当前位置:文档之家› 大学物理课后习题答案第六章

大学物理课后习题答案第六章

大学物理课后习题答案第六章
大学物理课后习题答案第六章

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案

1. 电荷为q +和q 2-的两个点电荷分别置于

1

=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零?

解:根据两个点电荷对试验电荷的库仑力的

大小及方向可以断定,只有试验电荷0

q 位于点电

荷q +的右侧,它受到的合力才可能为0,所以

2

00

200)1(π4)1(π42-=

+x qq x qq εε

故 223+=x

2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?

解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以

2

220)3

3(π41

30cos π412a q q a q '=?εε

故 q q 3

3-

='

(2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1

λ的

一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2

λ的均匀带电直线段,该线段的一端

处于圆环中心处。求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1

λ=,dq 在带电圆环轴线

上x 处产生的场强大小为

)

(4220R x dq

dE +=

πε

根据电荷分布的对称性知,0==z

y

E E

2

3220)(41 cos R x xdq

dE dE x +=

=πεθ 式中:θ为dq 到场点的连线与x 轴负向的夹角。

?+=

2

32

2

0)

(4dq R x x

E x πε

2

32210)(24R x R

x

+?=

πλπε2

32201)(2R x x R +=

ελ

下面求直线段受到的电场力。在直线段上取

dx

dq 2λ=,dq 受到的电场力大小为

dq E dF x =dx R x x

R 2

322021)(2+=

ελλ 方向沿x 轴正方向。

R O

λ1

λ2

l

x

y

z

直线段受到的电场力大小为

?=dF F dx R x x

R l ?+=

02

3220

21)(ελλ2 ()??

????+-

=

2/1220211

1R l R R ελλ2 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求:

(1)圆心处O 点的场强;

(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为

2

0π4R

dq dE ε=

?ελ

d R 0π4= ,方向

沿半径向外

根据电荷分布的对称性知,0

=y

E

??ελ

?d R

dE dE

x

sin π4sin 0=

=

R

d R E x 000

π2sin π4ελ

??ελπ

==?

故 R

E

E x

0π2ελ

=

=,方向沿x 轴正向。 (2

)当将此带电半圆环弯成一个整圆后,

由电荷分布的对称性可知,圆心处电场强度为零。

5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。

解:建立图示坐标系。在均匀带电细直杆上

dx L q

dx dq ==λ,dq 在P 点产生的场强大小为

2

02044x dx

x dq dE πελπε=

=

,方向沿x 轴负方向。

故 P 点场强大小为 ?

?+==L d d

P

x dx

dE E 2

04πελ ()L d d q +π=04ε 方向沿x 轴负方向。

6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。

解:建立图示坐标系。将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。

在半球面上取宽度为dl 的细圆环,其带电量

rdl dS dq πσσ2?=?=θ

θπσd R sin 22?=, dq 在O

点产生场强大小为(参见教材中

L

d

q P x

O

O

R

x d

r

均匀带电圆环轴线上的场强公式)

2

32

2

0)

(4r x xdq dE +=

πε ,方向沿x 轴负方向

利用几何关系,θcos R x =,θsin R r =统一积分变量,得

2

32

2

0)

(4r x xdq dE +=

πε

θθπσθπεd R R R sin 2cos 41

2

3

0?=

θθθεσ

d cos sin 20

=

因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为

?=dE E θθθεσ

πd cos sin 22

/0

?

=

4εσ=

方向沿x 轴负方向。

7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。试求通过小孔中心O 并与平面垂直的直线上各点的场强。

解:应用补偿法和场强叠加原理求解。 若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为

σ

σ-='的半径为R 的带电圆盘,由场强叠加原理

知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。

“无限大”带电平面在P 点产生的场强大小为

12εσ=

E ,方向沿x 轴正方向

半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)

022εσ=

E )1(2

2x R x +-,方向沿x 轴负方向

故 P 点的场强大小为

2

2

0212x

R x

E E E +=

-=εσ

方向沿x 轴正方向。

8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少?

