当前位置:文档之家› 贝塞尔工具的使用技巧

贝塞尔工具的使用技巧

贝塞尔工具的使用技巧
贝塞尔工具的使用技巧

贝塞尔工具的使用技巧

“贝塞尔工具” 是所有绘图类软件中最为重要的工具之一。“贝塞尔工具”可以创建比手绘工具更为精确的直线和对称流畅的曲线。对于大多数用户而言,“贝塞尔工具”提供了最佳的绘图控制和最高的绘图准确度。

为使广大图形软件初学用户能了解“贝塞尔工具”的应用,本人这里以CorelDRA W这款软件为例,详细地剖析“贝塞尔工具”的使用方法。

“贝塞尔”是CorelDRAW中的称谓,在Photoshop、Illustrator、InDesign、Quar kXPress等软件中,称之为“钢笔工具”,虽然名称不一样,但作用是一致的,大家可以触类旁通,参照了解。

1、绘制线段

利用“贝塞尔工具”绘制线段的方式和“手绘工具”一样,能绘制直线、斜线。按住Ctrl键即限制水平、垂直或呈角度绘制线段,不同的是“贝塞尔工具”可以连续地绘制多段线段。以图01为例:先在屏幕某个位置单击鼠标以指定起始点,然后将鼠标移向(不必要按住不放)红圈1处单击指定第一个线段的终止点(在绘制多段线时,此终止点同时也为下一线段的起始点),然后继续将鼠标移向经圈2处单击,完成第二线段的绘制;以此类推,鼠标不断地在新的位置点击,就不断地产生新的线段。

如果是绘制封闭的对象,“贝塞尔工具”的绘制过程是:如图02所示,在红圈1处单击鼠标以指定起始点,然后移动鼠标在红圈2处单击,即绘制出一条线段;保持工具不变,继续将鼠标移向红圈3、红圈4、红圈5处单击,最后移向红圈1处,在起始点上单击鼠标完成闭合操作,一个多边形就完成了。图片如下:

2、认识贝塞尔曲线

“贝塞尔曲线”由节点连接而成的线段组成的直线或曲线,每个节点都有控制点,允许修改线条的形状。

贝塞尔曲线由一个或多个直线段或曲线段组成,如图03,以节点标记路径段的端点。在曲线段上,每个选中的节点显示一条或两条方向线,方向线以方向点结束。方向线和方向点的位置决定曲线段的大小和形状,移动这些因素将改变曲线的形状。

图片如下:

贝塞尔曲线包括对称曲线和尖突曲线:对称曲线由名为对称点的节点连接,尖突曲线由角点连接,如图04。

图片如下:

当在对称了点上移动方向线时,将同时调整对称节点两侧的曲线段;相比之下,当在角点上移动方向线时,只调整与方向线同侧的曲线段,如图05。图片如下:

贝塞尔曲线可以是闭合的,没有起点或终点(例如圆),也可以是开放的,有明显的终点(例如波浪线)。

利用“贝塞尔工具”配合“形状工具”,可以创造任意复杂程度的图形对象,如图0 6。图片如下:

3、绘制贝塞尔曲线

从工具箱中调用“贝塞尔工具” ,在起始点按下鼠标左键不放,将鼠标拖向下一曲线段节点的方向,此时在起始点处会出现控制线;松开鼠标,在需要添加节点处按下鼠标并保持不放,将鼠标拖向再下一曲线段节点的方向,并观察出现的曲线是否和理想中的曲线一致,如果与理想中的曲线弧度不相一致,可以在不松开鼠标的状态下,移动鼠标使其适合所需要的弧度,如图07。

图片如下:

如果曲线很复杂,需要多个曲线段才能组成:可以接上一步操作,在新的节点位置按下鼠标并将鼠标拖向再下一节点的方向;如果节点的下一绘制工作是直线段,可以双击最后的曲线段节点,便可以开始新的线段或曲线段绘制,如图06。

在绘制曲线的过程中,双击最后一个节点,可以改变下一节点的伸展属性,使其和起始点相一致,以便开始新的曲线或直线段的绘制,如图08中红圈所示处。

图片如下:

另外,在使用“贝塞尔工具” 绘制曲线时,如果新指定的节点位置不符合设想,可以按住Alt键不放,移动到新的位置,如图09。

图片如下:

由于“贝塞尔工具” 的重要性,初学者应该花上一点时间对此工具多做练习。练习开始时,可以选择字母或一些简单的图形为样例,沿着边缘进行描绘,如图10。

图片如下:

此主题相关图片如下:

在进行“贝塞尔工具” 练习过程中,可以配合使用“缩放工具”中的“放大(快捷键:F2)” 、“缩小(快捷键:F3)” 和“形状工具(快捷键:F10)” ,如图11,为使曲线与原对象更嵌合,按“F2”键将窗口屏幕进行了放大。

图片如下:

“形状工具(快捷键:F10)” 与“贝塞尔工具” 常相互配套使用,每有“贝塞尔工具”节点定位不准或控制线偏移时,都可以用“形状工具”移动节点或控制线上的控制点,及时地对“贝塞尔曲线”进行纠正,如图12。

图片如下:

4、修饰贝塞尔曲线

在使用“贝塞尔曲线”工具绘制曲线时,就算再熟练的操作人员,也无法做到次次得心应手,实际工作中,经常需要对“贝塞尔工具”绘制的曲线进行一些细节上的调节。

调节和修饰“贝塞尔曲线”都由“形状工具(快捷键:F10)” 完成(Photoshop、I llustrator在修饰贝塞尔曲线时,都用钢笔工具完成)。

■直线转曲线

要改变直线线段为曲线,可以用“形状工具(快捷键:F10)” 在要转换为曲线的直线段上单击,然后点击属性工具栏中的“转换直线为曲线”按钮,直线段即被转换为曲线,并出现控制线,以便进一步调整,如图13。

图片如下:

■曲线转直线

如果要改变曲线为直线,可以用“形状工具(快捷键:F10)” 在要转换为直线的曲线段上单击,然后点击属性工具栏中的“转换曲线为直线”按钮,直线段即被转换为曲线,如图14。图片如下:

■对称节点转尖突节点

对称节点可以同时控制节点两端的曲线,而尖突节点只能控制一端的曲线。在实际工具中,有很多的时间需要将对称节点转换成尖突节点。如果要将对称节点转换成尖突节点,可以用“形状工具(快捷键:F10)” 选中对称节点(如图15中红圈所示处的节点),然后点按属性栏中的“使节点成为尖突”按钮,对称节点即转换成尖突节点。

图片如下:

■尖突节点转对称节点

尖突节点转对称节点操作方法与上述方法相同,只是选取尖突节点后,用“形状工具(快捷键:F10)” 点按属性栏中的“生成对称节点”按钮,尖突节点即被转换成对称节点,如图16。图片如下:

■闭合曲线

使用“贝塞尔工具”绘制曲线时,如果终止点没有与起始点重合,就不会形成封闭的路径,在默认的状态下就也无法对该对象进行色彩填充。当要闭合一个曲线对象时,可以将鼠标移向起始点,此时鼠标会变成形符号,表示可以进行曲线闭合,或点按属性工具栏中的“自动闭合曲线”按钮,使曲线成为一个封闭的路径对象,以便进行色彩填充,如图17。

图片如下:

■选取节点

曲线线段与曲线线段之间的节点,都可以当作对象一样被选取。选择节点时,用“形状工具(快捷键:F10)” 在要选取的节点上单击即可选取该节点;被选取的节点会以小黑块的显示以区别其他节点。如果要选取多个节点,可以按住Shift键再逐次地用“形状工具(快捷键:F10)” 单击要选取的节点,如图18。图片如下:

■断开节点

直线线段、曲线、闭合的曲线路径,都可以使其断开。当要对某一个线段进行断开时,可以使用“形状工具(快捷键:F10)”在要断开的节点上单击以选择该节点,然后单击属性工具栏上的“分割曲线”按钮,该线段即被分割,如图19(右边为分割后再拆分,成为两个对象)。

图片如下:

分割后的对象,如果是线段,就会被分割成两个呈组合状态的对象,按下“排列”菜单中的“拆分曲线(快捷键:Ctrl + K)”命令,两个对象就会被分离出来。

如果将封闭的曲线路径对象中的某个节点断开,该对象即被改变成未闭合的对象,将无法填充颜色,并且已填充的颜色也会无法显示,如图20。图片如下:

■添加、删除节点

利用“形状工具(快捷键:F10)”可以方便地在线段或曲线上添加任意的节点:用“形状工具(快捷键:F10)”在线段或曲线上要添加节点的地方单击,然后点按属性工具栏上的“添加节点”按钮,或用“形状工具”在要添加节点的地方双击,即添加一个新节点。新添加的节点都为尖突节点,如图21。图片如下:

如果要删除线段或曲线上的某个节点,可以先用“形状工具(快捷键:F10)”选取该节点,然后点按属性工具栏中的“删除节点”按钮,或按下键盘上的“Delete”键,或用“形状工具”双击要删除的节点,即可以将节点删除。删除节点后,CorelDRAW会对对象进行一些智能化平滑处理,如图22。

图片如下:

■延长闭合曲线延长闭合曲线功能与自动闭合曲线功能一样,但自动闭合功能更方便一些。如果要使用“延长曲线使之闭合”功能,可以用“形状工具”选取曲线的起始节点,再按住Shift键选取曲线的终止节点,然后点按属性栏上的“延长曲线使之闭合”按钮,开放的曲线路径就会闭合成封闭的路径,如图23。图片如下:

■反转曲线的方向

开放的曲线都有起始节点和终止节点,起始节点是开始绘制曲线时的第一个节点,终止节点是曲线路径没有闭合前的最后一个节点。在屏幕显示上,所有未选取的节点都用小方块显示,但起始节点的显示小方块要比其他节点的显示小方块略大一些,由此可以让操作者区别起始节点和其他节点。反转曲线的方向就是将起始节点和终止节点进行互相调换,使起始节点变成终止节点,终止节点变成起始节点,如图24。图片如下:

■提取子路径

在复杂的封闭路径对象中,会存在多个路径。最外层的路径为主路径,外层内部的路径全部都为子路径,如图25。图片如下:

如果要提取复杂路径中的子路径以作他用,可以用“形状工具”在要提取的子路径上任意选取一个节点,然后点按属性栏上的“提取子路径”按钮,该路径即被分离出来,而其原对象的其他路径仍未做改变,如图26。

图片如下:

此主题相关图片如下:

■缩放路径

所有的路径对象,都可以利用节点来控制放大或缩小操作:当要对某个路径进行缩放时,调用“形状工具”选取要缩放的所有节点,然后按下属性栏上的“伸长和缩短节点连线”按钮,该对象的四周就会出现8个控制点,即可以将路径对象当作普通对象进行缩放操作,如图27(图中为强化显示,将8个控制点改成了红色,实际上为黑色)。

■旋转和倾斜节点

封闭路径上的节点可以缩放,当然也可以旋转或倾斜:用“形状工具(快捷键:F 10)”选取要旋转或倾斜的路径上的所有节点,按下属性工具栏中的“旋转和倾斜节点连线”按钮,该路径对象就可以像普通对象一样,用鼠标拖动四个角上的旋转箭头

进行旋转,或拖动四条边上的水平倾斜箭头或垂直倾斜箭头进行拉伸变形,如图28。

图片如下:

■选择全部节点

如果对象的节点非常复杂,而现在要将其所有节点全部选取,可以:用“形状工具(快捷键:F10)” 在对象的外围按下并拖动鼠标,拉出一个比对象略大的矩形框,使对象被“罩”在框内,释放鼠标后,对象上的所有节点就都被选中;也可以先随意地选取某一个节点,然后点按属性栏上的“选择全部节点”按钮,同样可以将该对象的所有节点一次性选中,如图29。

图片如下:

此主题相关图片如下:

VC实现贝塞尔曲线绘制

VC实现贝塞尔曲线绘制 摘要:本文主要通过对Bezier曲线的几何图形的进一步理解,探讨其具体的控制方法,结合具体绘制实际分析理论描述对控制点计算理解的偏差,统一了认识;结合曲线绘制函数PolyBezier()具体的要求,实现VC环境下简单的曲线绘制方法研究。 关键词:贝塞尔曲线;PolyBezier;曲线连续性 1贝塞尔曲线描述 贝赛尔曲线的每一个顶点都有两个控制点,用于控制在该顶点两侧的曲线的弧度。所以本函数的顶点数组的记录方式是:控制点+顶点+控制点+控制点+顶点+控制点+……。所以两个顶点之间的曲线是由两个顶点以及两个顶

点之间的控制点来决定的。一条贝塞尔样条由4个定义点定义:两个端点和两个控制点。 2曲线的绘制方法 2.1PolyBezier函数 PolyBezier函数用于画贝赛尔样条曲线,原型:BOOL PolyBezier(HDC,hdc,CONST POINT *lppt,DWORD cPoints);参数:hdc:指定的设备环境句柄。Lppt:POINT结构数组的指针,包括了样条端点和控制点的坐标、其顺序是起点的坐标、起点的控制点的坐标、终点的控制点的坐标和终点的坐标。cPoints:指明数组中的点的个数。本文中绘制曲线主要用到这个函数。 2.2一阶连续性 图1所示为一段Bezier曲线经过p0、p1两个端点,要绘制经过它们的曲线需要再确定k1、K2两个控制点,这条曲线最终是由p0、k1、k2、p1四个点决定。图2为经过p0、p1(p2)、p3的一段连续曲线,可以看出,它是由p0-p1及p2-p3两段曲线组成,连续的贝塞尔曲线会把前一个终止点当作起始点:即p1=p2。 要绘制如图2所示曲线,关键在于确定k0、k1、k2、k3四个控制点方法,一般是根据两段曲线连续(即一阶连续性:两个相邻曲线段在交点处有相同的一阶导数)条件来得出。总的来说,就是k0p0 连线即为曲线在p0处切线,k1p1连

