当前位置:文档之家› 薄膜技术的论文

薄膜技术的论文

薄膜技术的论文
薄膜技术的论文

薄膜技术在光电子器件中的应用

【摘要】本文简要的分析了薄膜技术的进展原因,同时介绍其在光电子器件制造中常用的几种薄膜技术的原理和各自的特点。

【Pick to 】This article analyzes the progress of film technology briefly , and introduces its reasons in optoelectronic devices ,which is used in manufacturing of several film technology principle and their respective characteristics.

【关键词】薄膜原理应用光电子器件表面科学

一、前言

在高科技的今天,由于固体表面、表面效应和表面科学的研究取得了重大的成绩,这与表面分析方法和仪器的迅速发展及广泛应用时分不开的,使得表面分析方法迅速发展,同时加上真空技术的飞快发展共同推动了薄膜技术的应用。

近年来,国内外正掀起“光电子学”和“光电子产业”的热潮,光电子技术已经在信息、能源、材料、航空航天、生命科学、环境科学和军事国防等诸多领域发挥着重要作用。光电子学是从上世纪七十年代,在光学、电子学及相关学科的基础上发展起来的一门科学,光电子器件的小型化、多样化和性能的不断提高是光电子技术发展的重要标志,在这个发展过程中,薄膜技术功不可没。

当固体或液体的一维线性尺度远远小于它的其它二维尺度时,我们将这样的固体或液体称为膜。一般将厚度大于1μm的膜称为厚膜,厚度小于1μm的膜称为薄膜,当然,这种划分具有一定的任意性。薄膜的研究和制备由来已久,但在早期,技术落后使得薄膜的重复性较差,其应用受到限制,仅用于抗腐蚀和制作镜面。自从制备薄膜的真空系统和各种表面分析技术有了长足的进步,以及其他先进工艺(如等离子体技术)的发展,薄膜的应用开始了迅速的拓展。目前,在光电子器件中,薄膜的使用非常普遍,它们中大部分是化合物半导体材料,厚度低至纳米级。

二、简要薄膜技术发展

所谓表面科学通常是指固体最外层约1至10个原子层。厚度大约是几埃至几十埃。我们把研究表面现象的科学如表面科学、表面化学、表面物理化学等称为表面科学。它在各种热处理效应等功能上取得的进展推动了薄膜技术,在表面分析方法的迅速发展下。超真空技术的发展为表面科学的发展提供了重要的条件。为了排除气体分子对表面分析的干扰和影响,使得表面分析数据准确可靠,目前几乎所有新型的表面分析仪器都要求在超真空条件下进行工作。

近代超高真空系统的主要特点是【1】:几乎全部系统都是由不锈钢制成,取代了过去的玻璃系统。主要原因是玻璃不能承受高温。油扩散泵虽然仍在用,但已经逐渐被离子泵,升华泵等所取代。在超高真空测量方面,虽然用电离计,但由于种种原因已经被质谱真空计所代替,超高真空系统的残余气体分析愈来愈重要。所以现在在好多表面分析仪器的真空系统中都配置了残余气体分析装置——四极滤质器。这些共同推动了薄膜技术飞快发展,加快其在光电子中的应用。

三、薄膜制备技术

薄膜制备方法多种多样,总的说来可以分为两种——物理的和化学的。物理方法指在薄膜的制备过程中,原材料只发生物理的变化,而化学方法中,则要利

用到一些化学反应才能得到薄膜。

1.化学气相淀积法(CVD)

目前光电子器件的制备中常用的化学方法主要有等离子体增强化学气相淀积(PECVD)和金属有机物化学气相淀积(MOCVD)。

化学气相淀积是制备各种薄膜的常用方法,利用这一技术可以在各种基片上制备多种元素及化合物薄膜。传统的化学气相淀积一般需要在高温下进行,高温常常会使基片受到损坏,而等离子体增强化学气相淀积(PECVD)则能解决这一问题。等离子体的基本作用是促进化学反应,等离子体中的电子的平均能量足以使大多数气体电离或分解。用电子动能代替热能,这就大大降低了薄膜制备环境的温度,采用PECVD技术,一般在1000℃以下。利用PECVD技术可以制备SiO2、Si3N4、非晶Si:H、多晶Si、SiC等介电和半导体膜,能够满足光电子器件的研发和制备对新型和优质材料的大量需求。

金属有机物化学气相淀积(MOCVD)是利用有机金属热分解进行气相外延生长的先进技术,目前主要用于化合物半导体的薄膜气相生长,因此在以化合物半导体为主的光电子器件的制备中,它是一种常用的方法。利用MOCVD技术可以合成组分按任意比例组成的人工合成材料,薄膜厚度可以精确控制到原子级,从而可以很方便的得到各种薄膜结构型材料,如量子阱、超晶格等。这种技术使得量子阱结构在激光器和LED等器件中得到广泛的应用,大大提高了器件性能

2.物理气相淀积(PVD)

化学反应一般需要在高温下进行,基片所处的环境温度一般较高,这样也就同时限制了基片材料的选取。相对于化学气相淀积的这些局限性,物理气相淀积(PVD)则显示出其独有的优越性,它对淀积材料和基片材料均没有限制。制备光电子器件的薄膜常用的PVD技术有蒸发冷凝法、溅射法和分子束外延。

