当前位置:文档之家› 线性系统的时域分析习题答案

线性系统的时域分析习题答案

线性系统的时域分析习题答案
线性系统的时域分析习题答案

第3章 线性系统的时域分析

学习要点

1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用;

3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法;

5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。

思考与习题祥解

题 思考与总结下述问题。

(1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。

(2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响

(5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。

(6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关

答:(1)二阶系统特征根在复平面上分布情况如图所示。

图 二阶系统特征根在复平面上的分布

当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。

当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是

以n ω为半径的圆弧,如图中情况②。

当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。

ξ是系统阻尼比,描述了系统的平稳性。

当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。

当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差;

ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超

调量由ξ值唯一确定,即001_

100%2

?=-π

ξξ

σe 。在工程设计中,对于恒值控制系

统,一般取

ξ=~;对于随动控制系统ξ=~。

n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的

时域性能指标调节时间与n ω值成反比,即34

s n

t ξω≈:。

(3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。

(4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。

(5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。

因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。

无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。

(6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。

题系统特征方程如下,试判断其稳定性。

(a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s

解:(a )稳定; (b )稳定; (c )不稳定。

题 系统结构如题图所示。控制器)1

1()(s

T K s G i p c +

=,为使该系统稳定,控制器参数p K 、i T 应满足什么关系

题图

解:闭环系统特征方程为:

025.0)25.01(152=+++p p i i K s K T s T 所以系统稳定的条件是

??

?>>00

p

i K T ; ?

?

?<<-<040

p i K T

题 设单位反馈系统的开环传递函数为()(10.2)(10.1)

K

G s s s s =++,要求闭环

特征根的实部均小于-1,求K 值应取的范围。

解:系统特征方程为

0)1.01)(2.0.1(=++K s s s

要使系统特征根实部小于1-,可以把原虚轴向左平移一个单位,令1+=s w ,即 1-=w s ,代入原特征方程并整理得

072.046.024.002.02

3

=-+++K w w w 运用劳斯判据,最后得

24.672.0<

题 设单位反馈系统的开环传递函数为

1

2 )

1()(23++++=

s s s s K s G α

若系统以2rad/s 频率持续振荡,试确定相应的K 和α值

解:可以利用Routh 判据或其它方法解答。 系统的闭环传递函数

()32

(1)

()2(1)

K s s s as K s K +Φ=

+++++ 闭环特征方程()322(1)0s as K s K +++++=

利用Routh 判据。作Routh 表如下: 3

s 1 K +2

2

s a K +1 1

s

[(2)1]/a K K a +--

0s K +1 系统持续振荡的条件是

1[(2)1]/02K

a K K a a K

++--=→=

+ 210410as K a K ++=→-++=

所以

2=K , 75.0=α

题 单位反馈系统的开环传递函数)

5(4

)(+=s s s G ,求单位阶跃响应()c t 和调

节时间t s 。

解:依题,系统闭环传递函数

)

1)(1(4)

4)(1(4

454)(2

12T s T s s s s s s ++=

++=++=Φ

其中 121,0.25T T ==。

4

1)4)(1(4

)()()(210++++=++=

Φ=s C s C s C s s s s R s s C

1)

4)(1(4

lim

)()(lim 000=++=Φ=→→s s s R s s C s s 3

4

)4(4lim

)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s 3

1

)1(4lim

)()()4(lim 042=+=Φ+=→-→s s s R s s C s s 单位阶跃响应

441

()133t t c t e e --=-+

Θ 42

1=T T

, ∴3.33.3111==???

? ??=T T T t t s s 。

题机器人控制系统结构如题图所示。试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。

题图

解:依题,系统闭环传递函数为

2

22

12121211

2)1()

1()1(1)

1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=+++

+= 由 ??

???=-=≤=--5

.0102.0212n

p o

o t e ωξπσξπξ 联立求解得

??

?==10

78

.0n ωξ 比较)(s Φ分母系数得

??

?