七种基本测量工具的使用方法和注意事项的异同点

七种基本测量工具的使用方法和 注意事项的异同点 初中物理共有七个直接测量型实验:《用刻度尺测长度》、《用量筒测固体、液体的体积》、《用天平测固体、液体的质量》、《用温度计测水的温度》、《用弹簧测力计测力》、《用电流表测电流》、《用电压表测电压》。在这七个实验中,分别是用刻度尺、量筒、天平、温度计、弹簧测力计、电流表、电压表这七种基本测量工具测出了长度、体积、质量、温度、力、电流、电压这七个物理量的值。 这七种基本测量工具虽然在原理、构造、用途上各不相同,但在使用方法和注意事项上却存在不少共同之处: 1、使用前都要根据测量的实际需要,选择适当的测量工具。如刻度尺的使用:测量窗帘的尺寸,我们用能准确到厘米的刻度尺就够了,而给窗户安装玻璃,我们就必须选用能准确到毫米的刻度尺;再如温度的测量:测较低的温度,应选用酒精温度计,而测高温,要选用沸点较高的水银温度计,测体温,则要选用更准确的体温计。 2、使用前都要观察所选工具的单位、分度值和量程,确定这种仪器(或仪表)是否适合使用,观察分度值就是认清它们刻度的每一小格代表的值,目的是测量时会读数。对于一个给定的刻度尺、量筒、温度计、弹簧测力计,每一小格表示的值是一定的,而电流表和电压表,因它们一般有两个量程,对于不同的量程,每一小格表示的值是不同的,因而要先观察选用的量程,再读数,对于天平,则要认清标尺上的最大值和每一小格表示的值。 3、使用前一定要注意零点和调整(校零),目的是为了测量的准确。如刻度尺,要观察它的零刻度线在哪里,是否有磨损;天平要先进行调节,即先把天平放在水平台上,把游码放在标尺左端的零刻度处,调节横梁右端的螺母,使指针掼在刻度盘的中央,这时横梁平衡;弹簧测力计、电流表、电压表都要先把指针调到零点上。

附录A:量子力学中常用的数学工具

附录A :量子力学中常用的数学工具 1. 常用数学符号 1.1 克雷内克符号 克雷内克(Kronecker )符号i j δ在物理中有广泛应用,其定义为 1,0,i j i j i j δ=?=? ≠? (A1-1) 可以用来简洁地表示基矢量或本征函数之间的正交归一性关系 *i j i j dx ψψδ=? (A1-2) 1.2 列维·西维塔符号 列维·西维塔(Levi-Civita )符号i j k ε又称为三阶反对称张量,其定义为 1,123,231,312 1,132,213,3210,i j k i jk i jk ε+=?? =-=??? 其它 (A1-3) 可以用来简洁地表示矢量积的分量关系 ,,,(), k i j k i j i j k i j k i j i j k A B A B A B C A B C εε?=??=∑∑v v v v v (A1-4) 1.3. 微分算符 在坐标表象下,动量对应梯度算符,梯度算符在直角坐标和球坐标中的表示形式为 11 sin x y z r e e e e e e x y z r r r θ?θθ? ???????=++=++??????v v v v v v (A1-5) 利用球坐标表达式r r re =v v ,得到 1sin r e e ?θθθ? ????=-??v v v (A1-6) 上式决定了角动量在球坐标中的表示形式。 (A1-6)式的平方为球面拉普拉斯算符 2 22 11sin sin sin θθθθθ?Ω????=+ ??? (A1-7) 与角动量平方相对应。拉普拉斯算符在直角坐标和球坐标中的表示形式为 22222 22222 11 r x y z r r r Ω?????=?=++=+????? (A1-8) 与动能相对应。

贝塞尔曲线和B样条曲线(优质参考)

§4.3 贝塞尔曲线和B 样条曲线 在前面讨论的抛物样条和三次参数样条曲线,他们的共同特点是:生成的曲线通过所有给定的型值点。我们称之为“点点通过”。但在实际工作中,往往给出的型值点并不是十分精确,有的点仅仅是出于外观上的考虑。在这样的前提下,用精确的插值方法去一点点地插值运算就很不合算;另外,局部修改某些型值点,希望涉及到曲线的范围越小越好,这也是评价一种拟合方法好坏的指标之一。 针对以上要求,法国人Bezier 提出了一种参数曲线表示方法,称之为贝塞尔曲线。后来又经Gorgon, Riesenfeld 和Forrest 等人加以发展成为B 样条曲线。 一、 贝塞尔曲线 贝塞尔曲线是通过一组多边折线的各顶点来定义。在各顶点中,曲线经过第一点和最后一点,其余各点则定义曲线的导数、阶次和形状。第一条和最后一条则表示曲线起点和终点的切线方向。 1.数学表达式 n+1个顶点定义一个n 次贝塞尔曲线,其表达式为: )()(0,t B p t p n i n i i ∑== 10≤≤t ),...,2,1,0(n i p i =为各顶点的位置向量,)(,t B n i 为伯恩斯坦基函数 i n i n i t t n i n t B ---= )1()! 1(!! )(, 2.二次贝塞尔曲线 需要3个顶点,即210,,p p p ,将其代入曲线表达式: 2,222,112,00)(B p B p B p t p ++=

220202,021)1() 1()! 02(!0! 2t t t t t B +-=-=--= - 21212,122)1(2)1()! 12(!1! 2t t t t t t B -=-=--= - 22222,2)1()! 22(!2! 2t t t B =--= - 221202)22()21()(p t p t t p t t t p +-++-= [ ] ?? ?? ? ???????????????--=2102 0010221211p p p t t 10≤≤t 2102)21(2)1(2)(tp p t p t t p +-+-=' )(222)0(0110p p p p p -=+-=' 0)0(p p = )(222)1(1221p p p p p -=+-=' 2)1(p p = 当2 1 = t 时: 21021041214141)412212()412121(21p p p p p p p ++=+?-?++?-=?? ? ?? )](2 1 [21201p p p ++= 02210212)2121(2)121(221p p p p p p -=?+?-+-=?? ? ??'