蒸发冷凝法是薄膜制备中最为广泛使用的一种技术,它是在真空环境下,给待蒸发物提供足够的热量以获得蒸发所必需的蒸汽压,在适当的温度下,蒸发粒子在基片上凝结,实现薄膜沉积。蒸发冷凝法按加热源的不同有可分为电阻加热法、等离子体加热法、高频感应法、激光加热法和电子束加热法,后两种在光电子器件的制备中比较常用。

电子束加热法是将高速电子束打到待蒸发材料上,电子的动能迅速转换成热能,是材料蒸发。它的优点是可以避免待蒸发材料与坩埚发生反应,从而得到高纯的薄膜材料。近年来人们又研制出具有磁聚焦和磁弯曲的电子束蒸发装置,使用这样的装置,电子束可以被聚焦到位于基片之间的一个或多个支架中的待蒸发物上。

激光蒸发法是一种在高真空下制备薄膜的技术,激光作为热源使待蒸镀材料蒸发。激光源放置在真空室外部,激光光束通过真空室窗口打到待蒸镀材料上使之蒸发,最后沉积在基片上。激光蒸发法具有超清洁、蒸发速度快、容易实现顺序多元蒸发等优点。后来人们使用脉冲激光,可使原材料在很高温度下迅速加热和冷却,瞬间蒸发在靶的某一小区域得以实现。由于脉冲激光可产生高功率脉冲,完全可以创造瞬间蒸发的条件,因此脉冲激光蒸发法对于化合物材料的组元蒸发具有很大优势。使用激光蒸发法可以得到光学性质较好的薄膜材料,包括ZnO 和Ge膜等。

溅射是指具有足够高能量的粒子轰击固体表面(靶)使其中的原子或分子发射出来。这些被溅射出来的粒子带有一定的动能,并具有方向性。将溅射出来的

物质沉积到基片上形成薄膜的方法成为溅射法,它也是物理气相淀积法的一种。溅射法又分直流溅射、离子溅射、射频溅射和磁控溅射,目前用的比较多的是后两种。在溅射靶上加有射频电压的溅射称为射频溅射,它是适用于各种金属和非金属材料的一种溅射淀积方法。磁控溅射的原理是,溅射产生的二次电子在阴极位降区内被加速称为高能电子,但它们并不直接飞向阴极,而是在电场和磁场的联合作用下进行近似摆线的运动。在运动中高能电子不断地与气体分子发生碰撞,并向后者转移能量,使之电离而本身成为低能电子。这些低能电子沿磁力线漂移到阴极附近的辅助阳极而被吸收,从而避免了高能电子对基片的强烈轰击,同时,电子要经过大约上百米的飞行才能到达阳极,碰撞频率大约为107/s,因此磁控溅射的电离效率高。磁控溅射不仅可以得到很高的溅射速率,而且在溅射金属时还可以避免二次电子轰击而使基板保持接近冷态。

分子束外延(MBE)技术是一种可在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。所谓“外延”就是在一定的单晶材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。分子束外延是在超高真空条件下,精确控制原材料的分子束强度,把分子束射入被加热的底片上而进行外延生长的。由于其蒸发源、监控系统和分析系统的高性能和真空环境的改善,能够得到极高质量的薄膜单晶体,可以说它是一种以真空蒸镀为基础的一种全新的薄膜生长方法。

四、结语

薄膜技术是研制新材料、新结构的重要方法之一,用薄膜技术制作的薄膜材料不仅具有优良的光电性能、钝化性能、强的阻挡杂质粒子扩散以及抗水汽渗透能力,在光电子器件中得到广泛的应用,主要用来充当绝缘层、钝化保护层以及各种敏感膜层等,而且还具有很高的硬度和强的化学稳定性,从而在材料改性技术领域中也将有着广阔的应用前景。

参考文献

【1】高本辉,物理,1978,(7),80。

薄膜物理与技术A卷答案

《薄膜物理与技术》A卷试题参考答案及评分细则 一、名词解释:(本题满分20分,每小题5分) 1、饱和蒸汽压 在一定温度下(1分),真空室内蒸发物质的蒸气与固体或液体平衡过程中(2分)所表现出的压力称为该物质的饱和蒸气压。(2分) 2、溅射 是指荷能粒子轰击固体物质表面(靶),(1分)并在碰撞过程中发生动能与动量的转移,(2分)从而将物质表面原子或分子激发出来的过程。(2分) 3、化学气相沉积 把含有构成薄膜元素的一种或几种化合物的单质气体供给基片(2分),利用热、等离子体、紫外线、激光、微波等各种能源(2分),使气态物质经化学反应形成固态薄膜。(1分)。 4、外延生长 外延生长技术就是在一块半导体单晶片上(2分)沿着单晶片的结晶轴方向生长(2分)一层所需要的薄单晶层。(1分) 二、简答题:(本题满分80分) 1、什么叫真空?写出真空区域的划分及对应的真空度(10分) 答:真空是指低于一个大气压的气体空间。(2分) 对真空的划分: 1)粗真空:105-102Pa;(2分) 2)低真空:102-10-1Pa;(2分) 3)高真空:10-1-10-6Pa;(2分) 4)超高真空:<10-6Pa。(2分) 2、什么是真空蒸发镀膜法?其基本过程有哪些?(10分) 答:真空蒸发镀膜法(简称真空蒸镀)是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出(2分),形成蒸气流,入射到基片表面,凝结形成固态薄膜的方法。(2分)其基本过程包括: (1)加热蒸发过程。包括凝聚相转变为气相的相变过程。(2分) (2)输运过程,气化原子或分子在蒸发源与基片之间的输运。(2分) (3)蒸发原子或分子在基片表面的淀积过程,即使蒸气凝聚、成核、核生长、形成连续薄膜。(2分) 3、简述磁控溅射的工作原理。(10分) 答:磁控溅射的工作原理是:电子e在电场E作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子e,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,(2分)并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子则淀积在基片上形成薄膜。(2分) 二次电子e1一旦离开靶面,就同时受到电场和磁场的作用。一般可近似认为:二次电子在阴极暗区时,只受电场作用;一旦进入负辉区就只受磁场作用。(2分)