解:(1)由高斯定理

d εq

S E s

?=

???求解。立方体六

σ

O

R x

P

?

x

个面,当q 在立方体中心时,每个面上电通量相等,所以通过各面电通量为

6εq e =

Φ

(2)电荷在顶点时,将立方体延伸为边长a

2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量0

6εq

e

=

Φ

对于边长a 的正方形,如果它不包含q 所在的顶点,则0

24εq

e

=

Φ

,如果它包含q 所在顶点,则0

e

。 9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为1

σ和2

σ,试求空间各处场强。

解:如图所示,电荷面密度为

1

σ的平面产生的场强大小为

1

2εσ=

E ,方向垂直于该平面指向外

电荷面密度为2

σ的平面产生的场强大小为

22εσ=

E ,方向垂直于该平面指向外

由场强叠加原理得

两面之间,)(21

210

21σσε-=

-=E E E ,方向垂直于平面向

1

σ面左侧,)(21

210

21σσε+=

+=E E

E ,方向垂直于平面向

2

σ面右侧,)(21

210

21σσε+=

+=E E

E ,方向垂直于平面向

10. 如图所示,一球壳体的内外半径分别为

1

R 和2

R ,电荷均匀地分布在壳体内,电荷体密度

为ρ(0>ρ)。试求各区域的电场强度分布。

解:电场具有球对称分布,以r 为半径作同心球面为高斯面。由高斯定理∑?=

?i

S

q S d E 0

1

ερρ得

i

q r

E ∑=

?0

2

1

4επ

当1

R r <时,0=∑i

q ,所以 0=E

当2

1

R r R

<<时,)

3

434(3

13R r q

i

ππρ-=∑,所以

20

3133)

(r R r E ερ-=

当2

R r >时,)

3

434(3

132R R q

i

ππρ-=∑,所以

20

31323)

(r R R E ερ-=

11. 有两个均匀带电的同心带电球面,半径分别为1

R 和2

R (1

2

R R

>),若大球面的面电荷密度为

σ

,且大球面外的电场强度为零。求:(1)小球

面上的面电荷密度;(2)大球面内各点的电场强度。

解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。由高斯定理∑?=

?i

S

q S d E 0

1

ερρ得

i

q r E ∑=

?0

21

4επ

当2

R r >时,0=E ,0

442

12

2=?'+?=∑R R q

i

πσπσ,所以

σσ2

1

2)R R (

-='

(2)当1

R r <时,0=∑i

q ,所以

0=E

当21R r R <<时,2

2

2144R R q i πσπσ-=?'=∑,所以

22)εσ

r R E (

-=

负号表示场强方向沿径向指向球心。

12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。

解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆

到平板中心的距离均为x ,底面圆的面积为S ?。由高斯定理

∑?=

?i

S

q S d E 0

1ερρ得

=??

S

S d E ρρi q S E S E ∑=+??+??0

1

当2

d x <时(平板内部),S

x q

i

???=∑2ρ,所以

ερx E =

当2

d x >(平板外部),S

d q

i

???=∑ρ,所以

2ερd E =

13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。

解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。

i S

q rl E S E ∑=?=??

1π2d ε??

(1) 当R r <时, l

r q

i

2πρ?=∑,所以

2ερr E =

(2) 当R r >时,l

R q

i

2πρ?=∑,所以

r R E 0

2

2ερ=

14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。

解:取半径为r 、dr 的细圆环rdr dS dq πσσ2?==,则dq 在O 点产生的电势为

024εσπεdr

r

dq dV =

=

圆盘中心O 点的电势为

dr dV V R ??

