当前位置:文档之家› 红土镍矿化学分析方法

红土镍矿化学分析方法

红土镍矿化学分析方法
红土镍矿化学分析方法

铜原矿和尾矿化学分析方法

第11部分:钼量的测定

硫氰酸盐分光光度法

编制说明

1任务来源

根据“工信厅科[2013]163号”文件、全国有色金属标准化技术委员会“关于转发2013年第二批有色金属国家、行业标准制(修)订项目计划的通知”(有色标委[2013]32号)及相关会议纪要文件,《铜原矿和尾矿化学分析方法第11部分钼量的测定硫氰酸盐分光光度法》(计划号2013-1602T-YS)由北京矿冶研究总院负责起草,福建资金矿冶测试技术有限公司、杭州富春江冶炼有限公司、北京有色金属研究总院、北方铜业股份有限公司、中国有色桂林矿产地质研究院有限公司、厦门紫金矿冶技术有限公司协助起草。

2014年3月26日~29日全国有色金属标准化技术委员会在扬州组织召开了“铜原矿和尾矿化学分析方法系列行业标准任务落实会议”,会议确定了标准制定的起草单位和参与验证单位,落实了标准计划项目的进度安排和分工。

2014年9月22日~25日全国有色金属标准化技术委员会在嘉兴组织召开了“铜原矿和尾矿化学分析方法系列行业标准讨论会”,在此次会议上北京矿冶研究总院汇报了铜原矿和尾矿中钼量的测定标准起草的前期工作,专家对今后的标准制定提出了建议。

2015年3月24日~27日全国有色金属标准化技术委员会在无锡组织召开了“铜原矿和尾矿化学分析方法系列行业标准预审会”,北京矿冶研究总院形成了标准草案,并开展了标准验证等工作。

2标准编写原则和编写格式

本标准是根据GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写规则》和GB/T20001.4-2001《标准编写规则第4部分:化学分析方法》的要求进行编写的。

3标准编写的目的和意义

铜原矿是指从铜矿中直接采出的矿石,铜的平均品位不是很高,大多在百分之几以下。铜尾矿,是由矿石经粉碎,精选后所剩下的细粉砂粒组成。大量的尾矿堆积带来了严重的环境污染和资源浪费。由于矿产资源的日渐枯竭,尾矿作为二次资源,受到世界各国的重视。目前我国国家或行业标准中铜精矿有相应的化学分析方法标准,但铜原矿和尾矿方面还是一个空白。因此制定相应的铜原矿和尾矿化学分析方法,对促进保护环境和资源的综合利用具有重要的意义。

4国内外有关工作情况

钼的分析方法主要有重量法、光度法、极谱法等,现存的与铜矿有关的国家和行业标准主要有:GB/T 14353.9-2010《铜矿石、铅矿石、锌矿石矿化学分析方法第9部分钼量的测定》。GB/T 14353.9-2010《铜矿石、铅矿石、锌矿石矿化学分析方法第9部分铜量的测定》中有极谱法,测定范围为0.5 μg/g~10 μg/g,但其“3.7 精密度”给出的水平范围为0.4 μg/g~2.72 μg/g;光度法测定范

围为0.005 %~2 %,但其“4.7 精密度”给出的水平范围为0.0049 %~1.47 %;未对铜尾矿进行相应的实验研究。

本标准拟采用碳酸钠-过氧化钠熔融试样,硫氰酸盐分光光度法法测定铜原矿和尾矿中的钼含量。

5标准适用范围

本标准适用于铜原矿和尾矿中钼量的测定,测定范围:0.003%~0.040%。

6实验部分

实验部分见附件1。

7协同试验

7.1 样品的准备

北京矿冶研究总院、中条山有色金属集团有限公司、大冶有色设计研究院有限公司、福建紫金矿冶测试技术有限公司、铜陵有色金属集团控股有限公司技术中心、杭州富春江冶炼有限公司搜集、提供铜原矿和尾矿试样。

7.2 精密度试验

在精密度试验方面,7个实验室(见表1)对4个水平的样品进行试验,根据国家标准GB/T 6379.2-2004确定标准测量方法的重复性和再现性的基本方法(ISO 5725-2:1994,IDT)的规定,对收到的全部数据进行了统计分析。原始数据及统计结果见附件2。

表1 协同试验的实验室编号

7.3重复性

在重复性条件下获得的两次独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果的绝对差值不超过重复性限(r),超过重复性限(r)的情况不超过5%,重复性限(r)按表2数据采用线性内插法求得:

表2 重复性限

7.4再现性

在再现性条件下获得的两次独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果的绝对差值不超过再现性限(R),超过再现性限(R)的情况不超过5%,再现性限(R)按表3数据采用线性内插法求得:

表3 再现性限

8标准征求意见稿意见汇总与处理

在协同试验和标准审定过程中,我们共征求9项意见,对意见进行了分析和处理,详见附件3。9预期效果

《铜原矿和尾矿化学分析方法第11部分钼量的测定硫氰酸盐分光光度法》标准为推荐性国家标准,为首次采用硫氰酸盐分光光度法测定铜原矿和尾矿中的钼含量的方法。

北京矿冶研究总院测试研究所

李敏杨春林

2015年6月10日

附件1

铜原矿和尾矿化学分析方法

第1部分:钼量的测定硫氰酸盐分光光度法

实验报告

1 实验部分

1.1 仪器及试剂

Agient Cary 100紫外可见分光光度计,752N分光光度计(上海精科),马弗炉(适于加热至700 ℃以上),高铝坩埚(30 mL)盐酸,ρ1.19g/mL,分析纯。

1.1.1无水碳酸钠。

1.1.2过氧化钠。

1.1.3盐酸(ρ1.19 g/mL)。

1.1.4硝酸(ρ1.42 g/mL)。

1.1.5氢氟酸(ρ1.15 g/mL)。

1.1.6高氯酸(ρ1.67 g/mL)。

1.1.7硫酸(ρ1.84 g/mL)。

1.1.8氢氧化钠溶液(200 g/L)。

1.1.9氢氧化钠溶液(20 g/L)。

1.1.10盐酸(1+1)。

1.1.11硫酸(1+1)。

1.1.12硫酸铜溶液(2 g/L)。

1.1.13氯化铁溶液(2 g/L)。

1.1.14硫酸-硫酸铜混合溶液:称取0.2 g硫酸铜溶解于1 L硫酸(1+1)中。

1.1.15酚酞溶液(10g/L)。

1.1.16硫脲溶液(50 g/L)。

1.1.17抗坏血酸溶液(150 g/L)。现用现配。

1.1.18硫氰酸钾溶液(200 g/L)。

1.1.19钼标准贮存溶液:称取1.5003 g预先在500 ℃马弗炉中灼烧20 min并于干燥器中冷却至室温的三氧化钼(99.99 %),置于250 mL烧杯中,加入20 mL氢氧化钠溶液(1.1.8),加热溶解,冷却后移入1000m L塑料容量瓶中,用氢氧化钠溶液(1.1.9)稀释至刻度,混匀。此溶液1 mL含1 mg 钼。

1.1.20钼标准溶液:移取10.00 mL钼标准贮存溶液(1.1.19)于1000m L塑料容量瓶中,用氢氧化钠溶液(1.1.9)稀释至刻度,混匀。此溶液1 mL含10μg钼。

1.2 分析步骤

将试料置于30 mL 高铝坩埚中,加入0.5 g 无水碳酸钠、4 g 过氧化钠,用玻璃棒搅拌均匀,并以小片滤纸擦净玻璃棒,滤纸投入铝坩埚。置于低温的马弗炉中,逐渐升温至650 ℃~700 ℃,熔融10 min ,取出冷却。

注:样品中硫含量高时,先在马弗炉中逐步升温至500 ℃,灼烧1h 。

将坩埚置于200 mL 烧杯中,加入50 mL 热水,加盖表皿,待坩埚内熔融体全部脱落后,用适量水冲洗表皿,洗出坩埚,置于电炉煮沸2 min~3 min (如溶液呈绿色应加入数滴无水乙醇使锰的绿色褪去),直至无小气泡产生时取下,以流水冷却,移入100 mL 容量瓶中,用水稀释至刻度,混匀,用慢速滤纸干过滤,弃去初滤液。

按表1分取试液,置于100 mL 容量瓶中,加水至50 mL ,加入1滴酚酞溶液, 逐滴加入硫酸(1.1.11)至红色褪去,加入20mL 硫酸-硫酸铜混合溶液,混匀,用流水冷却至室温,再加入6 mL 硫脲溶液,混匀后静置20 min 。加入4 mL 硫氰酸钾溶液,用水稀释至刻度,混匀后静置20 min 。

将试液移入3 cm 比色皿中,以零浓度标准溶液作参比,于波长460 nm 处,测量试液及随同试料空白溶液的吸光度,从工作曲线上查出相应的钼量。

随同做空白实验。

表1 试料量及分取试液体积

于一系列100 mL 容量瓶中,以下按3.1.2步骤进行,以零浓度标准溶液为参比,于分光光度计460 nm 处测量吸光度,以钼量为横坐标,吸光度为纵坐标绘制工作曲线。

A

m/μg

图1 工作曲线

线性方程式为:y=0.003565x+0.00126,线性相关系数r=0.99961。 1.3 分析结果的计算

钼量以钼的质量分数w Mo 计,数值以%表示,按公式(1)计算: 6

1201

()10100Mo

m m V w mV --??=? (1)