??=-===146.0121001221K K K n n ξωω

题 系统结构如题图所示。

(1) 当025,0f K K ==时,求系统的动态性能指标%σ和s t ;

(2) 若使系统0.5ξ=,单位速度误差0.1ss e =时,试确定0K 和f K 值。

题图

解:按题思路合方法,可解得

(1)%25.4%1.75

ts σ==

(2)0100,6f K K ==

题 已知质量-弹簧-阻尼器系统如题 (a) 图所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。求m 、k 和μ的值。

F

)

t

图(a) 图(b)

题图

解:系统的微分方程为 :()()()()m y t y t ky t F t μ++=g g

g

系统的传递函数为 :221

()1()()Y s m G s k F s ms s k s s m m

μμ===

++++ 因此 221

110(()()m G Y s F s k ms s k s s s m m

μμ==?++++

利用拉普拉斯终值定理及图上的稳态值可得:

2110

()lim ()lim 0.06s s m y sY s s

k s

s s m

m

μ

→→∞==?

=+

+

所以 10/ k = ,从而求得k = N/m

由系统得响应曲线可知,系统得超调量为0.02/0.0633.3%σ==,由二阶系统性能指标的计算公式

100%33.3%e ξπσ-=?= 解得 0.33ξ=

由响应曲线得,峰值时间为3s ,所以由

3p t =

=

解得 1.109/n rad s ω= 由系统特征方城

22

220n n k

s s s s m

m

μ

ξωω++=+

+

= 可知

2n m

μ

ξω=

2

n

k m

ω= 所以

22

166.7

135.51.109

n k

m kg ω=

== 220.33 1.109135.599.2/(/)n m N m s μξω==???=

题 已知一控制系统的结构如题图,

1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调节时间

s t 和峰值时间p t ; 2) 当()21(),()4sin3r t t n t t =?=时,求系统的稳态误差。

题图

解:

1)系统的开环传递函数为:288

()(4)(2)68G s s s s s =

=++++

系统的闭环传递函数为28

()616

G s s s =++

比较 二阶系统的标准形式222

()2n

n n G s s s ωξωω=++,可得 4n ω=

而26n ξω=,所以0.75ξ=

1.795p t s =

=

100% 2.8%e

ξπσ-==

3

1(5%)s n

t s ξω=

=?= 2)由题意知,该系统是个线性系统,满足叠加原理,故可以分别求取,()21()r t t =?和()4sin 3n t t =分别作用于系统时的稳态误差1ess 和2ess ,系统的稳态误差就等于12ess ess ess =+。

A ) ()21()r t t =?单独作用时,

由系统的开环传递函数知,系统的开环增益1k K =,所以系统对()21()

r t t =?的稳态误差1ess 为:11

211k

ess K =?=+ B ) ()4sin 3n t t =单独作用时,系统的方块图为图。

图 题用图 系统的闭环传递函数为:28(4)

()616e s W s s s +=++

频率特性为:2

8(4)

()616e j W j j ωωωω+=+-

当系统作用为()4sin 3n t t =时,3ω=,所以

28(34)3224(3) 2.0763163718e j j

W j j j

++=

==?+-+

2418

(3)arctan arctan -0.5564327

e W j ∠=-=

系统的输出为:24(3)sin(3(3))

8.56sin(30.5564)

e e ess W j t W j t =?+∠=-

所以系统的误差为:18.56sin(30.5564)ess t =+-

题 已知一个n 阶闭环系统的微分方程为

r b r b y a y

a y a y a y a n n n n 0101)2(2)1(1)(+=+++++--&&Λ 其中r 为输入,y 为输出,所有系数均大于零。 (1). 写出该系统的特征方程; (2). 写出该系统的闭环传递函数;

(3). 若该系统为单位负反馈系统,写出其开环传递函数;

(4). 若系统是稳定的,求当)(1)(t t r =时的稳态误差ss e (误差定义为)()()(t y t r t e -=)

; (5). 为使系统在t t r =)(时的稳态误差0=ss e ,除系统必须稳定外,还应满足什么条件

(6). 当10=a ,5.01=a ,25.02=a ,0=i a )2(>i ,01=b ,20=b ,)(1)(t t r =时,试评价该二阶系统的如下性能:ξ、n ω、%σ、s t 和)(∞y 。 解:根据微分方程与传递函数的对应关系,可得 1)系统的特征方程:11100n n n n a s a s a s a --++++=L

2)系统的闭环传递函数 10

1110()n n n n b s b s a s a s a s a --+Φ=++++L

3)开环传递函数

101

11010

()

()1()n n n n b s b s G s s a s a s a s a b s b --+Φ=

=-Φ++++-+L 4) 误差传递函数111010

1

110

()1()n n n n e n n n n a s a s a s a b s b G s s a s a s a s a ----++++--=-Φ=++++L L 稳态误差

