力计算(全部),并将结果汇制于2号图上; 3. 交汇于E 2、A 3节点(要求是两个大节点)的所有杆件截面设计与 检算;

钢桁架桥计算书-毕业设计之欧阳歌谷创编

目录 欧阳歌谷(2021.02.01)1.设计资料1 1.1基本资料1 1.2构件截面尺寸1 1.3单元编号4 1.4荷载5 2.内力计算7 2.1荷载组合7 2.2内力9 3.主桁杆件设计11 3.1验算内容11 3.2截面几何特征计算11 3.3刚度验算15 3.4强度验算16 3.5疲劳强度验算16 3.6总体稳定验算17 3.7局部稳定验算18 4.挠度及预拱度验算19 4.1挠度验算19

4.2预拱度19 5.节点应力验算20 5.1节点板撕破强度检算20 5.2节点板中心竖直截面的法向应力验算21 5.3腹杆与弦杆间节点板水平截面的剪应力检算22 6.课程设计心得23

1.设计资料 1.1基本资料 (1)设计规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86); (2)工程概况 该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。 (3)选用材料 主桁杆件材料采用A3钢材。 (4)活载等级 采用公路I级荷载。 1.2构件截面尺寸 各构件截面对照图

各构件截面尺寸统计情况见表1-1: 表1-1 构件截面尺寸统计表 编号名称类型 截面 形状 H B1 (B) tw tf1(tf ) B2tf2C 1下弦杆E0E2用户H型0.460.460.010.0120.4 6 0.012 2下弦杆E2E4用户H型0.460.460.0120.020.4 6 0.02 3上弦杆A1A3用户H型0.460.460.0120.020.4 6 0.02 4上弦杆A3A3用户H型0.460.460.020.0240.4 6 0.024 5斜杆E0A1用户H型0.460.60.0120.020.60.02 6斜杆A1E2用户H型0.460.440.010.0120.4 4 0.012 7斜杆E2A3用户H型0.460.460.010.0160.4 6 0.016 8斜杆A3E4用户H型0.460.440.010.0120.4 4 0.012 9竖杆用户H型0.460.260.010.0120.2 6 0.012 10横梁用户H型 1.290.240.0120.0240.2 4 0.024 11纵梁用户H型 1.290.240.010.0160.2 4 0.016 12下平联用户T型0.160.180.010.01 13桥门架上下横撑和短 斜撑 用户双角0.080.1250.010.01 0.0 1 14桥门架长斜撑用户双角0.10.160.010.010.0

中南大学课程设计报告

CENTRAL SOUTH UNIVERSITY 课程设计说明书 现代铝电解槽新型阳极结构设计 题目(单槽日产量2.4t,电流密度0.76A·cm-2) 学生姓名刘冬 专业班级冶金 00906 班 学生学号0503090706 指导教师伍上元 学院冶金科学与工程学院 完成时间2012年9月11日

目录 第一章概述 1.1现代铝电解槽结构发展趋势 (3) 1.2所设计电解槽阳极结构的特点 (4) 第二章铝电解槽结构简介 2.1 上部结构 (5) 2.1.1 阳极炭块组 (6) 2.1.2 阳极升降装臵 (6) 2.1.3 承重结构 (7) 2.1.4 加料装臵 (7) 2.1.5 集气装臵 (8) 2.2 阴极结构 (9) 2.2.1 槽壳与摇篮架 (10) 2.2.2 槽内衬 (11) 2.3 母线结构 (13) 2.3.1 阳极母线 (13) 2.3.2 阴极母线 (14) 2.4 绝缘设施 (15) 第三章铝电解结构计算 3.1 阳极电流密度 (15) 3.2 阳极炭块尺寸 (15) 3.3 阳极炭块数目 (17) 3.4 槽膛尺寸 (17) 3.5 槽壳尺寸 (17) 3.6 阴极碳块尺寸 (17) 第四章阳极结构设计 4.1 阳极炭块组 (18) 4.2 换极周期与顺序 (19) 4.3 阳极炭块质量要求与组装 (20) 4.3.1 阳极炭块质量要求 (20) 4.3.2 阳极组装 (21) 第五章参考文献 (22) 2

第一章概述 1.1现代铝电解槽结构发展趋势 20世纪80年代以前,工业铝电解的发展经历了几个重要阶段,其标志的变化有:电解槽电流由24kA、60kA增加至100-150kA;槽型主要由侧插棒式(及上插棒式)自焙阳极电解槽改变为预焙阳极电解槽;电能消耗由吨铝22000kW·h降低至15000kW·h;电流效率由70%-80%逐步提高到85-90%。 1980年开始,电解槽技术突破了175kA的壁垒,采用了磁场补偿技术,配合点式下料及电阻跟踪的过程控制技术,使电解槽能在氧化铝浓度变化范围很窄的条件下工作,为此逐渐改进了电解质,降低了温度,为最终获得高电流效率和低电耗创造了条件。在以后的年份中,吨铝最低电耗曾降低到12900-13200 kW·h,阳极效应频率比以前降低了一个数量级。 80年代中叶,电解槽更加大型化,点式下料量降低到每次2kg氧化铝,采用了单个或多个废气捕集系统,采用了微机过程控制系统,对电解槽能量参数每5s进行采样,还采用了自动供料系统,减少了灰尘对环境的影响。进入90年代,进一步增大电解槽容量,吨铝投资较以前更节省,然而大型槽(特别是超过300kA)能耗并不低于80年代初期较小的电解槽,这是由于大型槽采取较高的阳极电流密度,槽内由于混合效率不高而存在氧化铝的浓度梯度;槽寿命也有所降低,因为炉帮状况不理想,并且随着电流密度增大,增加了阴极的腐蚀,以及槽底沉淀增多,后者是下料的频率比较高,而电解质的混合程度不足造成的。尽管如此,总的经济状况还是良好的。 90年代以来,电解槽的技术发展有如下特点: (1)电流效率达到96%; (2)电解过程的能量效率接近50%,其余的能量成为电解槽的热损而耗散; (3)阳极的消耗方面,炭阳极净耗降低到0.397kg/kg(Al); (4)尽管设计和材料方面都有很大的进步,然而电解槽侧部仍需要保护性的炉帮存在,否则金属质量和槽寿命都会受负面影响; (5)维护电解槽的热平衡(和能量平衡)更显出重要性,既需要确保极距以产生足够的热能保持生产的稳定,又需要适当增大热损失以形成完好的炉帮,提高槽 寿命。 我国的电解铝工业可自1954年第一家铝电解厂(抚顺铝厂)投产算起,至2010年已有56年历史,在电解槽设计中,已掌握“三场”仿真技术,在模拟与优化方面采用了ANSYS 3

相关主题
文本预览
相关文档 最新文档