==0

02εσ0

2εσR =

15. 真空中两个半径都为R 的共轴圆环,相距为l 。两圆环均匀带电,电荷线密度分别是λ+和λ

-。取两环的轴线为x 轴,坐标原点O 离两环中

心的距离均为2l

,如图所示。求x 轴上任一点的电

势。设无穷远处为电势零点。

解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为

2

2

0)2/(4R

l x dq

dV +-=

πε

右边带电圆环在P 产生的的电势为

??+-==+dq R

l x dV V 2

2

0)2/(41

πε

2

2

0)2/(2R

l x R

+-=

ελ

同理,左边带电圆环在P 产生的电势为

2

2

0)2/(2R

l x R

V ++-=

-ελ

由电势叠加原理知,P 的电势为

02ελR V V V =

+=-+-

+-22)2/(1

(R

l x )

)2/(12

2

R

l x ++

16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球

心的距离为R 31,b 点离球心的距离为R 3

2

。求a 、b 两点间的电势差ab

U

解:电场分布具有轴对称性,以O 为球心、作半径为r 的同心球面为高斯面。由高斯定理

∑?=

?i

S

q S d E 0

1ερρ得

当R r <时,30

2

3

41

4r r

E πρεπ?=

? ,所以 0

3ερr E =

a

、b 两点间的电势差为

?

?=b a

ab r d E U ρρ0

2

03/23

/183ερερR dr r R R ==?

17.细长圆柱形电容器由同轴的内、外圆柱面构成,其半径分别为a 和a 3,

两圆柱面间为真空。电容器充电后内、外两圆柱面之间的电势差为U 。求:

(1)内圆柱面上单位长度所带的电量λ; (2)在离轴线距离a r 2=处的电场强度大小。

解:(1)电场分布具有轴对称性,取同轴闭

合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。

i S

q rl E S E ∑=?=??0

1π2d ε?

?

内、外两圆柱面之间,l

q

i

λ=∑,所以

r

E 02πελ

=

内、外两圆柱面之间的电势差为

dr r

r d E U a

a

a a

?

?

=?=3032πελρρ

3ln 20

πελ

=

内圆柱面上单位长度所带的电量为

3

ln 20U

πελ=

(2)将λ代人场强大小的表达式得,3

ln r U E = 在离轴线距离a r 2=处的电场强度大小为

3

ln 2a U

E =

18. 如图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为R 2,现将另一正试验点电荷0

q 从O 点经过半圆弧移到C 点,求移动

过程中电场力作的功。

解:O 点的电势为

R

q V O 0π4ε=

0π40=-+

R

q

ε

C

点的电势为

R

q V C 3π40?=

εR

q 0π4ε-+R

q 0π6ε-

=

电场力作的功为 R

q q V V

q A o C O

00

π6)(ε=

-=

19.如图所示,均匀带电的细圆环半径为R ,所带电量为Q (0>Q ),圆环的圆心为O ,一质量为m ,带电量为q (0>q )的粒子位于圆环轴线上的P 点处,P 点离O 点的距离为d 。求:

(1)粒子所受的电场力F ρ

的大小和方向; (2)该带电粒子在电场力F

ρ

的作用下从P 点由静止开始沿轴线运动,当粒子运动到无穷远处时的速度为多大?

解:(1)均匀带电的细圆环在P 点处产生的场强大小为(参见教材中均匀带电圆环轴线上的场强公式)

2

3220)(41

d R Qd

E x +=

πε,方向沿OP 向右

粒子所受的电场力的大小

2

32

2

0)

(4d R qQd qE F x +=

=πε,方

向沿OP 向右

(2)在细圆环上取dq ,dq 在

P 点产生的电势为

r

dq dV 04πε=

2

2

04d

R dq +=

πε

P 点的电势为

??+==dq d R dV V 2

2

041

πε

22

04d

R Q +=

πε

由动能定理得,0

2

1)0(2

-=-=υ

m V q A

2

2

02d

R m qQ +=

πευ

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理第六章练习答案

大学物理第六章练 习答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章 热力学基础 练 习 一 一. 选择题 1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加; (C) 温度降低,熵增加; (D) 温度不变,熵不变。 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。 3. 一定量的理想气体,分别经历如图 1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。 判断这两过程是吸热还是放热:( A ) (A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。 4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。 二.填空题 图.2 图1