式中:

m——试料的质量,单位为克(g);

m1 ——自工作曲线上查得的分取试料溶液中的钼量,单位为毫克(μg);

m2——自工作曲线上查得的试料空白溶液的钼量,单位为毫克(μg);

V1——分取试液的体积,单位为毫升(mL);

V0——试液的总体积,单位为毫升(mL)。

计算结果保留两位有效数字。

2 实验结果及讨论

2.1 称样量的选择

由于铜原矿和铜尾矿中钼含量较低,需要加大称样量来保证结果的准确性。根据样品中钼含量按表1选择试料称样量,精确至0.0001 g。

2.2溶样方式的选择

选取两种方式对样品进行分解处理,并进行显色分析。

方法一:按表1准确称取试料置于200 mL聚四氟乙烯烧杯中,用少量水润湿,加入20 mL盐酸、10 mL硝酸、5~10 mL氢氟酸、5 mL高氯酸,加热至近干,冷却。加入20 mL氢氧化钠溶液(1.1.8),用少量水润洗杯壁,加热至溶液近沸,取下,冷却至室温,移入100 mL容量瓶中,用水稀释至刻度,混匀,用慢速滤纸干过滤,弃去初滤液。以下按3.1.2步骤进行。

方法二:按表1准确称取试料于30 mL高铝坩埚中,加入0.5 g无水碳酸钠、4 g过氧化钠,用玻璃棒搅拌均匀,并以小片滤纸擦净玻璃棒,滤纸投入铝坩埚。放置于低温的马弗炉中,分别设置最高温度至550 ℃~600 ℃、650 ℃~700 ℃,熔融,取出冷却。以下按1.2步骤进行。

表2 溶样方式的选择

此选择方法二作为溶样方式,并将马弗炉温度设置为650 ℃~700 ℃。

2.3 比色波长的选择

分取10.00 mL 钼标准溶液(1.1.20)于100 mL 容量瓶中,用水补至50 mL ,加入1滴酚酞溶液,逐滴加入硫酸(1.1.11)至红色褪去,加入20mL 硫酸-硫酸铜混合溶液,混匀,用流水冷却至室温,再加入6 mL 硫脲溶液,混匀后静置20 min 。加入4 mL 硫氰酸钾溶液,用水稀释至刻度,混匀后静置20 min 。

将试液移入比色皿中,以试剂空白为参比,扫描上述溶液吸光度随波长变化趋势。根据仪器扫描谱图(扣除参比),选择比色波长为460 nm 。

图2 吸光度曲线

2.4 催化剂和还原剂的选择

为了选择合适的催化剂和还原剂及其用量和反应时间,分取10.00 mL 钼标准溶液(1.1.20)于100 mL 容量瓶中,以10 %H 2SO 4为介质,对其进行还原和发色,通过显色后吸光度对其进行优化选择。

2.4.1 以铜离子为催化剂 2.4.1.1 硫脲溶液为还原剂

以CuSO 4溶液(1.1.12)为催化剂,硫脲溶液为还原剂进行还原,还原时间40 min ,再加入4 mL 硫氰酸钾溶液,放置40 min 后比色。试验表明,在此条件下,CuSO 4溶液加入量对结果并没有明显影响,4 mL 硫脲溶液即可将钼完全还原。为了保证在实际样品中还原完全,选择加入6 mL 硫脲溶液。

表3 硫脲溶液和CuSO 4溶液不同加入量的吸光度

4表明,在此条件下,CuSO 4溶液加入量并没有明显影响,6 mL 硫脲溶液10 min 既可将钼完全还原。为了保证在实际样品中还原完全,选择还原时间为20 min 。

表4 硫脲溶液不同还原时间的吸光度

以CuSO4溶液(1.1.12)为催化剂,分别加入2、4、6、8、10 mL抗坏血酸溶液进行还原,40 min 后加入4mL硫氰酸钾溶液,放置40 min后比色。试液为悬浊液,且随着抗坏血酸加入量的增加,浑浊程度上升。

以CuSO4(1.1.12)溶液为催化剂,8 mL抗坏血酸溶液还原,还原时间分别为10 min、20 min、30 min、40 min、50 min,其他条件不变。发现随着时间的增加,溶液浑浊程度降低,但50 min以上尚未完全澄清。

实验表明,以铜为催化剂、硫脲溶液为还原剂时,6 mL的硫脲溶液10 min即可达到彻底还原的效果,优于以抗坏血酸为还原剂。

2.4.2以铁离子为催化剂

2.4.2.1硫脲溶液为还原剂

以FeCl3溶液(1.1.13)为催化剂,硫脲溶液为还原剂进行还原,40 min后加入4 mL硫氰酸钾溶液,放置40 min后比色,结果如表5所示。硫脲溶液加入量较少时,未能将Fe离子掩蔽,导致Fe离子与硫氰酸根反应,生成红色络合物,吸光度严重偏高;硫脲溶液加入量增大时,由于硫氰酸铁不易被还原褪色,体系也不够稳定,吸光度无序变化。

表5 硫脲溶液和FeCl3溶液不同加入量的吸光度

3

变。数据表明,体系不够稳定,吸光度无序变化。

表6 硫脲溶液不同还原时间的吸光度

以FeCl3溶液(1.1.13)为催化剂,抗坏血酸溶液为还原剂进行还原,40 min后加入4 mL硫氰酸钾溶液,放置40 min后比色。抗坏血酸能够较好地去除硫氰酸铁的影响,但在同等条件下,吸光度没有以CuSO4溶液为催化剂高。

表7 抗坏血酸溶液和FeCl3溶液不同加入量的吸光度

3

数据如表8所示。

表8 抗坏血酸溶液不同还原时间的吸光度

血酸溶液还原难以确定是否能完全去除硫氰酸铁的影响,且显色后吸光度较偏低。

综合上述数据可知,选用以铜离子为催化剂,硫脲溶液为还原剂时,反应灵敏,数据稳定,因此选择以1 mL CuSO4溶液(1.1.12)为催化剂、6 mL硫脲溶液还原,放置20 min后进行显色。

2.5 显色时溶液酸度的影响

移取10.00 mL钼标准溶液(1.1.20)于100 mL容量瓶中,加入1 mLCuSO4溶液(1.1.12),分别加入不同量的盐酸和硫酸,混匀,用流水冷却至室温,再加入6 mL硫脲溶液,混匀后静置20 min。加入4 mL硫氰酸钾溶液,用水稀释至刻度,混匀,放置40 min后测定其吸光度。

表9 显色时溶液酸度的影响(V/V)

实验中发现,当酸度越高时,试液显色越快,显色越完全。由表9数据可见,当酸度较低时,等待时间较长也不能使显色完全,而当试液中酸度较高时,很快就能完全显色。硫酸效果好于盐酸,因为硫酸中氢离子浓度高于盐酸中氢离子浓度。选择以10%硫酸为介质进行显色,考虑到碱融时过氧化钠和无水碳酸钠对酸的消耗,最终选择在试液中加入1滴酚酞溶液,逐滴加入硫酸(1.1.11)至红色褪去,加入20 mL硫酸-硫酸铜混合溶液(1.1.14)。

注:将硫酸铜与硫酸(1+1)配成混合溶液,一次加入,提高效率。

2.6 显色剂加入量和显色时间的选择

移取10.00 mL钼标准溶液(1.1.20)于100 mL容量瓶中,加入1 mLCuSO4溶液(1.1.12),加入1滴酚酞溶液,逐滴加入硫酸(1.1.11)至红色褪去,加入20mL硫酸-硫酸铜混合溶液,混匀,用流水冷却至室温,加入6 mL硫脲溶液,混匀后静置20 min。加入不同量的硫氰酸钾溶液,用水稀释至刻度,混匀,在460 nm处测定其吸光度。

表10 不同量显色剂和不同显色时间的吸光度

液20 min后即可保持稳定,并可维持至180 min。在20℃时,加入4 mL硫氰酸钾(2.18)显色之后20 min即可进行比色。

考虑到温度对硫氰酸盐聚合物的影响,对温度对吸光度的影响进行试验。利用水浴进行加热模拟室温,其他条件不变。数据如表11所示。

表11 温度对吸光度的影响

维持在20℃左右。若温度超过30℃,显色完全后应尽快进行测定,以防数据有误。

2.7 共存离子的干扰

铜原矿和尾矿中主要存在元素有Si、Al、Fe、Ca、Mg、K、Na、Cu、Pb、Zn、Mn、Ti及少量的Ni、Co、Cd等元素。其中二氧化硅含量最大60%,铁含量不超过50%,铝含量不超过15%,钙含量不超过20%,镁含量最大8%,K含量不超过5%,钠含量不超过5%,其它元素含量均不超过2%。在本实验中,碱融能够消除大部分Cu、Fe、Ni、Co、Mg、Ca等带来的干扰;碱融时加入无水碳酸钠,可以使铅与碳酸根沉淀,消除影响;在浸取时用热水,可以消除过氧化氢带来的干扰;无水乙醇的加入能够消除Mn的干扰。

分别移取1.00 mL、10.00 mL钼标准溶液(1.1.20)于100 mL容量瓶中,配置成钼含量10 μg、100 μg的溶液,加入不同种类和含量的金属离子作为基体,用水补至50 mL,以下按1.2步骤进行,于分光光度计460 nm处测量其吸光度,结果(已扣除基体空白)如表。