CorelDrew常用技巧

1、按空格键可以快速切换到“挑选”工具。 2、按shift键并逐一单击要选择的对象,可连续选择多个对象 3、选定隐藏在一系列对象后面的单个对象,按住Alt ,然后利用“挑选”工具单击最前面的对象,直到选定所需的对象。 4、按Shift+TAB键,会按绘制顺序选择对象。 5、按Shift多选时,如果不慎误选,可按Shift再次单击误选对象取消之。 6、单击时按住Ctrl键可在群组中选定单个对象。 7、单击时按住Alt 键可从一系列对象中选定单个对象。 8、单击时按住Alt + Ctrl 键可从群组对象中选定单个对象。 9、在一对象内选择:按住Alt 框选,再用Shift键点击对象。 10、全部选取文本、节点、对象、辅助线等:选择编辑/全选。 11、按住ALT键使用选取工具,不全部圈住对象也能选定对象。 四、编辑技巧 1、双击“挑选”工具可选定全部对象。 2、双击矩形工具,可创建和工作区相同大小的矩形。 3、旋转:双击对象,按住ctrl,拖动对象上手柄,可按15度增量旋转。 4、移动:移动时按住ctrl,可使之限制在水平和垂直方向上移动。 5、颜色选择:当在标准颜色框中找不到想要的颜色时,可用下两种方法寻找最接近的颜色:(1)选取物件,选择最接近的颜色点击鼠标不放三秒种左右就会弹出一个7X7方格的临近色域供选择,选取想要的色彩便可。 (2)添加法。例如要一种橙色色彩,选取物件,先填充****,再左手按CTRL键,右手单击红色,每点击一下就会在原先的****中加入10%的红色成份,直到接近想要的色彩,同样可加入其它的色彩成分于其中。 6、设置选取工具属性栏上的“微调偏移”可用光标实现物件的精确移动。 7、设置选取工具的属性列中的“贴齐导线”、“贴齐物件”可精确调整物体的位置。 8、段落文字甩文:用“选择工具”选择文本框,点击文本框下边中间的控制点,出现甩文图标,在空白处拖一新文本框,原文本框中未显示的文字将出现在新文本框中。 9、形状工具的小技巧:常遇到用造型工具对一根曲线进行整形时,会发现以结点为单位的地方,线条过于尖角或生硬,不够柔和自然,此时,只需在此结点两边各双击增加一个节点,然后双击中间的结点删除,自然线条变柔滑流畅。 10、自定义调和路径:先调和出A对B的直线效果,再画一条路径,点按纽路径属性——新路径,再去单击路径曲线,就会沿着路径进行互动式渐变。. 11、简单的多轮廓字体:只需打好文字,要几个轮廓,就复制几个,依次加粗各个的轮廓线粗细和轮廓线的色彩,然后按从粗到细从后到前的顺序排列即可。 12、快速拷贝色彩和属性:在CorelDraw 软件中,给其群组中的单个对象着色的最快捷的方法是把屏幕调色板上的颜色直接拖拉到对象上。此方法同样适用于渐变填充,可在填充轴上添加新的颜色。同样地道理,拷贝属性到群组中的单个对象的捷径是在用户拖拉对象时按住鼠标右键,而此对象的属性正是用户想要拷到目标对象中去的。当用户释放按钮时,程序会弹出一个右键显示菜单,在菜单中用户可以选择自己想要拷贝的属性命令。 13、贝塞尔曲线工具使用技巧: (1)在节点上双击,可以使节点变成尖角,方便转折; (2)按C键可以改变下一线段的切线方向(常用的),注意方向最好是在一条线上,这样画出来的线条才会圆顺;

proe工程图绘制技巧

用Pro/E做三维图功能很强大,但在生成二维图时,却很难生成符合国家标准的图纸。所以,人们做产品设计时,往往这样做:先用Pro/E建模,将其投影出二维图,并将其转化为CAD 图样,再在CAD里做修改和标注,使其符合国标。其实并不是这样的,用Pro/E同样可生成符合国家标准的图纸。下面这些技巧,将告诉我们怎样使proe工程图符合国标。 一、尺寸公差 1、公差标准与等级 Pro/E 提供两种公差标准,美国标准ANSI,国际及欧洲标准ISO/DIN 标准。公差分四级由高到低分别是Fine, Medium, Corase 及Very Corase。 关于这两个参数我们既可以用系统的缺省值,也可以在config.pro 中由Tolerence_standend 及Tolerence_class设定。 2、尺寸公差标注 Pro/E 的三维模型和二维图是全相关的,公差的标注有两种方法。 其一:在二维图中直接标注,操作过程如下: 选中尺寸→属性,此时会弹出参数块窗口,选择并填充完成。 对于存在标准值的公差,例如轴、孔公差等,需要在三维模型中把标准公差调入后,在公差参数窗口中才会出现标准公差符号。 其二:在三维模型中给尺寸分配公差,在出二维图这些公差会同尺寸值同时显示在二维图中,操作步骤如下: a. 公差表调入三维模型: Pro/E 为我们提供了标准公差表,包括一般尺寸公差、轴、孔尺寸公差,这些公差值允许用户修改,为使用标准公差表,使用之前必须先把这些表调入三维模型中,操作步骤如下: 在零件模型中:编辑→设置→公差设置→公差表→检索→选公差表→打开→是→完成。 b. 给尺寸赋公差值,操作过程如下: 选中尺寸→属性→公差模式→公差表(如孔等)→表名称(如H7 等)。 在二维图中: 双击尺寸(或尺寸属性)→选择相应公差模式

计算机图形学bezier

计算机图形学课程设计报告Bezier曲线的算法实现 学号:201005070214 姓名:赵凯 学院:信息科学与技术学院 指导教师:邓飞 学校:成都理工大学

一、选题的意义及目的: 贝塞尔曲线就是这样的一条曲线,它是依据四个位置任意的点坐标绘制出的一条光滑曲线。在历史上,研究贝塞尔曲线的人最初是按照已知曲线参数方程来确定四个点的思路设计出这种矢量曲线绘制法。贝塞尔曲线的有趣之处更在于它的“皮筋效应”,也就是说,随着点有规律地移动,曲线将产生皮筋伸引一样的变换,带来视觉上的冲击。1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名是为贝塞尔曲线。 由于用计算机画图大部分时间是操作鼠标来掌握线条的路径,与手绘的感觉和效果有很大的差别。即使是一位精明的画师能轻松绘出各种图形,拿到鼠标想随心所欲的画图也不是一件容易的事。这一点是计算机万万不能代替手工的工作,所以到目前为止人们只能颇感无奈。使用贝塞尔工具画图很大程度上弥补了这一缺憾。 贝塞尔曲线 贝塞尔曲线是计算机图形图像造型的基本工具,是图形造型运用得最多的基本线条之一。它通过控制曲线上的四个点(起始点、终止点以及两个相互分离的中间点)来创造、编辑图形。其中起重要作用的是位于曲线中央的控制线。这条线是虚拟的,中间与贝塞尔曲线交叉,两端是控制端点。移动两端的端点时贝塞尔曲线改变曲线的曲率(弯曲的程度);移动中间点(也就是移动虚拟的控制线)时,贝塞尔曲线在起始点和终止点锁定的情况下做均匀移动。注意,贝塞尔曲线上的所有控制点、节点均可编辑。这种“智能化”的矢量线条为艺术家提供了一种理想的图形编辑与创造的工具。它的主要意义在于无论是直线或曲线都能在数学上予以描述。 通过本次课程设计使我们对贝塞尔曲线更加熟悉! 二、方法原理及关键技术: (1)原理: 贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由 Paul de Casteljau 于1959年运用 de Casteljau 算法开发,以稳定数值的方法求出贝塞尔曲线。线性贝塞尔曲线 给定点 P0、P1,线性贝塞尔曲线只是一条两点之间的直线。这条线由下式给出: 且其等同于线性插值。 二次方贝塞尔曲线的路径由给定点 P0、P1、P2 的函数 B(t) 追踪:

贝塞尔曲线

贝塞尔曲线 20世纪70年代,雷诺汽车公司的Pierre Bezier 和雪铁龙汽车公司的Paul de Casteljau 各自独立地推导出了CAD/CAM 中广泛应用的贝塞尔曲线,这些参数多项式是一类逼近样条。 与贝塞尔曲线紧密相关的是伯恩斯坦多项式,这里将Bernstein 多项式记作,()i n B x ,该多项式定义如下: ,()(1),01i n n i i n B x x x x i -??=-≤≤ ??? (1.1) 其中i=0,1,2,…n 。 在Mathematica 中构造该函数可以使用语句: Bernstein[x_,i_,n_]:=ExpandAll[Binomial[n,i]?x^i ?(1?x)^(n ?i)] Casteljau 最开始是使用递归方法隐式地定义的,该递推关系如下: 0,0,,11,1()1 ()(1)()()i n i n i n B x B x x B x xB x ---==-+ (1.2) 其中i=1,2,3,…n-1。 通常,n 阶伯恩斯坦多项式一共有(n+1)个,例如四阶的伯恩斯坦多项式为: 234 0,4234 1,4234 2,434 3,444,4()1464()412124()6126()44()B x x x x x B x x x x x B x x x x B x x x B x x =-+-+=-+-=-+=-= (1.3) 除此之外,还有其他一些性质: 非负性 多项式在[0,1]上是非负的,这个结论是显然的,对于四阶伯恩斯坦多项式,函数图形如下: 规范性

,0()1n i n i B x ==∑ (1.4) 原因很简单,对于二项式: 0()n n i n i i n x y x y i -=??+= ???∑ (1.5) 令x=x ,y=1-x ,代入得证。 导数 ,1,1,1()(()())i n i n i n d B x n B x B x dx ---=- (1.6) 基 n 阶伯恩斯坦多项式组成阶数小于等于n 的所有多项式的一个基空间。 根据该性质,所有n 阶多项式都可以被n 阶伯恩斯坦多项式线性表示。如果给定一个控制点集P ,其中P i =(x i ,y i ),则贝塞尔曲线被定义为: ,0()()n i i n i P x PB x ==∑ (1.7) 该公式中的控制点是表示平面中的x 和y 坐标的有序对。x 坐标和y 坐标可单独由该式推导出。 例如求控制点(1,2)、(2,-3)、(3,1)、(4,-2)所表出的贝塞尔曲线,则: 0,31,32,33,30,31,32,33,31*()2*()3*()4*()2*()3*()1*()2*() Px B t B t B t B t Py B t B t B t B t =+++=-+- (1.8) 展开有: 2321521361710Py t Px t t t t =++≤=-≤-其中 (1.9) 在Mathematica 中绘制图形命令: ls = ListLinePlot[{{1, 2}, {2, -3}, {3, 1}, {4, -2}}, Axes -> False]; g = ParametricPlot[{1 + 3 t, 2 - 15 t + 27 t^2 - 16 t^3}, {t, 0, 1}]; Show[ls, g] 绘制图形如下:

CorelDRAW_贝塞尔工具的基本用法

·在节点上双击,可以合节点变成尖角 ·按C键可以改变下一线段的切线方向 ·按S键可以改变上下两线段的切线方向 ·按ALT键且不松开左键可以移动节点 ·按CTRL这,切点方向可以根据预设空间的限制角度值任意放置。 ·要连续画不封闭且不连接的曲线按ESC键 还可以一边画一边对之前的节点进行任意移动。 体会 A、初学时很爱使用“独臂”节点,但现在很少用了。因为很多情况下,这样做麻烦,且不精确。提倡使用尖角节点,曲线光滑度要求不高时,只要两“臂”大致成一直线就行,光滑度要求高时,则使用平滑节点,对称节点一般也用不着。 B、提倡尽量在PHOTOSHOP里勾边,既方便又精确。调到Illustrator中时,复制粘贴即可;调到CD中,可先导出路径。 C、论曲线编辑功能,应是CD最好,而绘制功能,还是PS最好。其实绝大多数情况下,勾边都是一次性绘制完成的,根本用不着再编辑。 如何边画线边修改 给形状工具和贝塞尔工具都定义一个快捷键,比如Alt+Shift+D和Alt+D,这样就可以使用热键在两个工具之间快速切换了。从形状工具换回来时,要先点一下最后画的那个节点,然后继续。 最后一个节点 鼠标点在最后一个节点上时不要立即松开,此时按(住)C键,可使该节点成尖角节点,S键则成平滑型的,当然也可以不按任何键,只是往外拉,则可以拉出对称节点。从形状工具切换回来时,也可以这么做。 补充几点: 1、在任意工具情况下,在曲线上双击都可以换为形状工具对曲线进行编辑; 2、在曲线上用形状工具双击可以增加一个节点; 3、在曲线的节点上双击形状工具可以删除一个节点; 4、位图可以用形状工具点击再拖动某一点可以进行任意形状的编辑; 5、用形状工具同时选中几个节点可以进行移动; 6、在微调距离中设定一个数值再用形状工具选中曲线的某一节点敲方向箭头可以进行精确位移; 7、将某一个汉字或字母转换为曲线就可以用形状工具进行修理如将“下”的右边的点拿掉等; Coreldraw中的贝赛尔工具为何不能象PS、AI中一样画M形曲线?却老是只能画S形呢! 答:不是不可以,只是你的操作方法可能不对。 单击开始点后拖弧线,在第二个节点上用鼠标双击(和PS里直接在节点上Alt+鼠标单击的功能完全一样},接着就可画出任意方向的弧线了(也可S形也可m形),这样你在导入位图后用贝塞尔曲线工具也完全可以象PS里用路径抠图那样一次直接描绘出图象的轮廓了。