1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。 3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E -= -380 J 。 4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。 三.计算题 1. 一定量氢气在保持压强为4.00×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了6.0×104 J 的热量。 (1) 求氢气的摩尔数 (2) 氢气内能变化多少 (3) 氢气对外做了多少功 (4) 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量 解: (1)由,2 2 p m i Q vC T v R T +=?=? 得 4 22 6.01041.3(2)(52)8.3150 Q v mol i R T ??= ==+?+?? (2)4,5 41.38.3150 4.291022 V m i E vC T v R T J ?=?=??=???=? (3)44(6.0 4.29)10 1.7110A Q E J =-?=-?=? (4)44.2910Q E J =?=?

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3 2 2 0) (41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

式中:θ为dq 到场点的连线与x 轴负向的夹角。 ?+= 2 32 2 0) (4dq R x x E x πε 2 32210)(24R x R x +?= πλπε2 32201)(2R x x R += ελ 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 dq E dF x =dx R x x R 2 3 22021)(2+= ελλ 方向沿x 轴正方向。 直线段受到的电场力大小为 ?=dF F dx R x x R l ?+= 02 3220 21)(ελλ2 ()?? ????+- = 2/1220211 1R l R R ελλ2 方向沿x 轴正方向。 4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求: (1)圆心处O 点的场强; (2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。 解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为 20π4R dq dE ε= ?ελ d R 0π4= ,方向沿半径向外 根据电荷分布的对称性知,0=y E ??ελ ?d R dE dE x sin π4sin 0= = R d R E x 000 π2sin π4ελ ??ελπ ==? 故 R E E x 0π2ελ = =,方向沿x 轴正向。 (2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理答案第6章

大学物理答案第6章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章 气体动理论 6-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 6-2 一容器内储有氧气,其压强为1.01105 Pa ,温度为27℃,求:(l ) 气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 6-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

哈工程大学物理(下)作业答案(二)

哈工程大学物理(下)作业答案(二)

79. 一半径r=10cm 的圆形闭合导线回路置于均匀磁场B ( B=0.80T)中,B 与回路平面正交。若圆形回路的半径从t=0开始以恒定的速率(d r /d t=-80cm/s)收缩,则在t=0时刻闭合回路的感应电动势的大小是多少?如要求感应电动势保持这一数值,则闭合回路面积应以怎样的恒定速率收缩? 80. 一导线弯成如图形状,放在均匀磁场B 中,B 的方向垂直图面向里。.,600 a cd bc bcd ===∠,使导线绕 轴O O '旋转,如图转速为每分钟n 转。计算εoo’ ? ? 'O ? 解: 4 /32/32 122a a S ==

t BS ωΦcos =, 60/2n π=ω ∴ t BS t O O ωωΦsin )/d (d =-=' ?)60/2sin()60/2(nt BSn ππ= )60/2sin()120/3(2 nt B na ππ= 81. 电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照)/1(0 t t -=ωω的规律(ω 0和t 0是已知常数)随时间线性地减小,求圆形线圈中感应电流的大小和流向. 解:筒以ω旋转时,相当于表面单位长度上有环 形电流π ? 2ω L Q ,它和通电流螺线管的nI 等效.按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为: L Q B π=20 ω μ (方向沿筒的轴向) 筒外磁场为零.穿过线圈的磁通量为: L a Q B a 22 2 ωμΦ=π= 在单匝线圈中产生感生电动势为 = -=t d d Φ?)d d (22 t L Qa ω μ-0 2 02Lt Qa ωμ= 感应电流i 为 202RLt Qa R i ωμ= = ? i 的流向与