半导体薄膜材料分析

半導體薄膜材料分析 李文鴻 化學工程系 黎明技術學院 摘要 使用電子迴旋共振電漿化學氣相沉積法(electron cyclotron resonance plasma chemical vapor deposition, ECRCVD)以CH4/SiH4/Ar混合氣體於低溫下成長碳化矽薄膜為例,藉由穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、傅立葉轉換紅外線光譜儀(FTIR)、X射線光電子能譜儀(XPS; ESCA)、歐傑電子能譜儀(AES)、拉塞福背向散射儀(RBS)、低能量電子繞射(LEED)、反射式高能量電子繞射(RHEED)、拉曼光譜儀(Raman)來研究碳化矽薄膜的微結構、表面型態及化學組成與沉積參數之間的關係,藉由二次離子質譜儀(SIMS)來研究沉積膜的雜質濃度分佈,利用光子激發光(PL)來量測發光波長範圍。 關鍵字:材料分析、電子迴旋共振電漿化學氣相沉積法、碳化矽薄膜 一、前言光電半導體產業的發展非常迅速,其中

積體電路製程技術的發展朝向尺寸微小化,目前已邁入0.13μm以下製程及邁向奈米的範疇,並朝多層薄膜的趨勢。然而新材料和製程的開發及其分析更是必須掌握的。本文將以跨世紀的接班材料-碳化矽(silicon carbide)為例,介紹材料之薄膜成長及其分析。 碳化矽為具有許多優異特性的電子材料,如寬能隙、高電子遷移率、高飽和飄移速度、高崩潰電壓、高操作溫度、高熱傳導度、化學惰性、高融點及高硬度【1】,並具耐熱震(thermal shock resistance)、抗高溫氧化、比矽低的介電常數等優點。由Johnson 之優值指標(評估元件在高功率及高頻下運作的指標)碳化矽(β-SiC)為矽之1137.8倍,及Keyes 之優值指標(評估元件在高速下運作的指標) 碳化矽(β-SiC)為矽之5.8倍【2】,故碳化矽元件能在高功率、高頻及高速下操作的特性,在光電元件的製造上,具極大之應用價值,且可用於微機電系統(microelectromechanical system;MEMS)元件之薄膜【3】、封裝材料及濾材之分離膜等【4】。在商業應用發展方面,Cree Research、日本三洋公司及信越半導體等的碳化矽藍光LED已商品化,Motorola將碳化矽應用於RF 及微波的高頻高功率元件,General Electric 應用於高功率及高溫元件之感測器,Westinghouse 應用於高頻MESFET元件等。可見碳化矽具多用途且具發展潛力,因此被諭為跨世紀的接班材料。 由於材料之製程會影響材料結構及性質進而影響其應用,因此本文將介紹碳化矽材

薄膜物理与技术

第一章真空技术基础 1、膜的定义及分类。 答:当固体或液体的一维线性尺度远远小于它的其他二维尺度时,我们将这样的固体或液体称为膜。通常,膜可分为两类: (1)厚度大于1mm的膜,称为厚膜; (2)厚度小于1mm的膜,称为薄膜。 2、人类所接触的真空大体上可分为哪两种? 答:(1)宇宙空间所存在的真空,称之为“自然真空”;(2)人们用真空泵抽调容器中的气体所获得的真空,称之为“人为真空”。 3、何为真空、绝对真空及相对真空? 答:不论哪一种类型上的真空,只要在给定空间内,气体压强低于一个大气压的气体状态,均称之为真空。完全没有气体的空间状态称为绝对真空。目前,即使采用最先进的真空制备手段所能达到的最低压强下,每立方厘米体积中仍有几百个气体分子。因此,平时我们所说的真空均指相对真空状态。 4、毫米汞柱和托? 答:“毫米汞柱(mmHg)”是人类使用最早、最广泛的压强单位,它是通过直接度量长度来获得真空的大小。1958 年,为了纪念托里拆利,用“托(Torr)”,代替了毫米汞柱。1 托就是指在标准状态下,1 毫米汞柱对单位面积上的压力,表示为1Torr=1mmHg。 5、真空区域是如何划分的? 答:为了研究真空和实际使用方便,常常根据各压强范围内不同的物理特点,把真空划分为以下几个区域:(1)粗真空:l′105 ~ l′102 Pa,(2)低真空:l′102 ~ 1′10-1Pa,(3)高真空:l′10-1 ~ 1′10-6Pa和(4)超高真空:< 1′10-6Pa。 6、真空各区域的气体分子运动规律。 答:(1)粗真空下,气态空间近似为大气状态,分子仍以热运动为主,分子之间碰撞十分频繁;(2)低真空是气体分子的流动逐渐从黏滞流状态向分子状态过渡,气体分子间和分子和器壁间的碰撞次数差不多;(3)高真空时,气体分子的流动已为分子流,气体分子和容器壁之间的碰撞为主,而且碰撞次数大大减少,在高真空下蒸发的材料,其粒子将沿直线飞行;(4)在超高真空时,气体的分子数目更少,几乎不存在分子间的碰撞,分子和器壁的碰撞机会也更少了。 7、何为气体的吸附现象?可分几类、各有何特点? 答:气体吸附就是固体表面捕获气体分子的现象,吸附分为物理吸附和化学吸附。 (1)物理吸附没有选择性,任何气体在固体表面均可发生,主要靠分子间的相互吸引力引起的。物理吸附的气体容易发生脱附,而且这种吸附只在低温下有效;(2)化学吸附则发生在较高的温度下,和化学反应相似,气体不易脱附,但只有当气体中的原子和固体表面原子接触并形成化合键时才能产生吸附作用。 8、何为气体的脱附现象? 答:气体的脱附是气体吸附的逆过程。通常把吸附在固体表面的气体分子从固体表面被释放出来的过程叫做气体的脱附。 9、何为电吸收和化学清除现象? 答:电吸收是指气体分子经电离后形成正离子,正离子具有比中性气体分子更强的化学活泼性,因此常常和固体分子形成物理或化学吸附;化学清除现象常在活泼金属(如钡、铁等)固体材料的真空蒸发时出现,这些蒸发的固体材料将和非惰性气体分子生成化合物,从而产生化学吸附。 10、影响气体在固体表面吸附和脱附的主要因素

