当前位置:文档之家› 基于单片机的恒温箱控制器的设计

基于单片机的恒温箱控制器的设计

基于单片机的恒温箱控制器的设计
基于单片机的恒温箱控制器的设计

基于单片机的恒温箱控制系统设计

电子信息工程王锋

[摘要]恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。本设计是基于AT89C51单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C51作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。

[关键词]单片机;温度传感器;恒温;控制;报警

The Design of Refrigerator Door Shell Shaping Control System

Based on Siemens WINCC

Electronic Information Engineering W ANG Feng Abstract:The system makes use of the single chip AT89C51 as the temperature controlling center, uses numeral thermometer DS18B20 which transmits as 1-wire way as the temperature sensor, through the pressed key, the numerical code demonstrated composite of the man-machine interactive connection ,to realize set and adjust the initial temperature value. After the system works, the digital tube will demonstrate the temperature value, when temperature arriving to the setting value, the buzzer will be work immediately. In addition, the system through the software adjusting to the pressed key error, and the excessively hutting. All of these are in order to enhance the system’s security, reliability and stability.

Keywords:DS18B20;MCU;Constant temperature control; 1-wire transmission

目录

1 引言 (1)

2 系统概述 (1)

2.1 简述 (1)

3 设计思路分析 (2)

4 方案论证 (2)

4.1 温度传感器 (2)

4.2 显示部分 (2)

4.3 输出控制 (3)

5 硬件设计及工作原理 (3)

5.1 系统功能及工作流程介绍 (3)

5.2 功能模块 (5)

5.3 系统硬件设计 (5)

5.3.1 DS18B20测温电路 (5)

5.3.2 DS18B20的特点介绍 (6)

5.3.3 单线(1-wire)技术 (6)

5.3.4 DS18B20的引脚及功能介绍 (7)

5.3.6 输出控制电路 (9)

5.3.7 温度越线报警电路 (10)

6 系统的应用软件设计 (10)

6.1 软件描述 (10)

6.1.1 键盘管理模块 (10)

6.1.2 显示模块 (11)

6.1.3 控制模块 (11)

6.1.4 温度报警模块 (12)

6.1.5 主程序和中断服务程序流程 (12)

7 系统调试与仿真 (14)

7.1 硬件调试 (14)

7.1.1 脱机检查 (14)

7.1.2 仿真调试 (14)

7.1.3 检查CPU的时钟电路 (14)

7.1.4 对扩展的RAM、ROM进行检查调试 (15)

7.2 软件调试 (15)

7.2.1 交叉汇编 (15)

7.2.2 用汇编语言 (15)

7.2.3 手工汇编 (15)

7.3 系统仿真 (15)

8 抗干扰技术 (18)

8.1 硬件抗干扰技术 (18)

8.2 软件抗干扰技术 (18)

9 系统制作与测试 (19)

结束语 (21)

参考文献 (22)

致谢 (23)

1 引言

温度控制是工业生产过程中经常遇到的过程控制,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同。因而,对温度的测控方法多种多样。随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。然而现有的温度传感元件大多为模拟器件(热电耦)体积大、应用复杂、而且不容易实现数字化等缺点,阻碍了应用领域的扩展。本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C51作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。

2 系统概述

2.1 简述

单片机已经在测控中获得了广泛的应用,它除了可以测量电信号以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用到很多领域。

单片机的接口信号是数字电信号,要想用单片机获取温度这类非电信号的信息,毫无疑问,必须使用温度传感器。温度传感器的作用是将温度信息转换为电流或电压输出,如果转换后的电流或电压输出是模拟信号,那么还必须进行A/D转换,以满足单片机接口的需要。

传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差、测量温度准确率低,而且必须经过专门的接口电路转换成数字信号后才能由单片机进行处理。随着微电子技术的发展,单片微处理器功能日益增强,价格低廉,在各方面得到广泛应用。在温度控制器中应用单片机,具有设计简单、可靠性高、控制精度高,功能易扩展,有较强的通用性等优点。温度控制器主要实现对恒温箱温度的控制,并满足不同用户的个性需求。因此一个较完善的控制器应具有以下功能:温度的测量与显示;用户设定功能(如温度设定,定时设定等);对电加热管的控制功能;一些功能键(如定时自动加热,恒温控制,手动加热等);安全措施(漏电检测,安全失效保护,限温保护等)。本文将采用一种数字温度传感器来实现基于51单片机的恒温箱控制系统设计。