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg (B)(m +M )g tg (C)mg tg (D)Mg tg 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数 =,(1)今用水平 力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力 f =____5N____,m A 的加速度a A =. ( g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 , v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总 动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 F m A m B m M F θ A O B R v A v B x m 1m 2

大学物理学(课后答案解析)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v

解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ] (A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

大学物理活页作业答案全套(供参考)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r (2))(22SI j t i dt r d v )(2SI j dt v d a 8.解: 9.解:(1)设太阳光线对地转动的角速度为ω (2)当旗杆与投影等长时,4/ t 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y 已知y =y o ,v =v o 则2 020 2 121ky v C 2.质点运动学单元练习(二)答案 1.D 2.A 3. B

4.C 5.14 s m t dt ds v ;2 4 s m dt dv a t ;22 2 8 s m t R v a n ; 6.s rad o /0 .2 ;s rad /0 .4 ;2 /8 .0s rad r a t ; 7.解:(1)由速度和加速度的定义 )(22SI j i t dt r d v ;)(2SI i dt v d a (2)由切向加速度和法向加速度的定义 (3) )(1 22/322 SI t a v n 8.解:火箭竖直向上的速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得 9.解:s m u v /6.3430tan 10.解: l h v u ;u h l v 3.牛顿定律单元练习答案 1.C 2.C 3.A 4.kg Mg T 5.36721 ;2/98.02.0s m M T a 5.x k v x 2 2 ;x x x v k dt dx k dt dv v 222

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

大学物理5-6-10章答案

大学物理5-6-10章答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五章 气体动理论 练 习 一 一. 选择题 1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为1p 和2p ,则两者的大小关系是( C ) (A) 21p p >; (B) 21p p <; (C) 21p p =; (D) 不确定的。 2. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m. 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为( D ) (A) 2x v =m kT 3; (B) 2 x v = (1/3)m kT 3 ; (C) 2x v = 3kT /m ; (D) 2x v = kT/m 。 3. 设M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,0N 为阿伏伽德罗常数,下列各式中哪一式表示气体分子的平均平动动能( A ) (A) pV M m ?23; (B) pV M M mol ?23; (C) npV 2 3 ; (D) 023N pV M M mol ?。 4. 关于温度的意义,有下列几种说法,错误的是( B ) (A) 气体的温度是分子平动动能的量度; (B) 气体的温度是大量气体分子热运动的集体表现,具有统计意义; (C) 温度的高低反映物质内部分子运动剧烈程度的不同; (D) 从微观上看,气体的温度表示每个气体分子的冷热程度。 二.填空题 1. 在容积为10 2m 3的容器中,装有质量 100g 的气体,若气体分子的方均根速 率为200m/s ,则气体的压强为a p 5103 4?。 2. 如图1所示,两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为30K ,当水银滴在正中不动 时,N 2和O 2的温度为2N T = 210k ,2O T = 240k 。( N 2的摩尔质量为28×10-3kg/mol,O 2的摩尔质量为32×10-3kg/mol) ▆ N 2 O 2 图1

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024 kg ,月球的质量m =7.34l022kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大? 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理答案第六章

S v 图6-1 A v i B m 图6-2 第六章 气体动理论 6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强. 分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力. 解 以面积为S 的平板面为底面,取长度等于分子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nS v .每个分子与平板碰撞时,作用在平板上的冲力为2m v ,单位时间内平板所受到的冲力为根据压强的定义,分子与平板碰撞产生的压强为 6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式. 分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和.解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为(2)该分子每秒钟撞击容器次数为(3)每一次撞击给予器壁的冲量为(4)该分子每秒钟给予器壁的冲力为由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每秒钟给予器 壁的冲量为 其中.根据压强的定义,分子与器壁碰撞产生的压强为 其中为分子的平均平动动能. 6-3 容积为10 L 的容器内有1 mol CO 2气体,其方均根速率为1440km/h,求CO 2气体的压强(CO 2的摩尔质量为kg/mol ).

相关主题
文本预览
相关文档 最新文档