0000

11101011100lim 1

)(lim a b a a s a s a s a b s b a s a s a s a s s sG e n n n n n n n n s e s ss -=++++--++++==----→→ΛΛ 5)由稳态误差和系统稳定条件,可得

11000

a b a b -=+=

6)此时系统的闭环传递函数

2

222

()110.250.51142

s s s s s Φ==++++ 与二阶系统闭环传递函数比较,得

242n n ωω=→=

1

2/0.52

n ξωξ=→=

所以

33s n

t s ξω==

0010

1002

ζπξ

δ

--=e

200012

()lim ()lim ()lim 20.250.51

b s s s y Y s sG s s s s →→→∞====++

线性系统的时域分析法(第七讲)

第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能,分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依据也许可以通过对这些系统加上各种输入信号比较它们对特定的输入信号的响应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性能是合理的。 3.1.1 典型试验信号 经常采用的试验输入信号: ① 实际系统的输入信号不可知性; ② 典型试验信号的响应与系统的实际响应,存在某种关系; ③ 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function ) 0,)(1≥t t 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function ) 速度 0,≥t t ∝ (单位)加速度函数(Acceleration function )抛物线 0,2 12 ≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ 正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控制系统的特性进行比较和研究。本章讨论系统非周期信号(Step 、Ramp 、对正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)作用下系统的响应。 3.1.2 动态过程和稳态过程

二阶系统时域分析

1.有一位置随动系统,其结构图如下图所示,其中K = 4。求该系统的:1)自然 k 振荡角频率;2)系统的阻尼比;3)超调量和调节时间;4)如果要求 <0.707 , 值。 应怎样改变系统参数 K k 2.已知受控对象的开环传递函数为

(1)单位反馈时,计算单位脉冲响应的输出。 (2)试采用速度反馈方法,使得系统的阻尼比ζ=05.,确定速度反馈系数τ的值,并计算性能改善后的动态性能。 解 (1)单位反馈时,闭环传递函数为 其单位脉冲响应为 响应曲线为等幅振荡的,所以该系统仅作单位反馈,不能实现调节作用。 (2)增加速度反馈如图所示。 闭环传递函数为 ζωτ=,所以 阻尼比ζ=05.,则有2 n τ=?= 20.50.95 此时,系统阶跃响应的超调量为 调节时间为 3.已知速度反馈控制系统如图所示,要求系统的超调量为20%,峰值时间为1秒,试计算相应的前向增益K与速度反馈系数K 的值。如果保持K值不变,Kf为零时,计算超调量增大值。

解上述系统的闭环传递函数为 比较二阶系统的标准式有 给定的性能指标为 上述指标与系统特征参数ζ和ωn的关系为: 解得 所以: 当K=125.,Kf=0时,也就是没有速度反馈时,闭环传递函数成为: 阻尼比:

超调量增大为: 4.对下图所示系统,试求K为何值时,阻尼比ζ=0.5。并求此时系统单位阶跃响应的最大超调量和调整时间。 解:系统开环传函为: 系统闭环传函为: 最大超调量: 调整时间

5. 系统结构如图,欲使超调量бp =0. 2, 过渡过程时间t s =1秒(Δ=0.02), 试确定K 和τ的值。 答案: ()2222(2)2n n n K s s K s K s ωτζωωΦ==+++++ 0.456ζ= 8.77 n ω= 277n K ω== 0.078τ= 6. 题图所示机械系统,当受到 F =40N 力的作用时,位移量xt ()的阶跃响应如图所示,试确定机械系统的参数m ,k, f 的值。 解: 图示机械系统的传递函数为 由图所示稳态值()1c ∞=,由终值定理 得到 K=40N/m 由超调量: 峰值时间:

线性系统的时域分析方法

第三章线性系统的时域分析方法 教学目的:通过本章学习,熟悉控制系统动态性能指标定义,掌握线性系统稳定的充要条件和劳斯判椐的应用,以及稳态误差计算方法,掌握一阶、 二阶系统的时域分析方法。 教学重点:掌握系统的动态性能指标,能熟练地应用劳斯判椐判断系统稳定性,二阶系统的动态响应特性分析。 教学难点:高阶系统的的动态响应特性分析。 本章知识结构图: 系统结构图闭环传递函数 一阶标准式 二阶标准式 特征方程稳定性、稳定域 代数判据 误差传递函数误差象函数终值定理稳态误差开环传递函数系统型别、开环增益 公式 静态误差系数 第九讲