工程图标注方法与技巧

1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

三次贝塞尔曲线

练习45 三次贝塞尔曲线 一、练习具体要求 本例制作二维图形三次贝塞尔曲线。效果如图45-1所示。执行本例实例后,将创建一个绘有三次贝塞尔曲线的帧。本实例的知识点有:Graphics2D 类和Rectangular 类的应用,曲线绘制的方法。 二、程序及注释 (1)编程思路: java2中Graphics2D 中绘图的第一步是用setColor(),setFont(),setPointMode ,setXORMODE()之类的方法制定绘图属性,第二步生成一个shape 接口的对象,指定要画的形体,第三步是绘图。绘制形体是用三个Graphics2D 方法完成的。Chip()方法将绘图区缩小到指定形体与当前剪接区的交接部分,影响后面的绘图操作。Draw()方法用当前Stroke 绘制Shape 的外形。Fill()方法用当前Point 模式填充Shape 。CubicCurve2D 类生成三次曲线,他与其他曲线类不同,不是描述闭合形体,而是描述曲线。曲线类用贝塞尔曲线定义曲线上的实际点。生成曲线后,应用Draw()或Fill()方法,可以把起点和终点看成相连接的,从而得到闭合区域。 (2) 程序实现及注释: //ExitableJFrame.java import javax.swing.*; public class ExitableJFrame extends JFrame{ //构造函数 public ExitableJFrame(){ } //带窗口标题的构造函数 public ExitableJFrame(String title){ super(title); } //窗口的初始化 本例 知识 点 一句话讲解新学 知识编写Graphics2D 类 绘制图形使用CubicCurve2D 类 绘制图形已学 知识使用Graphics 类 画屏幕图像使用String 类管理字符串

贝塞尔工具的应用详解

贝塞尔工具的应用详解 By;QQ932525422 贝塞尔工具是创建完美图形最常用的工具之一,它构造路径的方法比较适合长期性的绘图作业及要求精度较高的绘图任务。在使用“贝塞尔”工具绘图之前,首选应了解有关“贝塞尔曲线”的概念。 法国数学家“贝塞尔”在工作中发现,任何一条曲线都可以通过与它相切的控制柄两端的点的位置来定义。其中切线的长度和角度描述了一条路径是如何在两个顶点之间偏离直线的,这就是“贝塞尔曲线规律”简单地说,控制柄的作用就犹如杠杆,改变控制柄的角度和长短,也就改变了曲线的曲率。图3-19出示了贝塞 尔曲线及其控制点示意图。 图3-19 贝塞尔曲线示意图 1. 使用贝塞尔工具绘制曲线 (1)选择工具箱中的“贝塞尔”工具,首先在绘图页面中单击确定路径的起始点,接着在要放置第二个节点的位置单击并拖动鼠标,在拖动的同时可看到节点的两侧控制柄在移动,两个控制点以与节点相反的方向移动。控制点与节点之间的距离决定了绘制线段的高度和深度,控制点的角度则控制曲线的斜率,通过依次单击鼠标来放置节点,使控制柄改变曲线的曲率,如图3-20所示。 图3-20 贝塞尔曲线及控制点

提示:当确定控制点位置时按住键,可以使控制点以15度的增量变化。 (2)参照图3-21所示绘制路径,接着使用“形状”工具,对绘制的路径节点进行调整。然后通过按下键, 将其放到所有字母图形下面,并填充为白色,轮廓宽度为2mm。 图3-21 绘制曲线 技巧:在使用“贝塞尔”工具绘制曲线拖动其控制柄时,加按键盘上的键,可使节点变为“尖突节点”;若加按键,则可使节点变为“平滑节点”;按住键可以移动最后创建节点的位置。 2. 使用贝塞尔工具绘制直线 (1)接下来使用“贝塞尔”工具,在绘图页面中单击确定起始点的位置,然后移动鼠标到下一个节点的位置 再次单击创建直线,参照图3-22所示,绘制封闭路径并填充颜色。 提示:在使用“贝塞尔”工具绘制曲线的同时,在其属性栏中单击“自动闭合曲线”按钮,可将曲线闭合。

工程图中的几个使用技巧

附录2. 工程图中的几个使用技巧 一)尺寸公差: 1、公差标准与等级 Pro/E 提供两种公差标准,美国标准ANSI,国际及欧洲标准ISO/DIN 标准。公差分四 级由高到低分别是Fine, Medium, Corase 及Very Corase。 关于这两个参数我们既可以用系统的缺省值,也可以在config.pro 中由 Tolerence_standend 及Tolerence_class 设定,也可在模型中修改菜单结构如下: Standard 公差标准 Model Class 公差等级 Tol Table 公差表 ANSI ISO/DIN Fine Medium Corase Very Corase Modify Value Retrioue Souce Show 设置→公差设置→ 2、尺寸公差标注 Pro/E 的三维模型和二维图是全相关的,因此公差的标注就存在两种方法。 方法一:在二维图中直接标注,操作过程如下: 选中尺寸→属性,此时会弹出参数块窗口,选择并填充完成。 对于存在标准值的公差,例如轴、孔公差等,需要在三维模型中把标准公差调入后,在 公差参数窗口中才会出现标准公差符号。 方法二:在三维模型中给尺寸分配公差,在出二维图这些公差会同尺寸值同时显示在二 维图中,操作步骤如下: a. 公差表调入三维模型: Pro/E 为我们提供了标准公差表,包括一般尺寸公差、轴、孔尺寸公差,且这些公差值 允许用户修改,为使用标准公差表,使用之前必须先把这些表调入三维模型中,操作步骤如下: 在零件模型中: 2 编辑→设置→公差设置→公差表→检索→选公差表→打开→是→完成。 b. 给尺寸赋公差值,操作过程如下: 选中尺寸→属性→公差模式→公差表(如孔等)→表名称(如H7 等)。 在二维图中: 双击尺寸(或尺寸属性)→选择相应公差模式。 二)形位公差: 1、形位公差的基准符号 Pro/E 提供的基准的表示符号与我国不同,因此我们必须用自定义符号来标注基准面、 基准轴、当我们的符号库里有了此符号以后(符号定义过程见附页),基准的标注过程如下:

C语言实现生成贝塞尔曲线(代码)