表12 单元素干扰试验

表13 混合干扰试验

围内。

2.8 检出限

测定空白溶液11次,以浓度标准偏差的3倍所对应的浓度作为检出限。经检测,方法检出限如表14所示。

表14 方法检出限

分别对不同钼量的铜原矿和尾矿样品进行了11次独立实验,测定结果如下:

表15 试样分析结果

S X X G 1

1-=

,S

X X G n n -=,分析结果见表16。结果表明本方法不同水平11次分析数据无异常值,方法重复性好。

表16 试样测定结果异常值分析

在试料中加入一定量的钼矿石标准样品GBW07143(GMo-3),按照试验方法操作,进行加标回收实验,所得结果见表15。

表15 加标回收率

2.11 分光光度法与ICP 检测结果比对

采用20 mL 盐酸、10 mL 硝酸、5~10 mL 氢氟酸、5 mL 高氯酸消解样品后,在5 %硝酸介质下,利用ICP-AES 法测定样品中钼含量,独立进行3次,取其平均值,与本试验方法进行比对。

表16 本法与ICP-AES 法测定结果

由以上实验结果可以看出, 硫氰酸盐分光光度法法测定铜原矿和尾矿中0.003%~0.040%的钼是可行的,结果准确度高,精密度好,满足测定要求。

附件2

精密度试验统计分析

1 背景

为了确定《铜原矿和尾矿化学分析方法第11部分钼量的测定硫氰酸盐分光光度法》中钼量测定方法的重复性与再现性,7个实验室对4个水平的铜原矿和尾矿样品进行了协同试验。根据国家标准GB/T 6379.2-2004确定标准测量方法的重复性和再现性的基本方法(ISO 5725-2:1994,IDT)的规定,对收到的全部数据进行了统计分析。

2 各实验室实验数据

表1 各实验室提供的实验数据(%)

3一致性和离群值的检查

3.1 柯克伦检验

表2 柯克伦检验

柯克伦检验显示,水平4出现岐离值(继续参加后续计算)。为防止一个实验室内较高的变异来自某个测试结果,对每个实验室每个水平的数据进行格拉布斯检验,发现实验室7在水平2最大值离群(Gmax=2.403,而在n=9,a=0.05时,舍弃值为2.110;n=9,a=0.01时,舍弃值为2.323),然而由于此水平数值较低,对此数据予以保留。

3.2 格拉布斯检验

表3 格拉布斯检验

格拉布斯检验显示,对水平3,出现岐离值;对水平4,出现离群值。水平4剔除离群值,再次格拉布斯检验,无离群值或岐离值,因此实验室7水平4单元数据予以剔除。经离群值判断后的格拉布斯检验结果见表4。

表4格拉布斯检验(剔除离群值后)

4 S r、S R、R与r的计算

表5 S r、S R、R与r的计算

附件3

标准征求意见稿意见汇总处理表

标准项目名称:铜原矿和尾矿化学分析方法第11部分钼量的测定硫氰酸盐分光光度法

纯铂化学分析方法

纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬、铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体原子发射光谱法 实验报告 年月

纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬、铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体原子发射光谱法 李秋莹、何姣、方海燕、孙祺、王应进 前言 随着化工、化学、医药、催化等行业和材料学科的快速发展,市场对纯铂及其电子产品的需求快速增长,贵研铂业股份有限公司正发展成为铂原材料及其深加工产品的重要生产基地。我公司用于生产合金材料、催化剂、铂网、抗癌药的纯铂在不断增长。铂中杂质元素含量的高低直接影响其材料、产品的电学性能、力学性能、加工工艺和使用寿命。因此,催化、医药、材料研究和生产经营都需要更快、更准确的掌握其杂质元素含量的信息,这就对铂中杂质元素分析提出了快速、准确的要求。 目前国内外在铂纯度检测的标准方法有粉末法[]。该方法主要分析对象为粉末试样,对海绵样品的处理相对简单,不易污染,但对金属块屑状样品的处理就相对复杂繁琐了。全过程至少需要个工作日。此外,该方法粉末标准样品的配制,不但要消耗大量昂贵的高纯贵金属作为基体,而且还需花费大量的人力、物力和时间。 资料调研表明,为解决粉末法的不足,采用溶液进样、-(电感耦合等离子体原子发射光谱法)或-(电感耦合等离子体质谱法)测定纯铂中微量杂质元素已成为近年来的一种发展趋势[]。我们研究的纯铂分析方法,在不使用铂基体匹配的条件下,完全满足产品标准规定元素测定要求。 用基体配制合成样进行检出限及干扰实验,用样品进行了准确度及精密度考察,样品加标回收率为%~%,相对标准偏差()为%%。 、实验部分 仪器及工作条件 美国公司型电感耦合等离子体原子发射光谱仪。工作条件列于表。 表. 仪器工作条件

红土镍矿概况简介

红土镍矿概况简介 一、红土镍矿来源及成分 1、红土镍矿的来源 表1-6 红土镍矿资源在各地区的分布状况 国家或地区资源/Mt 镍品位/% 含镍量/% 占总量的比例/% 澳大利亚2452 0.86 21 13.1 非洲996 1.31 13 8.1 中、南美洲1131 1.51 17 10.6 加勒比海944 1.17 11 6.9 印度尼西亚1576 1.61 25 15.7 菲律宾2189 1.28 28 17.4 新喀里多尼亚2559 1.44 37 22.9 亚洲和欧洲506 1.04 5 3.3 其他269 1.18 3 2.0 总计12621 1.28 161 100 2、红土镍矿的成分 1)低镍高铁矿 Ni Fe H2O P SiO2 MgO CaO 0.6%-1.0% 48%-52% 30%-35% 0.003%-0 .009% 3.0%-6.0% 0.5%-2.8 % 0.01%-0.1% 2)中镍高铁矿 Ni Fe H2O P SiO2 MgO CaO 1.3%-1.7% 25%-40% 30%-40% 0.003%-0 .009% 3.0%-6.0% 0.5%-2.8 % 0.01%-0.1% 3)高镍低铁矿

Ni Fe H2O P SiO2 MgO CaO 1.7%- 2.1% 13%-18% 30%-35% 0.003%-0 .009% 3.0%-6.0% 0.5%-2.8 % 0.01%-0.1% 二、红土镍矿冶炼工艺 目前,世界上投产的红土镍矿处理方法如下: 还原造锍熔炼-吹炼-高锍镍精矿 火法镍铁 还原镍铁熔炼-吹炼 红土镍矿精练-电镍 选择性还原焙烧-常压氨浸 湿法 加压酸浸 1 红土镍矿的火法处理工艺 还原熔炼生产镍铁 世界上用得最多的火法处理工艺是还原熔炼生产镍铁。其原则工艺流程见图1-2。由于原矿含有大量附着水和结晶水,所以熔炼前的炉料准备主要是脱水和干燥。一般是在干燥窑内脱除附着水,在较长的回转窑内于较高的温度下焙烧,进一步把结晶水排除,同时炉料得到预热以节约电炉能耗。出窑炉料温度为980℃~1000℃,直接送入电炉上面的料仓中,经还原熔炼制取高碳镍铁,其可以做冶炼不锈钢的原料,但大部分用于精炼[36]。 就还原熔炼的设备而言,较大生产规模的工厂大都采用电炉熔炼,少数几个小厂采用鼓风炉熔炼。鼓风炉熔炼生产镍铁的优点是投资小、能耗较低,适合规模小、电力供应困难以及含镍较低的红土矿区;它的缺点是对矿石适应性差,对镁含量有较严格的要求,另外也不能处理粉矿,对入炉炉料也有严格的要求。电炉熔炼的工艺适合处理各种类型的氧化镍矿。生产规模可依据原料的供应情况决定,可大可小,对入炉炉料业没有严格要求,粉料或大块料都可以处理,但缺点是能耗太大[15,37-39]。

红土镍矿概述

红土镍矿 1.镍矿概述 目前,已探明陆地上的镍矿资源中,镍金属的工业储量约为八千万吨,镍矿物主要以硫化镍矿和镍红土矿(也称红土镍矿)两种形式存在,其中硫化镍矿约占20%、镍红土矿大约75%、硅酸镍矿占5%,镍矿的开发利用以硫化镍矿和镍红土矿为主,主要产镍国加拿大、俄罗斯、澳大利亚、新喀里多尼亚、印度尼西亚、菲律宾、古巴、中国。 1.1硫化镍矿 硫化镍矿主要以镍黄铁矿(Fe,Ni)9S8、紫硫镍铁矿(Ni2FeS4)、针镍矿(NiS)等游离硫化镍形态存在,有相当一部分镍以类质同象赋存于磁黄铁矿中,按镍含量不同,原生镍矿可分为三个等级: 特富矿:Ni≥3%,富矿:1%≤Ni≤3%,贫矿:0.3%≤Ni≤1% 1.1.1硫化镍矿的分布 加拿大:萨德伯里镍矿带、林莱克-汤普森镍矿带; 俄罗斯:科拉半岛镍矿带、西伯利亚诺里克斯镍矿区; 澳大利亚:坎巴尔达镍矿 中国:金川镍矿带、吉林磐石镍矿带 芬兰:科塔拉蒂镍矿带 1.1.2硫化镍矿的选矿处理方式 绝大多数的原生硫化镍矿的镍含量都低于3%,对于镍含量在0.3-1%