3.1 系统时间响应的性能指标 一、基本概念 1、时域分析方法:根据系统的数学模型求出系统的时间响应来直接分析和评价系统的方法。 (1)响应函数分析方法:建立数学模型→确定输入信号→求出输出响应→ 根据输出响应→系统分析。 (2)系统测试分析方法:系统加入扰动信号→测试输出变化曲线→系统分析。 系统举例分析:举例:原料气加热炉闭环控制系统 2、分析系统的三大要点 (1)动态性能(快、稳) (2)稳态性能(准) (3)稳定性(稳) 二、动态性能及稳态性能 1、动态过程(过渡过程):在 典型信号作用下,系统输出从初始状态到最终状态的响应过程。(衰减、发散、等幅振荡) 2、稳态过程:在典型信号作 用下,当t → ∞ 系统输出量表现的方式。表征输出量最终复现输入量的程度。(稳态误差描述) 3、动态稳态性能指标 图3-1温度控制系统原理图 (1)上升时间tr :从稳态值的10%上升到稳态值的90%所需要的时间。 (2)峰值时间tp :从零时刻到达第一个峰值h(tp)所用的时间。 (3)超调量δ%:最大峰值与稳态值的差与稳态值之比的百分数。(稳) (3-1) %100)(()(%?∞∞-= h h t h p ) δ

线性系统时域分析

线性系统时域分析 理论基础 求解零状态响应 1 2 ?→0 =-∞ 连续时间信号 f (t ) 和 f (t ) 的卷积运算可用信号的分段求和来实现,即: ∞ ∞ f (t ) = f 1 (t )* f 2 (t ) = ?-∞ f 1 (τ ) f 2 (t -τ )d τ = lim ∑ f 1 (k ?) f 2 (t - k ?) ? ? k 如果只求当t = n ?(n 为整数)时 f (t ) 的值 f (n ?) ,则上式可得: ∞ ∞ f (n ?) = ∑ f 1 (k ?) f 2 (n ? - k ?) ? ? = ?∑ f 1 (k ?) f 2[(n - k )?] (2-1) k =-∞ ∞ k =-∞ 式(2-1)中的 ∑ f 1 (k ?) f 2[(n - k )?] 实际上就是连续时间信号 f 1 (t ) 和 f 2 (t ) 经等时间间隔? k =-∞ 均匀抽样的离散序列 f 1 (k ?) 和 f 2 (k ?) 的卷积和。当? 足够小时, f (n ?) 就是卷积积分的结果——连续时间信号 f (t ) 的较好数值近似。 因此,用 MA TL A B 实现连续信号 f 1 (t ) 和 f 2 (t ) 卷积的过程如下: 1、将连续信号 f 1 (t ) 和 f 2 (t ) 以时间间隔? 进行取样,得到离散序列 f 1 (k ?) 和 f 2 (k ?) ; 2、构造与 f 1 (k ?) 和 f 2 (k ?) 相应的时间向量k 1 和k 2(注意,k 1 和k 2 的元素不是整数,而是取样间隔? 的整数倍的时间间隔点); 3、调用 MATLAB 命令 conv()函数计算积分 f (t ) 的近似向量 f (n ?) ; 4、构造 f (n ?) 对应的时间向量k 。

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

一阶系统时域分析

1.已知一单位负反馈系统的单位阶跃响应曲线如下图所示,求系统的闭环传递函数。 解答: ①max ()100100()X X %%e %X δ-∞=?=?∞ 由 2.1820.090.6082e ξ-==?= ②0.8 4.946m n t ω==?= ③2222224.4648.9222 6.01424.46 6.01424.46 n B n n W K s s s s s s ωωω=?=?=++++++ 2.已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。 解答: ()() ()210 1101061010.511B s s W s s s s s +==+++++ 3.16n ω==, 260.95n ξωξ=?