在C环境下编程实现:由4个控制点生成3次贝塞尔曲线 #include #include int zuhe(int n,int k) { int i,s1,s2; s1=1; s2=1; if(k==0) return 1; for(i=n;i>=n-k+1;i--) s1=s1*i; for(i=k;i>=2;i--) s2=s2*i; return s1/s2; } float fang(float n,int k) { if(k==0) return 1; return pow(n,k); } float benkn(int n,int k,float t) { return zuhe(n,k)*fang(t,k)*fang(1-t,n-k); } void main() { float t[11]={0},x[4],y[4],x1[11],y1[11],s=0.0; int i; for(i=1;i<11;i++) {s=s+0.1;t[i]=s;} printf("please input x value:\n"); for(i=0;i<4;i++) scanf("%f",x+i); printf("please input x value:\n"); for(i=0;i<4;i++) scanf("%f",y+i); for(i=0;i<11;i++) { x1[i]=x[0]*benkn(3,0,t[i])+x[1]*benkn(3,1,t[i])+x[2]*benkn(3,2,t[i])+x[3]*benkn(3,3,t[i]); y1[i]=y[0]*benkn(3,0,t[i])+y[1]*benkn(3,1,t[i])+y[2]*benkn(3,2,t[i])+y[3]*benkn(3,3,t[i]); } printf("%f,%f,%f,%f\n",x[0],x[1],x[2],x[3]); printf("%f,%f,%f,%f\n",y[0],y[1],y[2],y[3]); for(i=0;i<11;i++) {

Solidworks创建工程图模板及材料明细表模板的技巧

Solidworks创建工程图模板及材料明细表模板技巧 为了快速出图和快速出材料明细表和汇总表,每个公司都要建立一个适合自己的模版。 (1)工程图模板的建立 按照企业自身的要求建立相应图幅的工程图模板文件,并且将图层建立在工程图模板文件中,这样可以使新建的工程图都包含建立的图层。再将工程图模板复制在SolidWorks\ data\template\…的模板文件中。 (2)材料明细表模板的建立 系统所预设的材料明细表范本存储在安装目录SolidWorks\lang\ Chinese_ simplified\…下,可依照需求自行设计新的模板。步骤如下: 1)打开Solidworks\lang\Chinese_ simplified\Bomtemp.xl文件。 2)进行如图4所示的设置(定义名称应与零件模型的自定义属性一致,以便在装配体工程图中自动插入明细表)。 图4 用户个性化设置 ☆将原Excel文件中的“项目号”改为“序号”,定义名称为“ItemN o”;

☆在“数量”前插入两列,分别为“代号”和“名称”,定义名称分别为“DrawingNo”和“PartNo”; ☆将“零件号”改为“材料”,定义名称为“Material”; ☆在“说明”前插入两列,分别为“单重”和“总重”,定义名称分别为“Weight”和“TotalWeight”; ☆将原Excel文件中的“说明”改为“备注”,定义名称为“Descripti on”。 3)在Excel文件编辑环境中,逐步在G列中输入表达式D2*F2,…,D12*F12,…,以便在装配体的工程图中由装入零件的数量与重量来自动提取所装入零件的总重量。 4)选择“文件”→“另存为”,将文件命名为BOM表模板,保存在S olidWorks\lang\ chinese-simplified \…下的模板文件中。 从此新建工程图或在工程图中插入材料明细表时,均会按定制的选项设置执行,并且不需查找模板文件繁琐的放置路径。 2.图纸格式的更换 在生成新的工程图时,应依据零件模型的大小、综合设计经验和纸张成本等因素选取合适的工程图模板。但在工作中不免会遇到选择图形模板不合适的情况,此时需要更换图纸模板格式,具体操作步骤

PTC 野火 工程图使用技巧

附录1. 设计工程师规范化工作 当用户设计零件,装配和工程图时,有些信息可自动列入明细表中,但更多的相关信息,可以通过设定参数的方式,在设计阶段设定。根据用户的不同需求,参数可自行设计,方法如下: 工具?参数?添加新参数?输入名称(如 Cname, Cmat,或中文参数,如名称、图号、材料等等。。。。。。) 一) 设计零件 文件/新建/零件/输入零件名/使用缺省模板 工具/参数/数值/Cname/输入零件名称 工具/参数/数值/Cmat/输入零件材料 工具/参数/数值/Cindex/输入零件图号 工具/参数/数值/ptype/输入零件类型:W 外购件 J 借用件 B 标准件 Z 重要件 G 关键件 编辑/设置/质量属性/密度/输入相应密度。 然后再进行相应零件的设计。 二)设计装配 文件/新建/组件/输入装配名/ /使用缺省模板 工具/参数/数值/Cindex/输入装配图号 工具/参数/数值/Cname/输入装配名称 然后再进行相应装配的设计。 三)设计工程图 文件/新建/绘图/输入图名/清除使用缺省模板/格式为空/调用相应图框/调入要出图的模型,然后再进行相应布图工作。

附录2. 工程图中的几个使用技巧 一) 尺寸公差: 1、公差标准与等级 Pro/E提供两种公差标准,美国标准ANSI,国际及欧洲标准ISO/DIN标准。公差分四级由高到低分别是Fine, Medium, Corase及Very Corase。 关于这两个参数我们既可以用系统的缺省值,也可以在config.pro中由Tolerence_standend及Tolerence_class设定,也可在模型中修改菜单结构如下: 2、尺寸公差标注 Pro/E的三维模型和二维图是全相关的,因此公差的标注就存在两种方法。 方法一:在二维图中直接标注,操作过程如下: 选中尺寸→属性,此时会弹出参数块窗口,选择并填充完成。 对于存在标准值的公差,例如轴、孔公差等,需要在三维模型中把标准公差调入后,在公差参数窗口中才会出现标准公差符号。 方法二:在三维模型中给尺寸分配公差,在出二维图这些公差会同尺寸值同时显示在二维图中,操作步骤如下: a. 公差表调入三维模型: Pro/E为我们提供了标准公差表,包括一般尺寸公差、轴、孔尺寸公差,且这些公差值允许用户修改,为使用标准公差表,使用之前必须先把这些表调入三维模型中,操作步骤如下: 在零件模型中:

第三章 CorelDRAW工具的使用12

第二节绘制和编辑曲线 1 曲线的基本概念 1.1 路径 路径是使用绘图工具创建的直线、曲线或矩形、圆形、多边形、轮廓线等各种平面线条,路径可以同一条或多条线条组成,是绘制矢量图形的基本元素。 1.2 曲线和线段 一条连续的路径叫曲线,它包括直线、折线和弧线等。每一条曲线都是由点连接起来的一条或多条直线段或曲线段组成的,这些直线段或曲线段都称之为线段,每条线段的两个端点称之为节点。起点和终点重合的曲线称之为闭合曲线;起点与终点不重合的曲线称为开放曲线。只有闭合曲线才能填充颜色。 1.3 节点、方向线和方向控制柄 1、节点 节点是线段的端点或两条线段的连接点,是一些标记路径线段端点的小方块,移动节点可以改变路径的位置和形状。节点又根据当前的状态显示为填充与不填充两种形式。若节点被当前操作所选择,该节点将被填充为黑色,成为填充形式,若节点未被当前操作所选择,该节点不填充颜色,成为不填充形式。节点分为五类:直线节点、曲线节点、尖角节点、平滑节点和对称节点。 2、方向线和笔向控制柄 对应于一段路径可以产生一条曲线,该曲线的弯曲程度和凹凸方向将由方向线的方向和长度来确定,单击形状工具,选中节点,将出现方向线。方向线的端点为方向控制柄也叫方向点,移动方向控制柄可以改变方向线的长度和方向,从而改变曲线的弯曲程度和凹凸方向。可以使用形状工具等各种选择工具对节点、方向线和方向控制柄进行选择和编辑。 2 曲线工具组 利用几何绘图工具可以制作出多种形状的特定图形,但是在设计中经常需要绘制一些形状不规则的图形,这就要用到曲线工具组中的工具。 曲线工具组中包含8个工具,分别是手绘工具、贝塞尔工具、艺术笔工具、钢笔工具、多点线工具、三点曲线工具、交互式连线工具和度量工具。 2.1 手绘工具 使用手绘工具就像使用铅笔,手绘工具根据用户拖动鼠标的轨迹来勾画路径。使用手绘工具可以绘制直线,也可以绘制曲线。