的硫化镍矿则需要进行选矿处理。在含铜的硫化镍矿中,镍主要呈镍黄铁矿、针硫镍矿、紫硫镍矿等游离硫化镍形态存在,此类硫化镍矿主要用丁基或戊基等高级黄药有效浮选。浮选后的镍精矿可分为镍含量从3%到8%每相差0.5%分一个级,共有11个级别: 特级品Ni≥8%,一级品7.5%≤Ni≤8% …… 九级品3.5%≤Ni≤4%十级品3%≤Ni≤3.5% 1.1.3硫化镍矿提镍方式 硫化镍原矿(浮选)----镍精矿(鼓风炉熔炼)----低冰镍(转炉吹炼)----高冰镍(加硫酸常压,高压浸出)----硫酸镍(电解)---电解镍。 1.2镍红土矿 在氧化镍矿中,镍红土矿含铁高,含硅镁低,含镍为1%~2%;硅酸镍所含铁低,含硅镁高,含镍为 1.6%~4.0%。目前,氧化镍矿的开发利用是以镍红土矿为主,它是由超基性岩风化发展而成的,镍主要以镍褐铁矿(很少结晶到不结晶的氧化铁)形式存在。 1.2.1镍红土矿的分布: 新喀里多利亚镍矿带 印度尼西亚:摩鹿加镍矿带、苏拉威西镍矿带; 菲律宾:巴拉望地区镍矿带; 澳大利亚:昆士兰镍矿带; 巴西:米纳斯吉拉斯镍矿带、戈亚斯镍矿带; 古巴:奥连特镍矿带

(强烈推荐)红土镍矿湿法冶炼可行性研究报告

2×1.5万吨年红土镍矿湿法冶炼项 目 可行性分析 2010年4月25日 目录

一、概况 二、建设规模及厂址的选择 三、产品方案 四、原料来源 五、工艺流程 六、三废治理和环境保护 七、投资估算 八、销售收入、生产成本及损益测算 一、概况 全球陆基镍储量约为12000万吨,其中40%为硫化矿,60%为氧化矿(红土矿),硫化矿主要分布在俄罗斯、加拿大和中国,总量约5000万吨,目前镍产量的60%来自硫化矿。硫化矿资源经过多年开采,资源已逐渐枯竭,最近十多年未见有发现大型硫化镍矿的报道,为满足世界经济发展对镍的需求,普遍已将目光转向开发红土矿型镍资源。红土矿资源的特点:1)资源丰富,埋藏浅,易勘探,均为露天开采,采矿成本低。2)伴生钴含量高,钴可以分摊部分镍成本。 3)红土矿产于热带、亚热带、大多濒临海洋,交通运输方便。 发达国家依靠雄厚资金,先进技术和国际经营经验,在国

际矿业全球化的竞争中已先走一步。目前国外的许多知名镍生产企业都已涉足红土矿开发,部分已取得了实质性进展。例如鹰桥公司与BHP公司合作开发的印度尼西亚含镍红土矿项目,Inco公司在印尼以及新喀里多尼亚开发的红土矿项目等。 由于硫化镍可供开发资源的明显减少,世界未来十年镍产量的增加将主要来源于红土型镍矿资源的开发,而红土型镍矿资源开发中,湿法技术发展趋势大于铁镍火法冶炼技术;虽然湿法技术与红土型镍矿的火法冶炼厂的投资成本大体相当,即年生产能力每磅镍8~12美元。但是随着湿法技术的日趋成熟、设备制造技术的进步和规模的扩大,湿法镍厂在下一轮兴建或扩建项目中,其基建投资将会明显下降;湿法工艺的生产成本在一般情况下低于铁镍流程,加上湿法耗能明显低于铁镍流程。因此,在经济上,湿法技术将显示出其优越性; 国内目前处理红土镍矿大部分都是采用火法生产镍铁或镍铬合金,但最近已有三个常压酸浸的项目投产,其中广西银亿科技矿冶有限公司(年产5000吨电积镍,300吨碳酸钴)运营状况较好,正在扩建二期5000吨年项目,并且配套建设从废水中提取镁盐产品的生产线。 二、建设规模及厂址选择

浅谈用回转窑处理红土镍矿

浅谈用回转窑处理红土镍矿 一、红土镍矿概述 红土镍矿资源为硫化镍矿岩体风化―淋滤―沉积形成的地表风化壳性矿床,世界上红土镍矿分布在赤道线南北30度以内的热带国家,集中分布在环太平洋的热带―亚热带地区,主要有:美洲的古巴、巴西;东南亚的印度尼西亚、菲律宾;大洋洲的澳大利亚、新喀里多尼亚、巴布亚新几内亚等。我国镍矿资源储量中70%集中在甘肃,其次分布在新疆、云南、吉林、四川、陕西和青海和湖北7个省,合计保有储量占全国镍资源总储量的27%。 世界上可开采的镍资源有二类,一类是硫化矿床,另一类是氧化矿床。由于硫化镍矿资源品质好,工艺技术成熟,现约60%~70%的镍产量来源于硫化镍矿。而世界上镍储量的65%左右贮存在氧化镍矿床中,氧化镍矿由于铁的氧化,矿石呈红色,所以统称为红土矿。但实际上氧化镍矿分为几种类型,一种是褐铁矿类型,位于矿床的上部,铁高镍低,硅镁低,但钴含量比较高,这种矿宜采用湿法工艺;另一种类型为硅镁镍矿,位于矿床的下部,硅镁含量比较高,铁含量低,钴含量比较低,但镍含量较高,这种矿宜采用火法工艺。而处于中间过渡的矿石可以采用火法工艺也可以采用湿法工艺。见下表: 类型(%)Ni Co Fe MgO SiO2Cr2O3工艺 褐铁矿0.8-1.50.1-0.240-500.5-5.010-302-5湿法 硅镁矿低镁 1.5-2.00.02-0.125-405-1510-301-2火、湿高镁 1.5-3.00.02-0.110-2515-3530-501-2火法 二、我国镍铁行业现状 镍是略带黄色的银白色金属,是一种具有磁性的过渡金属。镍的应用在于镍的抗腐蚀性,合金中添加镍可增强合金的抗腐蚀性能。不锈钢与合金生产领域是镍最广泛应用领域。全球约2/3的镍用于不锈钢生产,因此不锈钢行业对镍消费的影响居第l位。镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。目前全球有色金属中,镍的消费量仅次于铜、铝、铅、锌,居有色金属第5位。因此,镍被视为重要战略物资,一直为各国所重视。 镍铁主要成分为镍与铁,同时还含有Cr、Si、S、P、C等杂质元素。根据国际标准(ISO)镍铁按含镍量分为FeNi20(Ni15%~25%)、FeNi30(Ni25%~35%)、FeNi40(Ni35%~45%)和FeNi50(Ni45%~60%)。又再分为高碳(C 1.0%~2.5%)、中碳(C0.030%~1.0%)和低碳(C<0.03%);低磷(P<0.02%)与高磷(P<0.030%)镍铁。 我国不锈钢和电池行业的快速发展,国内镍产品供应将面临长期短缺的局面。2005年以来国际市场镍价非理性的不断上涨对国内钢铁业发展构成了新的挑战。我国民营企业使用火法冶炼从菲律宾和印度尼西亚进口的红土镍矿矿石,大量生产镍铁合金作为冶炼不锈钢的配料,成功狙击了国际市场的疯狂炒作,镍价大幅下降,市场将逐步恢复理性。 我国镍金属生产技术已有重大突破,拥有自主知识产权,红土镍矿经高炉冶炼镍铬生铁,

红土镍矿湿法冶炼项目可行性分析

红土镍矿湿法冶炼项目可行性分析 2011-5-19 10:30:33 来源:互联网浏览 1028 次收藏我来说两句 2×1、5万吨/年红土镍矿湿法冶炼项目可行性分析 2010年4月25日 目录 一、概况 二、建设规模及厂址得选择 三、产品方案 四、原料来源 五、工艺流程 六、三废治理与环境保护 七、投资估算 八、销售收入、生产成本及损益测算 一、概况 全球陆基镍储量约为12000万吨,其中40%为硫化矿,60%为氧化矿(红土矿),硫化矿主要分布在俄罗斯、加拿大与中国,总量约5000万吨,目前镍产量得60%来自硫化矿。硫化矿资源经过多年开采,资源已逐渐枯竭,最近十多年未见有发现大型硫化镍矿得报道,为满足世界经济发展对镍得需求,普遍已将目光转向开发红土矿型镍资源。红土矿资源得特点:1)资源丰富,埋藏浅,易勘探,均为露天开采,采矿成本低。2)伴生钴含量高,钴可以分摊部分镍成本。 3)红土矿产于热带、亚热带、大多濒临海洋,交通运输方便。 发达国家依靠雄厚资金,先进技术与国际经营经验,在国际矿业全球化得竞争中已先走一步。目前国外得许多知名镍生产企业都已涉足红土矿开发,部分已取得了实质性进展。例如鹰桥公司与BHP公司合作开发得印度尼西亚含镍红土矿项目, Inco公司在印尼以及新喀里多尼亚开发得红土矿项目等。