( )()1sin n t c X t ξωωθ-= ,arctg θ= ()31 3.2sin 0.98718.19t e t -=-+? (5分) 系统根为 1,2632P j -= =-±,在左半平面,所以系统稳定。 3.一阶系统的结构如下图所示。试求该系统单位阶跃响应的调节时间t s ;如果要求t s (5%)≤ 0.1(秒),试问系统的反馈系数应取何值? (1)首先由系统结构图写出闭环传递函数 得 T =0.1(s ) 因此得调节时间 t s =3T =0.3(s),(取5%误差带) (2)求满足t s (5%) ≤0.1(s )的反馈系数值。 假设反馈系数K t (K t >0) ,那么同样可由结构图写出闭环传递函数 由闭环传递函数可得 T = 0.01/K t 100()10()100()0.1110.1c B r X s s W s X s s s ===++?1001/()1000.0111t B t t K s W s K s s K ==+?+

自动控制原理实验报告《线性控制系统时域分析》

实验一线性控制系统时域分析 1、设控制系统如图1 所示,已知K=100,试绘制当H分别取H=0.1 ,0.2 0.5,1, 2,5,10 时,系统的阶跃响应曲线。讨论反馈强度对一阶 系统性能有何影响? 图1 答: A、绘制系统曲线程序如下: s=tf('s'); p1=(1/(0.1*s+1)); p2=(1/(0.05*s+1)); p3=(1/(0.02*s+1)); p4=(1/(0.01*s+1)); p5=(1/(0.005*s+1)); p6=(1/(0.002*s+1)); p7=(1/(0.001*s+1)); step(p1);hold on; step(p2);hold on; step(p3);hold on; step(p5);hold on; step(p6);hold on; step(p7);hold on;

B 、绘制改变H 系统阶跃响应图如下: 00.050.10.150.20.250.30.350.40.450.5 0.2 0.4 0.6 0.8 1 1.2 1.4 Step Response Time (seconds) A m p l i t u d e 结论: H 的值依次为0.1、0.2、0.5、1、2、5、10做响应曲线。matlab 曲线默认从第一条到第七条颜色依次为蓝、黄、紫、绿、红、青、黑,图中可知随着H 值得增大系统上升时间减小,调整时间减小,有更高的快速性。 2、 二阶系统闭环传函的标准形式为 22 2()2n n n s s s ωψξωω=++,设已知 n ω=4,试绘制当阻尼比ξ分别取0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 5 等值时,系统的单位阶跃响应曲线。求出ξ取值 0.2 ,0.5 ,0.8时的超调量,并求出ξ取值 0.2 ,0.5 ,0.8,1.5,5时的调节时间。讨论阻尼比变化对系统性能的影响。

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

自动控制原理》实验2(线性系统时域响应分析

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1)阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线 随即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如 t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425 )()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s

第3章--线性系统的时域分析--练习与解答

第三章 线性系统的时域分析与校正 习题及答案 3-1 已知系统脉冲响应 t e t k 25.10125.0)(-= 试求系统闭环传递函数)(s Φ。 解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程 T c t c t r t r t ?? +=+()()()()τ 近似描述,其中,1)(0<-<τT 。试证系统的动态性能指标为 T T T t d ?? ? ?????? ??-+=τln 693.0 t T r =22. T T T t s ?? ??? ? -+=)ln( 3τ 解 设单位阶跃输入s s R 1)(= 当初始条件为0时有: 1 1 )()(++=Ts s s R s C τ 1 11 11)(+--= ? ++= ∴ Ts T s s Ts s s C ττ C t h t T T e t T ()()/==---1τ 1) 当 t t d = 时 h t T T e t t d ()./==---051τ 12=--T T e t T d τ/ ; T t T T d -??? ??-=-τln 2ln ????? ???? ??-+=∴ T T T t d τln 2ln

2) 求t r (即)(t c 从1.0到9.0所需时间) 当 T t e T T t h /219.0)(--- ==τ; t T T T 201=--[ln()ln .]τ 当 T t e T T t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21 09 01 22ln ... 3) 求 t s T t s s e T T t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln T T T T T T T T T t s τ ττ-+=+-=--=∴ 3-3 一阶系统结构图如图3-45所示。要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。 解 由结构图写出闭环系统传递函数 111)(212211211 +=+=+ =ΦK K s K K K s K s K K s K s 令闭环增益21 2 == ΦK K , 得:5.02=K 令调节时间4.03 32 1≤= =K K T t s ,得:151≥K 。 3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。 (1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间? (2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。

线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈:。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题 系统结构如题图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξσe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈ 。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系?