曲线之美(一)贝塞尔曲线

曲线之美(一)贝塞尔曲线 收藏 在图形图像编程时,我们常常需要根据一系列已知点坐标来确定一条光滑曲线。其中有些曲线需要严格地通过所有的已知点,而有些曲线却不一定需要。在后者中,比较有代表性的一类曲线是贝塞尔曲线(Bézier Splines)。 网友们可能注意到,贝塞尔曲线广泛地应用于很多图形图像软件中,例如Flash、Illstrator、CoralDRAW和Photoshop等等。什么是贝塞尔曲线呢?你先来看看这个: 哼~一条很普通的曲线,好像真的无法给我们带来什么特殊感觉哦~那把这条曲线和绘制它所根据的点重叠地放在一起再瞧瞧吧: Hoho,原来呀~贝塞尔曲线就是这样的一条曲线,它是依据四个位置任意的点坐标绘制出的一条光滑曲线。我们不妨把这四对已知点坐标依次定义成(x0,y0)、(x1,y1)、(x2,y2)和(x3,y3)。贝塞尔曲线必定通过首尾两个点,称为端点;中间两个点虽然未必要通过,但却起到牵制曲线形状路径的作用,称作控制点。 在历史上,研究贝塞尔曲线的人最初是按照已知曲线参数方程来确定四个点的思路设计出这种矢量曲线绘制法。涕淌为了向大家介绍贝塞尔曲线的公式,也故意把问题的已知和所求颠倒了一下位置:如果已知一条曲线的参数方程,系数都已知,并且两个方程里都含有一个参数t,它的值介于0、1之间,表现形式如下所示: x(t) = ax * t ^ 3 + bx * t ^ 2 + cx * t + x0 y(t) = ay * t ^ 3 + by * t ^ 2 + cy * t + y0 由于这条曲线的起点(x0,y0)是已知的,我们可以用以下的公式来求得剩余三个点的坐标: x1 = x0 + cx / 3 x2 = x1 + ( cx + bx ) / 3 x3 = x0 + cx + bx + ax

测量工具及其使用方法

第二章测量工具及其使用方法 第一节测量工具 量具或检验的工具,称为计量器具,其中比较简单的称为量具;具有传动放大或细分机构的称为量仪。 一般的测绘工作使用的量具有: 简易量具:有塞尺、钢直尺、卷尺和卡钳等,用于测量精度要求不高的尺寸。 游标量具:有游标卡尺、高度游标卡尺、深度游标卡尺、齿厚游标卡尺和公法线游标卡尺等,用于测量精密度要求较高的尺寸。 千分量具:有内径千分尺、外径千分尺和深度千分尺等,用于测量高精度要求的尺寸。 平直度量具:水平仪,用于水平度测量。 角度量具:有直角尺、角度尺和正弦尺等,用于角度测量。 根据我们教学的具体情况,这里仅简单介绍一下钢直尺、卡钳、游标卡尺的使用方法。图2-1为几种常用的测量工具。 (1)钢直尺 (3)游标卡尺(4)外卡钳 (2)千分尺 (5)内卡钳 图2-1 测量工具 一、钢直尺 使用钢直尺时,应以左端的零刻度线为测量基准,这样不仅便于找正测量基准,而且便

于读数。测量时,尺要放正,不得前后左右歪斜。否则,从直尺上读出的数据会比被测的实际尺寸大。 用钢直尺测圆截面直径时,被测面应平,使尺的左端与被测面的边缘相切,摆动尺子找出最大尺寸,即为所测直径。 二、卡钳 凡不适于用游标卡尺测量的,用钢直尺、卷尺也无法测量的尺寸,均可用卡钳进行测量。 卡钳结构简单,使用方便。按用途不同,卡钳分为内卡钳和外卡钳两种:内卡钳用于测量内部尺寸,外卡钳用于测量外部尺寸。按结构不同,卡钳又分为紧轴式卡钳和弹簧式卡钳两种。 卡钳常与钢直尺,游标卡尺或千分尺联合使用。测量时操作卡钳的方法对测量结果影响很大。正确的操作方法是:用内卡钳时,用母指和食指轻轻捏住卡钳的销轴两侧,将卡钳送入孔或槽内。用外卡钳时,右手的中指挑起卡钳,用母指和食指撑住卡钳的销轴两边,使卡钳在自身的重量下两量爪滑过被测表面。卡钳与被测表面的接触情况,凭手的感觉。手有轻微感觉即可,不宜过松,也不要用力使劲卡卡钳。 使用大卡钳时,要用两只手操作,右手握住卡钳的销轴,左手扶住一只量爪进行测量。 测量轴类零件的外径时,须使卡钳的两只量爪垂直于轴心线,即在被测件的径向平面内测量。测量孔径时,应使一只量爪于孔壁的一边接触,另一量爪在径向平面内左右摆动找最大值。 校好尺寸后的卡钳轻拿轻放,防止尺寸变化。把量得的卡钳放在钢直尺、游标卡尺或千分尺上量取尺寸。测量精度要求高的用千分尺,一般用游标卡尺,测量毛坯之类的用钢直尺校对卡钳即可。 三、游标卡尺 游标卡尺在使用前应检查卡尺外观,轻轻推、拉尺框检查各部位的相互作用、两测量面的光洁程度。移动游标,使两量爪测量面闭合,观察两量爪测量面的间隙(精度为0.02毫米卡尺的间隙应小于0.006毫米;精度为0.05毫米和0.1毫米卡尺的间隙应小于0.01毫米),然后校对“0”位。校对“0”位时,无论游标尺是否紧固,“0”位都应正确。当紧固或松开游标尺时,“0”位若发生变化,不要使用。 游标卡尺的正确使用方法: 1.测量外尺寸时,应先把量爪张开比被测尺寸稍大;测量内尺寸时,把量爪张开得比被测尺寸略小,然后慢慢推或拉动游标,使量爪轻轻接触被测件表面。(图2-2 )

相关主题
文本预览
相关文档 最新文档