由于硫化镍可供开发资源得明显减少,世界未来十年镍产量得增加将主要来源于红土 型镍矿资源得开发,而红土型镍矿资源开发中,湿法技术发展趋势大于铁镍火法冶炼技术;虽然湿法技术与红土型镍矿得火法冶炼厂得投资成本大体相当,即年生产能力每磅镍8~12美元。但就是随着湿法技术得日趋成熟、设备制造技术得进步与规模得扩大,湿法镍厂在下一轮兴建或扩建项目中,其基建投资将会明显下降;湿法工艺得生产成本在一般情况下低于铁镍流程,加上湿法耗能明显低于铁镍流程。因此,在经济上,湿法技术将显示出其优越性。 国内目前处理红土镍矿大部分都就是采用火法生产镍铁或镍铬合金,但最近已有三个 常压酸浸得项目投产,其中广西银亿科技矿冶有限公司(年产5000吨电积镍,300吨碳酸钴)运营状况较好,正在扩建二期5000吨/年项目,并且配套建设从废水中提取镁盐产品得生产线。 二、建设规模及厂址选择 国内外红土镍矿湿法冶炼单项目得镍产量规模大多在3万吨以下,国际上比较著名得如古巴毛阿湾得规模3万吨/年;尼加罗切格瓦那2、3万吨/年;澳大利亚得雅布鲁3万吨/年;澳大利亚布隆0、9万吨/年;考斯0、9万吨/年;澳大利亚得莫林莫林得设计规模4、5万吨/年(实际产能3、5万吨/年),国内广西银亿与江西江锂得设计产能5000吨/年,云南元江设计能力为3000吨/年。目前广西银亿正在进行技术改造将现有产能扩大到10000吨。江西江锂也有计划新建1、5万吨/年得项目。 结合江铜得实际情况,并考虑红土镍矿资源得供应现状,拟将建设规模定为2×1、5万吨/年金属镍,同时配套建设2×30万吨/年硫铁矿循环经济项目,可以为湿法冶炼提供硫酸、蒸汽及电力。 红土镍矿湿法冶炼生产耗水耗酸量大、用地多及物流量大,必需依赖大容量物流通道,为降低企业成本、打造核心竞争力,项目得选址需要考虑得主要因素有:主要原材料(硫酸、石灰与红土镍矿)得物流成本、物流吞吐量、可就近选址建设尾矿库堆存酸浸废渣、工业基础设施完备等。 经过考察与调研,我们认为瑞昌市码头镇工业园建设条件相对较好,主要情况如下:1、土地供应充裕。工业城规划面积有78平方公里,目前工业城内暂无大得企业进驻,能够预留数千亩土地,工业城内路域平阔,岸坡平缓,平整量小,可满足园区集约化与可持续发展要求。 2、区位交通便捷。境内105、316国道与九景高速、昌九高速、赣粤高速、沪蓉高速与杭瑞高速交织贯通,公路交通优势明显;铁路货运站白杨站、夏畈站距工业城分别只有14公里、7公里;长江岸线全长19、5公里,主航道深泓线紧贴南岸,为双向航道,属长江一级主航道,常年适应2000吨级以上船舶作业,最大停泊能力为万吨级海轮,境外矿石可由江海联运直达专用码头,物流成本较低。相对于把建设地址选在德兴铜矿做了物流成本对比(见表1) 3、供

钽铌化学分析方法

钽铌化学分析方法 第部分:钽中铌含量的测定 电感耦合等离子体原子发射光谱法和色层分离重量法 编制说明 (征求意见稿) 宁夏东方钽业股份有限公司

钽铌化学分析方法 第部分:钽中铌含量的测定 电感耦合等离子体原子发射光谱法和色层分离重量法 编制说明 一、工作简况 项目来源 根据国家标准化管理委员会《国家标准委关于下达年第三批国家标准制修订计划的通知》(国标委综合[]号)的文件精神,由宁夏东方钽业股份有限公司负责《钽铌化学分析方法第部分:钽中铌含量的测定电感耦合等离子体原子发射光谱法和色层分离重量法》国家标准的起草任务,计划编号为,项目完成年限为年月。 项目所涉及的方法简况 钽具有耐腐蚀性、化学稳定性高、冷加工性能好和表面氧化膜介电常数大等优点,有许多重要用途。钽主要用做制作钽电解电容器,具有电容量大、漏电流小、等效串联电阻低、稳定性好、可靠性高、耐压性能好、寿命长、体积小等突出特点,是一种用途极其广泛的功能材料。钽钨、钽钨铪、钽铪合金,比任何别的材料更能经受高温和矿物酸的腐蚀,可作为飞机、导弹、火箭的耐热高强度材料以及控制、调节装置的零部件等。铌具有细化钢中晶粒的能力,在钢中加入极少量铌,能大大提高钢的强度,改善钢的机械和焊接性能,提高抗腐蚀性能。铌可用做电容器、铌基高温合金、超导材料等。铌和钽还用作骨科和外科手术材料。碳化钽用于制作超硬工具的添加剂。氧化钽可以用于制造高级光学玻璃和催化剂等。 该标准是采用电感耦合等离子体原子发射光谱法和色层分离重量法进行检测,钽中铌含量检测范围~。标准中包含测试原理、所用试剂、样品处理、分析和结果计算方法。 起草单位情况 宁夏东方钽业股份有限公司是集科研、生产与技术开发为一体的国有大型稀有金属企业,是国内最大的钽、铌产品生产基地,科技先导型钽、铌研究中心;是国家重点高新技术企业、国家首批创新型企业、国家成果产业化基地、全国专利工作试点企业和国家级企业技术中心;是国际钽铌研究中心()执委单位;是世界钽工业三强之一。 公司在钽、铌及其合金技术领域具有雄厚的研究开发实力,在国内同行业中处于技术领先地位。其综合实力代表了我国钽、铌工业的整体水平,是我国国防、核能、宇航、电子、冶金和化工工业等高新技术领域里的一个极为重要的稀有金属材料研究、开发、成果转化为一体的综合基地。几十年来承担了我国钽铌特种金属材料领域绝大部分国家级科研和产业化项目,多项成果获国家级、省部级科技进步奖。公司拥有用于科研开发的价值达亿元以上的仪器设备,仪器的自动化与精度已经达到了国际先进或国内领先的水平。 宁夏东方钽业股份有限公司分析检测中心成立于年,检测能力涵盖钽铌钛产品和原辅材料的化学成分分析、气体成分分析和电性能检测,并在实验室内部建立了标准化的检测方法和作业指导书。年以来,负责起草了《钽铌化学分析方法第部分:铌中钽含量的测定》、《钽铌化学分析方法第部分:钼含量和钨含量的测定》、《钽铌化学分析方法第部分:碳含量和硫含量的测定》、《钽铌化学分析方法第部分:钽中铁、铬、镍、锰、钛、铝、铜、锡、铅和锆含量的测定》、《钽铌化学分析方法第部分:钽中磷含量的测定》、《钽铌化学分析方法第部分:氮含量的测定》、《钽铌化学分析方法第部分:氧含量的测定》、《钽铌化学分析方法第部分:氢含量的测定》、《钽铌化学分析方法第部分:钠含量和钾含量的测定》、-《钽粉电性能试验方法》,并先后参与了国家军用标准《铍化学分析方法铬量、锰量和镁量的测定》、《铍化学分析方法钐量、铕量、钆量和镝量的测定》、行业标准《海绵钛、钛及钛合金化学分析方法多元素含量的测定》、《铪化学分析方法杂质元素的测定》等国家标准和行业标准的制修订工作。 主要工作过程 ()根据年月~月,在接到标准制定任务后,成立了《钽铌化学分析方法第部分:钽中铌含量的