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

薄膜物理与技术课程教学大纲

薄膜物理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:薄膜物理与技术 所属专业:电子器件与材料工程 课程性质:必修课 学分:3 (二)课程简介、目标与任务; 本课程讲授薄膜的形成机制和原理、薄膜结构和缺陷、薄膜各项物理性能和分析方法等物理内容;讲授薄膜各种制备技术。通过本课程学习,使学生具备从事电子薄膜、光学薄膜、以及各种功能薄膜研究与开发的能力 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《量子力学》、《热力学与统计物理》、《固体物理》、《电子技术》、《电路分析》等。 (四)教材与主要参考书。 教材:杨邦朝,王文生. 《薄膜物理与技术》,成都:电子科技大学出版社,1994 主要参考书:1.陈国平.《薄膜物理与技术》,东南大学出版社,1993 2.田民波,薄膜技术与薄膜材料,清华大学出版社,2006-8 二、课程内容与安排 本课程全部为课堂讲授。重点:真空的获得和真空测量的工作原理;物理气相沉积和化学气相沉积的原理及方法;薄膜生长的机理。 难点:磁控溅射的机理及控制;MOCVD技术;薄膜形成过程的机理 (一)绪论2学时 1、薄膜的概念和历史 2、薄膜材料与薄膜技术的发展 3、薄膜科学是边缘交叉学科 4、薄膜产业是腾飞的高科技产业

(二)真空技术基础2学时 1、真空的基本知识 2、真空的获得 3、真空的测量 (三)真空蒸发镀膜4学时 1、真空蒸发原理 2、蒸发源的蒸发特性及膜厚分布 3、蒸发源的类型 4、合金及化合物的蒸发 5、膜厚和淀积速率的测量与控制 (四)溅射镀膜4学时 1、溅射镀膜的特点 2、溅射的基本原理 3、溅射镀膜类型 4、溅射镀膜的厚度均匀性 (五)离子镀膜2学时 1、离子镀原理 2、离子镀的特点 3、离子轰击的作用 4、离子镀的类型 (六)化学气相沉积镀膜4学时 1、化学气相沉积的基本原理 2、化学气相沉积的特点 3、化学气相沉积方法简介 4、低压化学气相沉积 5、等离子体化学气相沉积 6、其他化学气相沉积 (七)溶液镀膜法2学时 1、化学反应沉积 2、阳极氧化法

薄膜物理与技术复习资料

第一章 最可几速率:根据麦克斯韦速率分布规律,可以从理论上推得分子速率在m v 处有极大值,m v 称为最可几速率 M RT M RT m kT 41.122==,Vm 速度分布 平均速度: M RT m RT m kT 59.188==ππ,分子运动平均距离 均方根速度:M RT M RT m kT 73.133==平均动能 真空的划分:粗真空、低真空、高真空、超高真空。 真空计:利用低压强气体的热传导和压强有关; (热偶真空计) 利用气体分子电离;(电离真空计) 真空泵:机械泵、扩散泵、分子泵、罗茨泵 机械泵:利用机械力压缩和排除气体 扩散泵:利用被抽气体向蒸气流扩散的想象来实现排气作用 分子泵:前级泵利用动量传输把排气口的气体分子带走获得真空。 平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。 常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵 粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵 属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵 属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计: U 型压力计、压缩式真空计 相对真空计:

薄膜材料与薄膜技术复习资料

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空 105~102Pa 粘滞流,分子间碰撞为主低真空 102~10-1 Pa 过渡流高真空 102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空 10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空 10-8 Pa 以下