二阶系统时域分析

专业:电气工程及其自动化 学号:07050443 05 姓名: 实验一 二阶系统时域分析 一、 实验目的 1. 研究二阶系统的两个重要参数ξ、n ω与系统结构之间的关系。 2. 观察系统在阶跃输入作用下的响应,运用基本理论,分析系统过度过程特点及各种参数对其学习过程的影响,从而找出改善系统动态性能的方法,并在实验中加以验证。 3. 学习二阶系统阶跃响应的测试方法。 4. 掌握开环传递函数与闭环传递函数之间的对应关系,以及ξ、n ω与传递函数系数之间的关系。 二、 实验内容 选择适当的元器件建立单位负反馈二阶系统。 开环传递函数由积分环节和惯性环节构成:()() 1S T S T K S G 21+= 令T T T 21==。 1. 设1T = 改变K 值,使阻尼比ξ,分别为0、0.5、0.7、1、1.5;观察并记录在单位阶跃信号作用下,不同阻尼比时,系统输出响应曲线,并测量系统的超调量σ%、上升时间r t 、峰值时间p t 、调节时间s t 。 (1)当阻尼比ξ无限大时: (2)当阻尼比ξ=0.5时:

(3)当阻尼比ξ=0.7时: (4)当阻尼比ξ=1时: (5)当阻尼比ξ=1.5时:

2. 设定K 值 使ξ=0.707,改变时间常数T ,观察并记录在单位阶跃信号作用下,系统输出曲线,并测量系统的超调量σ%、上升时间r t 、峰值时间p t 、调节时间s t 。并与(1)的结果加以比较。 (1) 当T=0.1时: (2) 当T=1时:

(3) 当T=1.5时: 3. 改变时间常数 使1T 不等于2T ,观察并记录输出波形的变化情况。 (1) 当1T 1=,2T 2=时: (2) 当2T 1=,1T 2=时:

MATLAB线性系统时域响应分析报告实验

实验报告 实验名称 线性系统时域响应分析 一、 实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、 实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标 ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2 ++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、 实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一: num=[1 3 7]; den=[1 4 6 4 1]; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)') 方法二: num=[1 3 7]; den=[1 4 6 4 1 0]; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Respinse of G(s)/s=(s^2+3s+7)/(s^5+4s^4+6s^3+4s^2+s)')

线性系统的时域分析

第3章 线性系统的时域分析 本章讨论线性系统的运动分析。主要介绍连续系统与离散系统的状态空间模型的求解、状态转移矩阵的性质和计算以及连续系统状态方程的离散化。本章最后介绍基于Matlab的状态空间模型求解与控制系统的运动仿真问题的程序设计与仿真计算。 建立了系统的数学描述之后,接下来要对系统作定量和定性分析。定量分析主要研究系统对给定输入信号的响应问题,也就是对描述系统的状态方程和输出方程的求解问题。定性分析主要研究系统的结构性质,如能控性、能观性、稳定性等。本章先讨论用状态空间模型描述的线性系统的定量分析问题,即状态空间模型的求解问题。根据常微分方程理论求解一个一阶定系数线性微分方程组是很容易的,可是求解一个一阶变系数线性微分方程组却非易事。状态转移矩阵的引入,使得定常系统和时变系统的求解公式具有一个统一的形式。为此,本章将重点讨论状态转移矩阵的定义、性质和计算方法,并在此基础上导出状态方程的求解公式。本章讨论的另一个中心问题是连续系统状态方程的离散化,即建立连续系统的离散系统状态方程。随着计算机在控制系统分析、设计和实时控制中的广泛应用,这个问题显得越来越重要。在离散系统状态方程建立的基础上,本章也将讨论相应的状态方程求解问题,并将导出在形式上与连续系统状态方程的解一致的离散系统状态方程的解。 3.1 线性定常连续系统状态方程的解 在讨论一般线性定常连续系统状态方程的解之前,我们先讨论线性定常齐次状态方程的解,以便引入矩阵指数函数和状态转移矩阵的概念。所谓齐次状态方程,就是指状态方程中不考虑输入项的作用,满足方程解的齐次性的一类状态方程。研究齐次状态方程的解,就是研究系统本身在无外力作用下的自由运动。 3.2 状态转移矩阵及其计算 在状态方程求解过程中,关键是状态转移矩阵Φ(t)的计算。对于线性定常连续系统,该问题又归结到矩阵指数函数e At的计算。上一节已经介绍了基于拉氏反变换技术的矩阵指数函数e At的计算方法,下面讲述计算矩阵指数函数的其他3种常用方法。 3.2.1级数求和法