红土镍矿小常识

红土镍矿小常识 摘要:我国自2006年起开始大量进口红土镍矿,至今进口量已达1亿吨以上,且正呈逐年递增的趋势发展。但用户对红土镍矿的成因、基本成份、以及分布环境缺乏了解,所以撰此文进行简单描述,以便国内用户更好的开发和利用。 目前,全球已探明的镍储量约为1.6亿吨,其中硫化矿约占30%,红土镍矿约占70%。硫化镍与红土型镍同产于一个超基性岩带,但并不是在同一矿床内垂直向上共生,即并不象铜矿床那样,次生富集带的铜矿下方通常均有原生硫化铜矿。由于硫化镍矿资源品质好,工艺技术成熟,现约60%的镍产量来源于硫化镍矿,因硫化镍矿的长期开采,而近20年来硫化镍矿新资源勘探上没有重大突破,保有储量急剧下降。如以年产镍量120万吨计算,则相当于2年采完一个加拿大伏伊希湾镍矿床(近二十年唯一发现的大型矿床,世界第五大硫化镍矿)、5年采完金川镍矿(世界第三大硫化镍矿)。因此,目前,全球硫化镍矿资源已出现资源危机,且传统的几个硫化镍矿矿山(加拿大的萨德伯里、俄罗斯的诺列尔斯克、澳大利亚的坎博尔达、中国金川、南非里腾斯堡等)的开采深度日益加深,矿山开采难度加大。为此,全球镍行业将资源开发的重点瞄准储量丰富的红土镍矿资源。 红土镍矿资源为硫化镍矿岩体风化——淋虑——沉积形成的地表风化壳性矿床,红土镍矿成分大致含量如下: 1、Ni:0.9%-1.1%,Fe:45%-50%,S,P<0.01%,水分35%basis 2、Ni:1.4%-1.6%,Fe:≥25%,S,P<0.01%,水分35%basis 3、Ni:1.6%-1.7%,Fe:≤12%,S,P<0.01%,水分35%basis 4、Ni:1.7%-1.8%,Fe:≤12%,S,P<0.01%,水分35%basis 世界上红土镍矿分布在赤道线南北30度以内的热带国家,集中分布在环太平洋的热带——亚热带地区,主要有:美洲的古巴、巴西:东南亚的印度尼西亚、菲律宾:大洋洲的澳大利亚、新喀里多尼亚、巴布亚新几内亚等。 我国周边国家有镍矿储量1125万吨,只分布在少数国家,包括俄罗斯(660万吨)、印度尼西亚(320万吨)、菲律宾(41万吨)、缅甸(92万吨)和越南(12万吨),但占世界总储量比例较大,约占23%。其中红土镍矿主要分布在印度尼西亚、菲律宾以及缅甸。印度尼西亚镍资源主要为基性、超基性岩体风化壳中的红土镍矿,分布在群岛的东部,矿带可以从中苏拉威西追踪到哈尔马赫拉、奥比、瓦伊格奥群岛,以及伊利安查亚的鸟头半岛的塔纳梅拉地区。由于印度尼西亚超基性岩体风化壳广泛分布,因此其红土型镍钴矿有良好的找矿前景。菲律宾也以红土镍矿为主,主要分布在诺诺克岛。缅甸也有红土型硅酸镍矿,受印缅山脉超基性岩带控制,分布在中部盆地西缘。俄罗斯的镍资源分布在西伯利亚地台西北缘诺里尔斯克硫化铜镍矿区。越南镍矿为铜镍硫化物型,分布在西北部,已知有山萝省的班福矿床,赋存在黑水河裂谷塔布蛇绿岩带内,有探明储量12万吨。 世界红土型镍矿开发进展状况。随着世界90年代经济发展,占镍用途65%的不锈钢需求增长坚挺,镍需求前5年平均约每年增长4%以上,预测今后5-10年,增长率3.5%——4%,其中亚洲的镍需求增长率将是7%。然而,世界可供近期开发的硫化镍资源,除了加拿大的V oisey bay 镍矿以外,几乎寥寥无几。全球至今约探获7000万吨镍金属量的资源。其中,硫化镍约3000万吨,占42%。其余均为红土型镍。所以开发利用红土型镍矿已成为主要手段,同时红土镍矿也具有诸多优势:第一,红土型镍资源丰富,全球均有4100万吨镍金属量,勘查成本低。 第二,采矿成本极低。红土镍矿属于地表矿体,比较易于采掘。 第三,选冶工艺已经成熟。红土型镍矿的火法冶炼铁镍技术业已成熟,压力酸浸技术亦趋成熟。该技术始于50年代,首次用于古巴Moa Bay 矿,称AMAX?PAL技术。此后,70年代澳洲QNI公司建成Yabula镍厂,酸浸处理新喀里东尼亚、印尼及澳洲昆士兰州的红土型镍矿。加拿大Sherritt公司湿法处理红土型镍矿的技术已获公认。

红土镍矿处理方法综述

和Mg之后。然而,在地壳中镍的含量很低,不到0.01%,其丰度排在第24位。 地球上有四种含镍矿物: ⑴硫化镍矿——镍黄铁矿、镍磁黄铁矿和针硫镍矿等 ⑵氧化镍矿——主要指红土镍矿 ⑶含砷镍矿——红镍矿、砷镍矿和辉镍矿等 ⑷深海含镍锰结核 深海含镍锰结核的数量现在还无法估计,由于开采成本太高,暂无法利用这种含镍资源。目前,世界各国正在研制海底机器人,为开采海底锰结核做前期准备工作。 含砷镍矿在地球上的储量很少,是一种次要的含镍资源。主要的炼镍原料是硫化镍矿和红土镍矿。 根据目前的炼镍技术水准,硫化镍矿含镍高于3%的被称为富矿,可不经选矿而直接冶炼;含镍较低的硫化镍矿需经过选矿进行富集,产出品位较高的硫化镍精矿再进行冶炼。红土矿很难用选矿方法来富集,通常是用冶炼的方法直接处理。 1.3 开发和利用红土镍矿资源的重要意义 ⑴陆地上镍资源总量中硫化镍矿和红土镍矿的比例约为3:7,未来镍冶金工业的发展主要以红土矿为原料; ⑵硫化镍矿日趋枯竭,中国的硫化镍矿的年产量以10%的速度递减; ⑶红土镍矿埋藏在地表附近,开采成本低,不需要选矿,随着冶炼技术水

准的提高,处理红土镍矿的成本不断降低; ⑷选择合适的生产方法,处理红土镍矿可不产生二氧化硫烟气污染; ⑸中国是镍的消费大国,同时又是贫镍国。 由以上事实可知,我国开发红土镍矿资源有着非常重要的意义。目前,世界各国,特别是发达国家,都在积极开发或准备开发红土镍矿资源。 2 红土镍矿的特点 2.1 红土镍矿的地质结构 红土镍矿是由多雨的热带和亚热带的橄榄岩(Peridotite)和蛇纹石(Ser pentine)这样一些超级岩石的风化而形成的。红土镍矿床通常是分层存在于地表以下0~40米范围,矿床的地质结构为:覆盖层;褐铁矿层;过渡层;腐泥层;橄榄岩层。有价元素镍和钴主要分布在褐铁矿层,过渡层和腐泥土矿层。因此,人们通常将红土镍矿床分为三个矿层: ⑴褐铁矿层(Lateritic ore layer) 褐铁矿层离地表最近,主要矿物包括褐铁矿(Laterite)、针铁矿(Goet hite)、水铝矿(Gibbsite)和铬铁矿(Chromite)。矿石的化学成分和矿物组成很均匀,镍的含量较低,通常含有一定数量的钴,结晶性差,粒度较细。 ⑵腐泥矿层(Saprolitic ore layer) 腐泥矿层埋藏较深,正好在基岩之上,主要含有石英(Quartz),滑石(T alc),蛇纹石(Serpentine),橄榄石(Olivine)和硅镁镍矿(Garnierite)等矿物。矿石含镍量最高,但其化学成分和矿物组成极不均匀。 ⑶过渡矿层(Transition ore layer)

硫酸镍及氢氧化镍化学分析方法

高性能球形氢氧化镍生产线用硫酸镍及 氢氧化镍化学分析标准方法研究 课题完成单位:国家有色金属及电子材料分析测试中心 课题完成人员:张丽周辉 摘要本文拟定了高性能球形氢氧化镍生产线用硫酸镍及氢氧化镍化学分析方法,分别是氢氧化镍中杂质火焰原子吸收光谱法测定、硫酸镍中杂质的火焰原子吸收光谱法测定、氢氧化镍及硫酸镍中镍量的测定、氢氧化镍中的水分测定、硫酸镍中水不溶物的测定(常规水不溶物测定方法)、氢氧化镍中硫酸根的测定。这些方法共涉及主成分Ni,添加成分Co、Zn,杂质成分Fe、Ca、Mg、Cu、Pb、Cd、水分、水不溶物、SO42-等10余种成分的分析方法,全套分析方法覆盖了氢氧化镍和硫酸镍的全部检验内容,能够满足高性能球形氢氧化镍生产线用硫酸镍及氢氧化镍的分析的需要,并具有简便、快速的优点。 关键词氢氧化镍硫酸镍原子吸收光谱法滴定法离子交换法Ni、Co、Zn、Fe、Ca、Mg、Cu、Pb、Cd、水分、水不溶物、SO42- 注:研究报告分以下六部分内容分别报告。

Ⅰ.氢氧化镍中杂质火焰原子吸收光谱法测定 国家有色金属及电子材料分析测试中心 张丽 摘要拟定了电池原材料氢氧化镍中添加剂主成分锌、钴、及杂质钙、镁、铁、镉等的火焰原子吸收测定方法。试验了主体镍及酸度对被测元素测定的影响,选择了最佳的仪器工作条件。方法检出限为0.00028~0.0018μg/mL,RSD<10.7%,回收率在90.0%~104%。本方法适用于氢氧化镍中杂质火焰原子吸收测定,测定范围0.001~10%。 镍氢电池是90年代发展起来的高性能、无污染二次电池。新型镍氢电池材料正逐步国际化,因此对镍氢电池的添加元素及杂质元素分析,越来越被人们关注。近年来,用原子吸收法测定氢氧化镍中的添加剂及杂质元素尚未见报道,本实验采用火焰原子吸收法测定氢氧化镍中的添加剂以及杂质元素。 1.实验部分: 1.1 仪器与仪器最佳工作条件: WFX-1B原子吸收分光光度计。仪器工作条件见表1。 表1 仪器工作条件 1.2 试剂:

红土镍矿的现状与开发

第31卷第1期2009年2月 甘 肃 冶 金 GANS U M ETALLURGY V o.l31 N o.1 F eb.,2009 文章编号:1672 4461(2009)01 0020 05 重要有色金属资源 红土镍矿的现状与开发 王 虹1,邓海波1,路秀峰2 (1.中南大学资源加工与生物工程学院,湖南长沙410083; 2.山西中条山有色金属集团有限公司设计研究院,山西 恒曲 043700) 摘要:镍是重要的战略金属。随着世界上硫化镍矿资源的逐渐减少,从氧化镍矿中提取镍和钴越来越具有吸引力。介绍了世界镍矿资源的现状,综述了国内外处理红土镍矿的主要工艺流程和相关的研究工作。 关键词:镍矿资源;红土镍矿;工艺 中图分类号:TF815文献标识码:A Import ant Laterite N ic kelOre Res ources i n t heW orl d: Present Sit uation and Expl oitation WANG H ong1,DENG H ai bo1,LU X iu feng2 (1.S chool ofM i neral Process i ng and B i oengeeri ng,C entra lS outh U n i vers it y,Changsha410083,C h i na; 2.Desi gn i ng i nsti tutes of ZTS Non f errous M et al Co.L t d,H engqu 043700,Ch ina) Abstrac t:N icke l i s one of i m po rtant stra teg ic m e ta.l W ith the decrease o f su lf ureted nicke l resources,later ite nicke l has been seriously treated m ore and m ore.The presen t situati on o f n i cke l resources w ere i ntroduced i n this paper.T he recent develop ment o fm eta ll urgy processes for laterite n i ckel and relevan t research wo rks w ere rev i ew ed. K ey W ords:n icke l resoa rces;l a terite n i ckel ore;pro cessi ng 1引言 镍是一种银白色金属,其合金可以增加金属强度、韧度,并且在较大的温度范围内具有抗腐蚀性。在化学性质上,镍与铁、钴及铜类似。镍的性能之一是可以与一氧化碳反应直接形成二元羰基络合物,在环境温度下,这种络合物容易挥发。在适当温度下,镍对空气、海水和非氧化酸具有抗腐蚀性。镍的另一个性能是抗碱腐蚀,但氨水溶液对镍却有腐蚀作用。镍是重要的战略金属。镍在不锈钢中的比例较大,因此对钢铁工业来说,镍是必需的原料。在航空、航天、汽车、船舶、电子设备和建筑工业的材料开发中,镍合金起着关键作用[1]。 2镍矿资源及矿石性质 2.1 镍矿资源 镍在地球上是储量丰富的一种金属。据美国地质调查局报导,2004年世界镍储量为6200万,t储量基础为14000万t。世界陆地查明含镍品位在1%左右的资源量为1.3亿,t其中60%属于红土型镍矿床,共、伴生矿产主要是铁和钴,主要分布在赤道附近的古巴、新喀里多尼亚、印度尼西亚、菲律宾、巴西、哥伦比亚和多米尼加等国;40%属于岩浆型铜镍硫化物矿床,共伴生矿产主要有铜、钴、金、银及铂族元素,主要分布在加拿大、俄罗斯、澳大利亚、中国、南非、津巴布韦和博茨瓦纳等国。另外大洋深海底的锰结核和锰结壳中还含有大量的镍资源,共伴生矿产铜、钴和锰,数量巨大。世界镍资源的储量分布情况,见表1、表2。 2.2矿石成分 世界上可开采的镍资源有两类,一类是硫化矿床、另一类是氧化矿床。现在世界上约70%的镍是从硫化矿中提取的,但赋存在氧化矿床中的镍却占镍贮量的65%,因此随着世界上硫化镍矿资源的逐渐减少,从氧化镍矿中提取镍和钴具有更大的吸引力。

红土镍矿知识

红土镍矿说明 1镍矿概述 目前,已探明陆地上的镍矿资源中,镍金属的工业储量约为八千万吨,镍矿物主要以硫化镍矿和镍红土矿(也称红土镍矿)两种形式存在,其中硫化镍矿约占20%、镍红土矿大约75%、硅酸镍矿占5%,镍矿的开发利用以硫化镍矿和镍红土矿为主,主要产镍国加拿大、俄罗斯、澳大利亚、新喀里多尼亚、印度尼西亚、菲律宾、古巴、中国。 2硫化镍矿 硫化镍矿主要以镍黄铁矿(Fe,Ni)9S8、紫硫镍铁矿(Ni2FeS4)、针镍矿(NiS)等游离硫化镍形态存在,有相当一部分镍以类质同象赋存于磁黄铁矿中,按镍含量不同,原生镍矿可分为三个等级: 特富矿:Ni≥3%,富矿:1%≤Ni≤3%,贫矿:0.3%≤Ni≤1% 2.1硫化镍矿的分布 加拿大:萨德伯里镍矿带、林莱克-汤普森镍矿带; 俄罗斯:科拉半岛镍矿带、西伯利亚诺里克斯镍矿区; 澳大利亚:坎巴尔达镍矿 中国:金川镍矿带、吉林磐石镍矿带 芬兰:科塔拉蒂镍矿带 2.2硫化镍矿的选矿处理方式 绝大多数的原生硫化镍矿的镍含量都低于3%,对于镍含量在0.3-1%的硫化镍矿则需要进行选矿处理。在含铜的硫化镍矿中,镍主要呈镍黄铁矿、针硫镍矿、紫硫镍矿等游离硫化镍形态存在,此类硫化镍矿主要用丁基或戊基等高级黄药有效浮选。浮选后的镍精矿可分为镍含量从3%到8%每相差0.5%分一个级,共有11个级别: 特级品Ni≥8%,一级品7.5%≤Ni≤8% …… 九级品3.5%≤Ni≤4%十级品3%≤Ni≤3.5% 2.3硫化镍矿提镍方式 硫化镍原矿(浮选)----镍精矿(鼓风炉熔炼)----低冰镍(转炉吹炼)----高冰镍(加硫酸常压,高压浸出)----硫酸镍(电解)---电解镍。

红土镍矿湿法冶炼可行性分析报告

2×1.5万吨/年红土镍矿湿法冶炼项目 可行性分析 2010年4月25日

目录 一、概况 二、建设规模及厂址的选择 三、产品方案 四、原料来源 五、工艺流程 六、三废治理和环境保护 七、投资估算 八、销售收入、生产成本及损益测算

一、概况 全球陆基镍储量约为12000万吨,其中40%为硫化矿,60%为氧化矿(红土矿),硫化矿主要分布在俄罗斯、加拿大和中国,总量约5000万吨,目前镍产量的60%来自硫化矿。硫化矿资源经过多年开采,资源已逐渐枯竭,最近十多年未见有发现大型硫化镍矿的报道,为满足世界经济发展对镍的需求,普遍已将目光转向开发红土矿型镍资源。红土矿资源的特点:1)资源丰富,埋藏浅,易勘探,均为露天开采,采矿成本低。2)伴生钴含量高,钴可以分摊部分镍成本。 3)红土矿产于热带、亚热带、大多濒临海洋,交通运输方便。 发达国家依靠雄厚资金,先进技术和国际经营经验,在国际矿业全球化的竞争中已先走一步。目前国外的许多知名镍生产企业都已涉足红土矿开发,部分已取得了实质性进展。例如鹰桥公司与BHP公司合作开发的印度尼西亚含镍红土矿项目, Inco公司在印尼以及新喀里多尼亚开发的红土矿项目等。 由于硫化镍可供开发资源的明显减少,世界未来十年镍产量的增加将主要来源于红土型镍矿资源的开发,而红土型镍矿资源开发中,湿法技术发展趋势大于铁镍火法冶炼技术;虽然湿法技术与红土型镍矿的火法冶炼厂的投资成本大体相当,即年生产能力每磅镍8~12美元。但是随着湿法

技术的日趋成熟、设备制造技术的进步和规模的扩大,湿法镍厂在下一轮兴建或扩建项目中,其基建投资将会明显下降;湿法工艺的生产成本在一般情况下低于铁镍流程,加上湿法耗能明显低于铁镍流程。因此,在经济上,湿法技术将显示出其优越性; 国内目前处理红土镍矿大部分都是采用火法生产镍铁或镍铬合金,但最近已有三个常压酸浸的项目投产,其中广西银亿科技矿冶有限公司(年产5000吨电积镍,300吨碳酸钴)运营状况较好,正在扩建二期5000吨/年项目,并且配套建设从废水中提取镁盐产品的生产线。 二、建设规模及厂址选择 国内外红土镍矿湿法冶炼单项目的镍产量规模大多在3万吨以下,国际上比较著名的如古巴毛阿湾的规模3万吨/年;尼加罗切格瓦那2.3万吨/年;澳大利亚的雅布鲁3万吨/年;澳大利亚布隆0.9万吨/年;考斯0.9万吨/年;澳大利亚的莫林莫林的设计规模4.5万吨/年(实际产能3.5万吨/年),国内广西银亿和江西江锂的设计产能5000吨/年,云南元江设计能力为3000吨/年。目前广西银亿正在进行技术改造将现有产能扩大到10000吨。江西江锂也有计划新建1.5万吨/年的项目。 结合江铜的实际情况,并考虑红土镍矿资源的供应现

rkef冶炼工艺概述

rkef冶炼工艺概述 RKEF法冶炼工艺概述前言 目前,国内外红土镍矿的处理方法主要有火法和湿法两种冶炼工艺,湿法工艺是使用硫酸、盐酸或者氨水溶液作为浸出剂,浸出红土镍矿中的镍和钴金属离子,常见的湿法处理工艺有高压酸浸工艺(HPAL)、常压酸浸工艺(PAL)和氨浸工艺(Caron)。火法工艺是在高温条件下,以C作还原剂,对氧化镍矿中的NiO及其他氧化物进行还原而得。火法冶炼因具有流程短、三废排放量少、工艺成熟等特点,已成为红土镍矿冶炼的主要工艺。 目前国内外主要有4种火法工艺:烧结—高炉流程(BF法);回转窑—电炉熔炼流程(RKEF法);多米尼加鹰桥竖炉—电炉工艺;日本大江山回转窑直接还原法。其中,RKEF法是当今世界上火法处理红土镍矿的先进及成熟工艺,广泛地应用于各国冶炼厂家。 RKEF(Rotary Kiln-Electric Furnace)法始于上世纪50年代,由Elkem公司在新喀里多尼亚的多尼安博厂开发成功,具有产品质量好、生产效率高、节能环保等优点。 在不锈钢产量大幅增幅的驱动下,RKEF法镍铁的生产能力急剧增加。我国冶炼镍铁电炉炉容在不断地扩大。额定容量25 MVA的炉型已经逐步退出主体炉型,进而33 MVA、36 MVA、48 MVA、51 MVA成为主体炉型。与此同时,我国矿热炉生产镍铁的工艺流程更加合理,矿热电炉的总体装备水平大幅度提高,冶炼工艺技术更加成熟。下面将概括介绍和讨论矿热电炉利用红土镍矿采用RKEF法冶炼镍铁的工艺技术。 1 工艺流程概述 利用红土镍矿生产镍铁的RKEF冶炼工艺流程如图1.1:

图1.1 RKEF工艺流程图 工艺流程主要包含以下几个阶段: (1)在露天料场进行红土矿的晾晒;大块红土矿的破碎、筛分、混匀。 (2)应用干燥窑对红土矿进行干燥;应用回转窑进行红土矿的焙烧预还原。以此获得焙砂。 (3)矿热电炉熔炼焙砂生产含镍生铁。 (4)回转窑与电炉余热的利用。 (5)粉尘的收集与再利用。 对RKEF法工艺的流程,矿石内部的成分尤为重要,其中有至少3个指标,在生产时需要关注: (1)Ni品位,控制在1.5以上,最好2.0以上。 (2)Fe/Ni,在6~10之间,最好接近6,因而矿中Ni品位高;如果Fe/Ni>10,则很难冶炼出含Ni=20%的镍铁,因为原料中Fe过高,很难在回转窑中控制氧化铁的还原度。 (3)MgO/SiO,在0.55~0.65较合适,少量加入熔剂就可以得到低熔点的炉渣结构。 2

镍矿石市场分析

镍矿石产业概述 一、镍的产业链 1,镍的应用: 镍是重要的工业金属,广泛应用在钢铁行业、机械行业、建筑业和化学工业。具体用途:1)用作金属材料,包括制作不锈钢、耐热合金钢和各种合金;2)用于电镀,在钢材及其它金属材料的基体上覆盖一层耐用、耐腐蚀的表面层,防腐性比镀锌高;3)用作化学电源,制作镍氢电池、镍镉电池的原料;4)制造颜料和染料,制作陶瓷和铁素磁体等新型材料。 2,镍的原料: 镍矿石根据地质因素划分,主要有硫化镍矿和氧化镍矿(又称为“红土镍矿”,产于菲律宾的镍矿石属于此类)。 硫化镍矿主要分布在,澳大利亚、俄罗斯、加拿大、中国、南非等。红土镍矿主要分布在,南北回归线一带,澳大利亚、印尼、菲律宾、古巴等。另外,大洋深海底还含有大量的镍资源,但由于技术不到位、成本太高等原因,利用量极小。 从资源储备的角度来看,澳大利亚资源储量占世界的24%,是世界镍资源的核心区,但是印尼和菲律宾的储量虽然不是领先的,但是由于开采和运输成本比较低,是产量最高的国家,是中国红土镍矿的主要提供国。 有个重要的事情需要说一下,2014年印尼颁布了矿产原料出口禁令,印尼的出口被严重遏制,全球的矿镍增长出现了拐点。从2003年到2013年一直处于大幅增加的状态,2014年出现了增速回落。随后,中国矿产商主要着眼于开发菲律宾的红土镍矿,以填补印尼的缺口,2015年达到顶点。

3,镍的生产 镍按照生产原料的不同可以分为原生镍和再生镍,原生镍的生产原料来自于镍矿,再生镍的生产原料来自于含镍废料。 原生镍包括:电解镍、镍铁和镍盐,其中电解镍根据国标GB/T6516-2010的规定,可分为Ni9999、Ni9996、Ni9990、Ni9950、Ni9920五个牌号;镍铁,又称为含镍生铁,是镍和铁的合金,主要由红土镍矿进行火法冶炼烧结而成,镍铁的镍金属含量约为5%~30%,按照含量不同可以分为,高镍生铁、中镍生铁和低镍生铁。 4,主要镍生产企业 其中,中国的主要生产厂家有,金川集团有限公司(甘肃)、吉林吉恩镍业股份有限公司、新疆有色金属工业集团阜康冶炼厂。其中,金川是我国最大的电解镍生产商。 二、镍矿石分析 自2006年始,中国含镍生铁生产初具规模,并随着镍铁冶炼工艺的进步,成本逐步降低,品质逐渐提高,产量逐年增加,红土型镍矿进口量逐年加大。根据海关数据显示,2014年镍矿进口量达4805.6万吨,同比增长92.2%,其中进口的绝大部分是红土镍矿。目前,红土型镍矿主要是从印度尼西亚和菲律宾这两个国家进口,主要用于生产镍铁和电解镍。而镍精矿进口多集中于澳大利亚和俄罗斯等国家,详见表2-1。

国外红土镍矿冶炼处理工艺

常见的红土镍矿冶炼处理工艺主要有湿法工艺和火法工艺。湿法工艺是使用硫酸、盐酸或者氨水溶液作为浸出剂,浸出红土镍矿中的镍和钴金属离子。常见的湿法处理工艺有高压酸浸工艺(HPAL)、常压酸浸工艺(PAL)和氨浸工艺(Caron)。硅镁质型红土镍矿中镁含量高,浸出过程酸耗大,目前较多采用火法工艺处理。常用的红土镍矿火法处理工艺有:电炉溶炼、高炉镍铁工艺、硫化熔炼等。目前国外大部分采用湿法工艺冶炼红土镍矿。 美国:新型还原焙烧-氨浸法回收率提高 还原焙烧-氨浸工艺又称为Caron流程,属于湿法冶炼工艺。其主要流程为:矿石经破碎、筛分后在多膛炉或回转窑中进行选择性还原焙烧,还原焙砂用氨-碳酸铵溶液进行逆流浸出,经浓密机处理后得到的浸出液经净化、蒸氨后产出碳酸镍浆料,再经回转窑干燥和煅烧后,得到氧化镍产品,并用磁选法从浸出渣中选出铁精矿。焙烧过程采用的还原剂主要是煤或还原性气体,其主要目的是将矿石中的镍和钴还原,而三价铁大部分被还原为磁性的Fe3O4,少数被还原成金属铁。氨浸的主要目的是将焙砂中的镍和钴以络氨离子的形式进入溶液,而铁、镁等主要杂质仍以单质或氧化物的形式留在浸出渣中,从而实现镍、钴与铁等杂质的初步分离。该工艺的优点是常压操作,浸出液杂质含量较少,浸出剂中的氨可回收;主要缺点是镍、钴回收率较低,镍的回收率为75%~80%,钴的回收率低于50%。截止到目前,全球只有少数几家工厂采用该法处理红土镍矿。 为提高镍、钴回收率,美国矿物局最近发展了还原焙烧-氨浸法处理红土矿回收镍的新流程,简称USBM法。该法的要点在于还原焙烧前加入了黄铁矿(FeS2)进行制粒,还原时用的是纯CO。浸出液用LIX64-N作为萃取剂实现钴、镍分离,整个系统为闭路循环,有效地利用了资源。据报道,用该法处理含镍1%、钴0.2%的红土矿时,镍、钴的回收率分别为90%和85%。若处理含镍0.53%、钴0.06%的低品位红土矿时,钴的回收率亦能达到76%。与原来的氨浸工艺相比较,新工艺大大提高了镍钴的回收率,降低了过程的能耗。 澳大利亚和古巴:硫酸加压酸浸法回收率高 硫酸加压酸浸工艺适合处理含氧化镁低的褐铁矿型红土矿,此流程最大的优势在于金属的回收率都能达到90%以上。该技术首次用于古巴毛阿湾镍厂,被称为A-MAX-P AL技术。 古巴毛阿湾镍厂采用加压酸浸法处理低氧化镁含镍红土矿,其是世界上唯一采用高温高压直接酸浸红土矿提取镍和钴的工厂。该厂采用的工艺较先进,工厂布置较紧凑,占地面积小,厂内环境清洁。 该厂处理的含镍红土矿如果在常压和常温下用硫酸溶液浸出,那么存在于矿石中大量的铁(该矿含68%氧化铁)容易进入含镍和钴的溶液。然而,采用同样浓度的硫酸溶液,在高温高压(246℃,3.6MPa)下浸出,铁只有少量进入溶液中而镍和钴的浸出率都超过95%。矿石中碱性氧化物的含量相当低,无须消耗大量的硫酸中和矿石中含量高的碱性氧化物。加压浸出硫酸用量为每吨干精矿量的22.5%,浸出渣含铁51%,可作为炼铁原料。浸出液送沉淀高压釜(118℃~121℃,压力为1MPa),通H2S沉淀出镍、钴、

相关主题
文本预览
相关文档 最新文档