薄膜物理与技术

薄膜物理与技术 第一章 1、真空:低于一个大气压的气体空间。P1 2、真空度与压强的关系:真空度越低,压强越高。P1 3、1Torr = 1/760 atm =133.322Pa.(或1Pa=7.5×10-3Torr)P2 4、平均自由程:每个分子在连续两次碰撞之间的路程。P5 5、余弦定律:碰撞于固体表面的分子,它们飞离表面的方向与原入射方向无关,并按与表 面法线方向所成角度θ的余弦进行分布。P7 6、极限压强(或极限真空):对于任何一个真空系统而言,都不可能得到绝对真空(p=0), 而是具有一定的压强。P7 7、抽气速率:在规定压强下单位时间所抽出气体的体积,它决定抽真空所需要的时间。P7 8、机械泵的原理:利用机械力压缩和排除气体。P8 9、分子泵的工作原理:靠高速转动的转子碰撞气体分子并把它驱向排气口,由前级泵抽走, 而使被抽容器获得超高真空。P13 第二章 1、真空蒸发镀膜的三个基本过程:P17 (1)加热蒸发过程:…… (2)气化原子或分子在蒸发源与基片之间的输运:…… (3)蒸发原子或分子在基片表面上的淀积过程:…… 2、为什么真空蒸发镀膜的三个过程必须在空气非常稀薄的真空环境中进行?P18 答:如果不是真空环境,蒸发物原子或分子将与大量空气分子碰撞,使膜层受到严重污染,甚至形成氧化物;或者蒸发源被加热氧化烧毁;或者由于空气分子的碰撞阻挡,难以形成均匀连续的薄膜。 3、饱和蒸气压:在一定温度下,真空室内蒸发物质的蒸气与固体或液体平衡过程中所表现 出的压力。P18 4、蒸发温度:物质在饱和蒸气压为10-2托时的温度。P18 5、碰撞几率:。P23 6、点蒸发源:能够从各个方向蒸发等量材料的微小球状蒸发源。P25-27 计算:公式2-28、2-33 7、蒸发源与基板的相对位置配置P33 (1)点源与基板相对位置的配置:为了获得均匀膜厚,点源必须配置在基板所围成的球体中心。 (2)小平面源与基板相对位置的配置:当小平面源为球形工作架的一部分时,该小平面蒸发源蒸发时,在内球体表面上的膜厚分布是均匀的。 (3)大、小面积基板和蒸发源的配置。 8、对蒸发源材料的要求:①熔点要高;②饱和蒸气压低;③化学性能稳定,在高温下不应 与蒸发材料发生化学反应;④具有良好的耐热性,热源变化时,功率密度变化较小;⑤原料丰富,经济耐用。P35、37 9、表2-5 适合于各种元素的蒸发源(蒸发源材料)。P36 10、外延:在适当的衬底与合适条件下,沿衬底材料晶轴方向生长一层结晶结构完整的新单 晶层薄膜的方法。P46 11、同质外延:外延薄膜和衬底属于同一物质;异质外延:外延薄膜和衬底属于不同物质。

薄膜物理与技术题库完整

一、填空题 在离子镀膜成膜过程中,同时存在沉积和溅射作用,只有当前者超过后者时,才能发生薄膜的沉积 薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程 薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长 在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。 1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。 2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm 之间。 3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。 4.气体分子的速度具有很大的分布空间。温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。 二、解释下列概念 溅射:溅射是指荷能粒子轰击固体表面 (靶),使固体原子(或分子)从表面射出的现象 气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值: 称为平均自由程, 饱和蒸气压:在一定温度下,真空室蒸发物质与固体或液体平衡过程中所表现出的压力。 凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。 物理气相沉积法:物理气相沉积法 (Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程 真空蒸发镀膜法:是在真空室,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态 溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将靶原子溅射出来,这些被溅射出来的原子带有一定的动能,并且会沿着一定的方向射向衬底,从而实现薄膜的沉积。 离化率:离化率是指被电离的原子数占全部蒸发原子数的百分比例。是衡量离子镀特性的一个重要指标。 化学气相沉积:是利用气态的先驱反应物,通过原子、分子间化学反应的途径生成固态薄膜的技术。 物理气相沉积:是利用某种物理过程,如物质的蒸发或在受到离子轰击时物质表面原子溅射的现象,实现物质原子从源物质到薄膜的可控转移过程。 溅射阈值:溅射阈值是指使靶材原子发生溅射的入射离子所必须具有的最小能量。

薄膜物理与技术复习大全 (西电版)

1.薄膜定义:按照一定需要,利用特殊的制备技术,在基体表面形成厚度为亚微米至微米级的膜层。这种二维伸展的薄膜具有特殊的成分、结构和尺寸效应而使其获得三维材料所没有的特性,同时又很节约材料,所以非常重要。通常是把膜层无基片而能独立成形的厚度作为薄膜厚度的一个大致的标准,规定其厚度约在1μm左右。 2.一些表面定义: 1)理想表面:沿着三维晶体相互平行的两个面切开,得到的表面,除了原子平 移对称性破坏,与体内相同。 2)清洁表面:没有外界杂质。 3)弛豫表面:表面原子因受力不均向内收缩或向外膨胀。 4)重构表面:表面原子在与表面平行的方向上的周期也发生变化,不同于晶体 内部原子排列的二维对称性(再构)。 5)实际表面:存在外来原子或分子。 3. 薄膜的形成的物理过程 驰豫 重构驰豫+重构? ? ? ? ? 驰豫:表面向下收缩,表面层原子与内层原子 结构缺陷间距比内层原子相互之间有所减小。 重构:在平行表面方向上原子重排。