二阶系统的时域分析

实验三 二阶系统的时域分析 一、实验目的 1、通过考察系统的过渡过程指标,研究二阶系统的特征参数—阻尼比和自然频率对系统特性的影响,以及系统特征根的位置与过渡过程的关系。 2、学习自己设计实验,安排适当的实验参数,达到以上实验目标。 二、实验内容 根据传递函数2 22 2)(n n n s s s G ωζωω++=的单位阶跃响应,求取过渡过程的质量指标。按表1的形式整理实验数据,分析实验结果,完成实验报告。 此时,系统的特征根为j j s n n βαζωζω±=-±-=2 2,11。 1、令ζ=0.5,取三种不同的n ω,观察根在根平面上的位置,求其过渡过程和它的质量指

标,进行比较。说明当ζ相同时,过渡过程的哪些指标是相同的? 00.2 0.4 0.6 0.8 1 1.2 1.4 ωn 改变,ζ=0.5不变 Tim e (sec) A m p l i t u d e

2、固定n ω,取ζ=0、0. 3、 0.5、0.7、1,观察根在根平面上的位置,求其过渡过程和它的质量指标。总结当ζ不同时,质量指标有哪些变化? 24681012141618 00.20.40.60.811.2 1.41.61.82 Time (sec) A m p l i t u d e

通过上面两图形与表格总结可以得出: n ω影响二阶系统过渡过程中的峰值时间,过渡时间(在ζ不变的情况下,峰值时间随n ω增 大而减小,过渡时间随n ω的增大而减小) ζ影响几乎全部过渡过程指标,其中超调量,衰减比仅与ζ有关(超调量随着ζ的增大而 减小,衰减比随着ζ的增大而增大;在n ω不变的情况下,峰值时间随ζ增大而增大,过渡时间随ζ的增大而减小。) n ω,ζ对系统的稳态误差均没有影响,且均为0.

自动控制原理_线性系统时域响应分析

专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2 ++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)') 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1) 分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标 ss s p r p e t t t ,,,,σ。 程序如下: num= [0 0 4]; den1=[1 0 4]; den2=[1 1 4]; den3=[1 2 4];

关于典型二阶系统的时域分析10页

林美花(1班)学号:200900192029 二、1:. 在过阻尼情况下,典型二阶系统有两个相异的实数极点,其阶跃响应实际上是两个一阶系统响应的叠加。请以例【3-1】中的系统为例(ωn=5),不断增大ζ值,观察每个ζ值下两个实数极点间的距离;同时绘出两个实数极点分别对应的一阶系统响应和二阶系统的响应,观察它们间的关系。你能得出什么结论?为什么? 解:(1)根据理论推算两实数极点之间的距离为2*ωn*(ζ2-1)0.5 ,所以增大ζ值,两个实数极点间的距离随之增大。 (2)源程序如下: clc; clear; wn=5; num=wn^2; zeta=[1.1:0.1:2.0]; for i=1:10 figure(i) hold on s1=-zeta(i)*wn+wn*(zeta(i)^2-1)^0.5; s2=-zeta(i)*wn-wn*(zeta(i)^2-1)^0.5; num1=wn^2/(s1-s2); num2=-wn^2/(s1-s2); den=[1,2*zeta(i)*wn,wn^2];

step(num,den) den=[1,-s1]; step(num1,den) den=[1,-s2]; step(num2,den) hold off end title('stepresponse')

结论:在过阻尼的状态下,由图像可知其阶跃响应实际上是两个一阶系统响应的叠加。随着ζ的不断增加,一个极点不断靠近原点,另一个不断远

离。当两个极点相距较近时,对阶跃响应产生的影响都不能忽略。ζ的增大使不断远离原点的极点所产生的影响越来越小,最后趋近于零。当两个极点的绝对值之比达到某一倍数(五倍)以上时,则可以忽略离虚轴较远的极点的影响,将二阶系统近似为一阶系统来考虑。同理,在考虑高阶问题时可以找到主导极点,可以降阶处理,化简运算。 二、2:请绘制出图3-21。根据典型二阶系统的脉冲响应,可以分析出系统的哪些暂态性能指标,为什么? 解: clc; clear; wn=5; num=wn^2; zeta=[0.1:0.2:0.7,1.0]; figure(1) hold on for i=1:5 den=[1,2*zeta(i)*wn,wn^2]; impulse(num,den) end hold off title('stepresponse')

相关主题
文本预览
相关文档 最新文档