①小岛阶段——成核和核长大,透射电镜观察到大小一致(2-3nm)的核突然出现.平行基片平面的两维大于垂直方向的第三维。说明:核生长以吸附单体在基片表面的扩散,不是由于气相原子的直接接触。 ②结合阶段——两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。而新出现的基片面积上会发生二次成核,复结合后的复合岛若有足够时间,可形成晶体形状,多为六角形。核结合时的传质机理是体扩散和表面扩散(以表面扩散为主)以便表面能降低。 ③沟道阶段——圆形的岛在进一步结合处,才继续发生大的变形→岛被拉长,从而连接成网状结构的薄膜,在这种结构中遍布不规则的窄长沟道,其宽度约为5-20nm,沟道内发生三次成核,其结合效应是消除表面曲率区,以使生成的总表面能为最小。 ④连续薄膜——小岛结合,岛的取向会发生显著的变化,并有些再结晶的现象。沟道内二次或三次成核并结合,以及网状结构生长→连续薄膜。 4. 薄膜的附着类型及影响薄膜附着力的工艺因素 薄膜的附着类型 ①简单附着:薄膜和基片间形成一个很清楚的分界面,薄膜与基片间的结合力为范 德华力 ②扩散附着—由两个固体间相互扩散或溶解而导致在薄膜和基片间形成一个渐变界 面。实现扩散方法:基片加热法、离子注入法、离子轰击法、电场吸引法。 ③通过中间层附着—在薄膜与基片之间形成一个化合物而附着,该化合物多为薄膜材料与基片材料

半导体薄膜技术与物理复习

第一章真空技术 1、真空的定义:真空是指在给定的空间内压力低于一个大气压的稀薄气体状态。 2、真空度:通常用压强为单位来描述“真空”状态下的气体稀薄程度——真空度。(压强高则真空度低,压强低则真空度高) 3、真空度单位: 毫米汞柱(mmHg)托(Torr)帕斯卡(Pa)巴(bar) 单位之间的换算:1 Pa =1 牛顿/米2=1 千克/米*秒2=10 达因/cm2=0.0075 Torr 4、真空不同分区的特点:在气压高于10 Torr 的真空范围区域,气体性质和常压,气流特性也以分子间的碰撞为主;当压力渐渐减小,分子密度降低,平均自由程增加,分子间的碰撞开始减少;当达到高真空区域,真空特性以气体分子和真空器壁的碰撞为主;在超高真空区,气体分子在空间活动减少,而以在固体表面上吸附停留为主。 5、常用的真空泵:机械运动——机械泵、涡轮分子泵 蒸气流喷射——扩散泵 化学吸附——吸气剂泵:升华泵 吸气剂离子泵:溅射离子泵 6、一般机械泵的极限真空度为0.1Pa, 可以在大气中与大气相连工作。 7、扩散泵使用注意事项: A.扩散泵不能单独工作,一定要用机械泵作为前级泵,并使系统抽到0.1Pa 量级时才能启动扩散泵。

B.泵体要竖直,按规定量加油和选用加热电炉功率。 C.牢记先通冷却水,后加热。结束时则应先停止加热,冷却一段时间后才能关闭。 8、常用真空计:热电偶真空计、电阻真空计、热阴极电离真空计、冷阴极电离真空计、电容薄膜真空计、压缩式真快计、压敏真空计(记住常用的三种即可以了)。 9、真空系统的质量:指系统真空度的好坏,特别是系统内所含水蒸气与油污染的程度。 10、真空镀膜的过程(大致了解见书18面) 11、要保持较高真空度需要: A、减少蒸发分子与残余气体分子的碰撞; B、抑制它们之间的反应,减少对衬底表面的污染。 第二章蒸发技术 1、物理气相沉积:指在一定的真空条件下,利用热蒸发或辉光放电或弧光放电等物理过程使材料沉积在衬底上的薄膜制备技术。 2、真空蒸发镀膜法(简称蒸镀):指将固体材料置于高真空环境中加热,使之升华或蒸发并沉积在特定衬底上以获得薄膜的工艺方法。 3、真空蒸发所得到的薄膜,一般都是多晶膜或无定形膜,薄膜以岛状生长为主,历经成核和成膜两个过程。 4、真空蒸发多晶薄膜的结构和性质,与蒸发速度、衬底温度有密切关系。 5、饱和蒸气压:指在一定温度下,真空室中蒸发材料的蒸气在与固体或液体平衡过程中所表现出的压力就为该温度下的饱和蒸气压。

薄膜物理与技术基本概念常识大全1

薄膜物理基础知识大全 第一章: 最可几速度: 平均速度: 均方根速度: 平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平 均自由程。 常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵 粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵 属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵 属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计: U 型压力计、压缩式真空计 相对真空计: 放电真空计、热传导真空计、电离真空计 机械泵、扩散泵、分子泵的工作原理,真空计的工作原理 第二章: 1. 什么是饱和蒸气压、蒸发温度? 在一定温度下,真空室内蒸发物质的蒸气与固体或液体平衡过程中所表现出来的压力 规定物质在饱和蒸气压为10-2Torr 时的温度 2. 克-克方程及其意义? 3. 蒸发速率、温度变化对其影响? 根据气体分子运动论,在气体压力为P 时,单位时间内碰撞单位面积器壁上的M RT M RT m kT v a 59.188===ππM RT M RT m kT v r 73.133===P kT 22πσλ=()s g v v V V T H dT dP -=RT H C P v v -=ln M RT M RT m kT v m 41.122===

第六章 新型半导体薄膜材料

第六章
新型半导体薄膜材料
本章主要介绍硅基非晶半导体薄膜材料的结 构特点、制备方法、光学和电学特性以及这 些材料的研究现状。同时还将介绍微晶Si薄 膜和多晶Si薄膜的结构特点、制备方法及其 应用。在应用方面,将重点介绍高效率、长 寿命、低价格、大面积非晶硅(a-Si:H)太 阳能电池的工作原理及发展现状。

概 述
? 新型半导体薄膜材料的研究与发展,主要 是以研究和发展非晶态半导体薄膜材料制 备与器件应用最为活跃,已成为材料学科 的一个重要组成部分 ? 随着非晶态半导体在科学和技术上的飞速 发展,它已在高新技术领域中得到广泛应 用,并正在形成一类新兴产业。

例如,用高效、大面积非晶硅(a-Si:H)薄 膜太阳电池制作的发电站已并网发电(它是 无任何污染的绿色电源);用a-Si薄膜晶体 管制成的大屏幕液晶显示器和平面显像电视 机已作为商品出售;非晶硅电致发光器件和 高记录速度大容量光盘等。也正在向实际应 用和商业化方向发展。 大量事实说明,研究非晶态半导体薄膜材料 的意义不仅在于技术上能够产生新材料、新 器件和新工艺,而且对于认识固体理论中的 许多基本问题也会产生深远的影响。

硅基非晶态半导体薄膜
“非晶”固体或“无定形”(Amorphous)固 体是一种不具有晶体结构的固体。通常“非晶” 或“无定形”是同义词。但是,严格说来,所 谓“非晶”就是指那些不结晶的物质。液体等 也包括在内。所谓“无定形”是指“玻璃态”的 物质。“玻璃”这一术语多半是指将熔化状态 的物质通过冷急法冻结成的固体。

薄膜物理与技术-考试重点

薄膜物理与技术-考试重点

1.真空环境的划分:①低真空(> 102Pa);②中真空(102—10-1Pa);③高真空(10-1—10-5Pa);④超高真空(< 10-5Pa) 真空蒸发沉积:高真空和超高真空(<10-3 Pa)溅射沉积:中、高真空(10-2—10Pa) 低压化学气相沉积:中、低真空(10—100Pa)电子显微分析:高真空 材料表面分析:超高真空 2.为了获得高真空蒸发系统,通常采用旋片式机械泵和涡轮分子泵两级真空泵联用,其中与真空室直接相连的是涡轮分子泵。 真空泵的原理和适用范围: ①旋片式机械真空泵(输运式真空泵):依靠安置在偏心转子中的可以滑进滑出的旋片将气体隔离、压缩,然后排出泵体之外。 >10-1Pa ②涡轮分子泵(输运式真空泵):高速旋转的叶片将动量传给气体分子,并使其向特定方向运动。10-8—1Pa 溅射离子泵(捕获式真空泵):高压下电离的气体分子撞击Ti阴极,溅射出大量活性很高的Ti原子,以吸附或化学反应的形式捕获大

核心的数目。 化学气相淀积:利用气态先驱反应物,通过原子、分子间化学反应的途径生成固态薄膜。物理气相淀积:利用某种物理过程,实现物质原子从源物质到薄膜的可控转移的过程。 阴影效应:蒸发的物质被障碍物阻挡而不能沉积到衬底上。 溅射:离子轰击物质表面,并在碰撞过程中发生能量与动量的转移,将物质表面原子激发出来的过程。 溅射法:将被电场加速后具有一定动能的离子引向靶电极,与靶表面原子碰撞使之溅射出来,溅射原子能够沿一定方向射向衬底并沉积下来。 等离子体鞘层:等离子体相对器壁会呈正电性,在等离子体和壁之间的非电中性薄层称为鞘层。 弹性碰撞:参加碰撞的粒子的总动能和总动量保持不变,并且不存在粒子内能的变化。 溅射产额:被溅射出来的原子数与入射离子数之比。(衡量溅射过程效率的参数) 靶材的中毒:随着活性气体压力的增加,靶材

薄膜物理与术题库

一、填空题 薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长 在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。 1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。 2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm之间。 3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。 4.气体分子的速度具有很大的分布空间。温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。 二、解释下列概念 溅射:溅射是指荷能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象 气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值: 称为平均自由程, 饱和蒸气压:在一定温度下,真空室内蒸发物质与固体或液体平衡过程中所表现出的压力。 凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。 物理气相沉积法:物理气相沉积法(Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程 真空蒸发镀膜法:是在真空室内,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态 溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将

用RHEED方法分析半导体薄膜特性

用RHEED 方法分析半导体薄膜特性 王 跃 春日正伸* (昆明物理研究所,昆明,650223)(*日本山梨大学工学部电子情报科) 【摘要】在讨论RHEED 原理的基础上,介绍了组建的RH EED 装置和其附属的真空系统,并用此装置得到了Si 薄膜的RHEED 衍射花样。本文还对实验条件和实验结果进行了简单分析和介绍。【关键词】反射高能电子衍射 衍射花样 Si 薄膜 收稿日期:1996-05-17 1 前言 反射高能电子衍射(RHEED -Reflection High Energy Electro n Diffractio n )已被广泛用 于薄膜材料的表面及结构分析[1,2] 。其特点是:一束直径较细的高能电子束照射到被分析样品表面,通过表面反射而形成电子衍射图象,可以进行X 射线不能完成的样品极表面的晶体结构及薄膜方向等的观察和测定。特别是利用RHEED 设备对薄膜材料的外延生长实施实时观察,可以了解薄膜生长情况。 另外,RH EED 所用的加速电压为104~106V,所对应的波长对分析薄膜的结晶性非常有利,衍射电子数较多,可以从被分析样品获得较多的信息,所以电子束的效率较高。 最后,由于高能束以几乎平行于被分析样品表面的一极小的角入射(见图1),入射电子与表面垂直的动量很小,所以电子束的入射深度很小,通过衍射象可以显示表面原子排列的特征。 本文在讨论RHEED 原理的基础上,介绍了组建的RH EED 装置,本装置由RHEED 部分和真空系统组成,并用此装置得到了Si 薄膜的RH EED 的衍射图象。2 实验 2.1 电子衍射原理 图1 电子衍射原理图F ig.1Diffr actio n o f electr on beam 如果将电子当作德布罗意物质波来考虑,则可将在X 射线衍射中运用很成功的衍射原理用于反射高能电子衍射中。所以,对于波长为K 的电子波,满足布拉格条件[3] : 2d sin H =n K (1) 式中:d ——原子面间距; K ——波长; H ——高能束与样品表面之夹角。如图1所示,如只考虑一级衍射n =1,由(1)式有:2d sin H =K ,当H 很小时,有: sin H ≈H , ∴ 2d H =K (2) tan 2H ≈2H =R /L 式中:L ——样品到胶片或荧光屏的距离; R ——一级衍射斑点到中心的距离。

薄膜物理与技术复习课.pdf

真空相关 ?真空是指低于一个大气压的气体空间。常用“真空度”度量。真空度越高,压强越小。“vacuum” = lower molecular density than in our atmosphere results in a lower pressure of gas.The vacuum degree is higher, the higher the vacuum degree, the smaller the pressure. ?常用计量单位:Pa, Torr, mmHg, bar, atm.。关系如下:?1mmHg=133.322Pa, ?1 Torr=atm/760=133.322Pa≈1mmHg ?1 bar=105Pa 最可几度 平均速度 均方根速度 v m= 2kT = 2RT = 1.41 RT M m M v a= 8kT = 8RT = 1.59 RT πm πM M v r= 3kT = 3RT = 1.73 RT m M M ?平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平 均自由程。 Mean free path: the distance between each molecule in a continuous two collision is called a free path, and the average value of the system is a mean free path. λ = kT πσ2 P 2

根据气体分子运动论,在气体压力为P时,单位时间内碰撞单位面积器壁上的分子数量,即碰撞分子流量(通量或蒸发速率)。 According to kinetic theory of gases, the gas pressure when P, the number of molecular collisions per unit time per unit area of the wall, ie, molecular collision flow (flux or evaporation rate). 平均自由程与分子密度n和分子直径σ的平方成反比关系,平均自由程与压强成反比,与温度成正比。 The mean free path of molecules and molecular density n and σ is inversely proportional to the square of the diameter, and the pressure is inversely proportional to the mean free path is proportional to temperature. ?为什么用薄膜?Why thin films? (1)薄膜所用原料少,容易大面积化,而且可以曲面加工。(研究和使用成本) 例:金箔、饰品、太阳能电池,GaN,SiC,Diamond; Materials used less film, easily large area, and can be surface processing. (Research and cost) Example: gold, jewelry, solar, GaN, SiC, Diamond (2)新的效应: 某一维度很小、比表面积大. 例:限域效应、表面和界面效应、耦合效应,隧穿效应、极化效应;新的效应: 某一维度很小、比表面积大. 例:限域效应、表面和界面效 应、耦合效应,隧穿效应、极化效应; New effects: for a dimension is small, than a large surface area. For example: confinement effect, surface and interface effect of, coupling effect, tunneling effect, polarization effect; (3)可以获得体态下不存在的非平衡和非化学计量比结构; Can be obtained under the condition of the non balance and non stoichiometry structure; (4)容易实现多层膜,相互作用与功能集成 Easy to implement multi-layered film, interaction and functional integration ?真空区域的划分classification of vacuum 大气Atmospheric: 760 Torr 粗真空Rough Vacuum: 1 to 1x10-3 Torr 低真空Low Vacuum: 1x10-3 to 1x10-5 Torr 高真空High Vacuum (HV): 1x10-6 to 1x10-8 Torr 超高真空Ultra-High Vacuum (UHV): < 1x10-9 Torr ?真空计 Vacuum gauge (1)绝对真空计:U型真空计、压缩式真空计 Absolute vacuum gauge: U-type vacuum gauge, compression-type vacuum gauge (2)相对真空计:放电真空计、热传导真空计、电离真空计 The relative vacuum gauge: discharge vacuum gauges, heat conduction vacuum gauges, ionization vacuum gauge ?各种真空泵 Vacuum pump (1)旋转式机械真空泵、油扩散泵、复合分子泵,属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的。

相关主题
文本预览
相关文档 最新文档