整个控制系统分为硬件电路设计和软件程序设计两部分。

3 设计思路分析

设计51单片机的恒温箱控制系统设计时,需要考虑下面3个方面的内容:

●选择合适的温度传感器芯片。显然,本文中的核心器件是单片机和温度传感

器,单片机采用常用的51单片机即可,而温度传感器的选择则需慎重。

●单片机和温度传感器的接口电路设计。

●控制温度传感器实现温度信息采集以及数据传输的软件设计。

4 方案论证

4.1 温度传感器

方案一:采用热敏电阻,可满足40~90℃的测量范围,但热敏电阻精度、重复性、可靠性都比较差,其测量温度范围相对较小,稳定性较差,不能满足本系统温度控制的范围要求。

方案二:采用温度传感器铂电阻 Pt1000。铂热电阻的物理化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件,且此元件线性较好。在 0—100 摄氏度时,最大非线性偏差小于 0.5 摄氏度。铂热电阻与温度关系是,Rt = R0(1+At+Bt*t);其中 Rt 是温度为 t 摄氏度时的电阻;R0 是温度为 0 摄氏度时的电阻;t 为任意温度值,A,B 为温度系数。

方案三:采用模拟温度传感器AD590K,AD590K具有较高精度和重复性(重复性优于0.1℃),其良好的非线性可以保证优于±0.1℃的测量精度。但其测量的值需要经过运算放大、模数转换再传给单片机,硬件电路较复杂,调试也会相对困难,所以本系统不宜采用此法。

方案四:采用数字温度传感器DS18B20,DS18B20提供九位温度读数,测量范围-55℃~125℃,采用独特1-WIRE 总线协议,只需一根口线即实现与MCU 的双向通讯,具有连接简单,高精度,高可靠性等特点。并且,DS18B20支持一主多从,若想实现多点测温,可方便扩展。

综合以上四种方案,本设计采用第四种方案,利用数字温度计DS18B20作为温度传感器。

4.2 显示部分

方案一:采用I/O口直接驱动,需要占用大量可贵的I/O口资源,且系统运行后,更换元件不易,不符合系统设计的可靠性、易扩展性原则。

方案二:采用串行口驱动、静态显示,利用单片机的串行口输出数据,显示多位数码,可节省大量的I/O口,但每个数码管必须有一个驱动芯片,且每位段码须接一个限流电阻,所须元件多,硬件电路比较复杂。

方案三:采用串行口驱动、动态扫描显示,利用单片机的串行口输出数据,显示

多位数码,多个数码管可共用驱动芯片和限流电阻。这样既可以简化硬件电路,又可以节省大量的I/O口线,为功能扩展留下空间。

综合以上三种方案,本设计采用方案三:串行口驱动、动态显示。根据系统具体指标要求,可以对每一个具体部分进行分析设计。

4.3 输出控制

方案一:采用继电器,易于控制,且实行比较简单,但强电和弱电不能很好的隔离,抗干扰能力极差。

方案二:采用光电藕合器,控制信号与输出信号可以很好的隔离,增强了系统的安全性和抗干扰能力。

综合以上两种方案,本设计采用光电藕合器控制负载工作。

5 硬件设计及工作原理

5.1 系统功能及工作流程介绍

根据恒温箱控制器的功能要求,并结合对51系列单片机的资源分析,即单片机软件编程自由度大,可用编程实现各种控制算法和逻辑控制。所以采用AT89C51作为电路系统的控制核心。恒温箱控制器的总体布局如图1所示。按键将设置好的温度值传给单片机,通过温度显示模块显示出来。初始温度设置好后,单片机开启输出控制模块,使电热器开始加热,同时将从数字温度传感器DS18B20测量到的温度值实时的显示出来,当加热到设定温度值时,单片机控制声光报警模块,发出声光报警,同时关闭加热器。当自然冷却到设定温度3摄氏度以下时,单片机再次启动加热器,如此循环反复,以达到恒温控制的目的。系统结构框图如图1所示,系统基本硬件电路图如图2所示,在本系统中,DP1~DP3用于七段数码显示;P1.0用于接收DS18B20采集到的数字温度信号;FUZA1控制光电开关,决定电加热器是否工作;K1~K3用于按键控制;BELL和P1.4、P1.5用于控制扬声器和发光二极管,进行声光报警;串行口用于输出显示段码;P2.0、P2.1用于对数码管进行动态扫描。

图1 系统结构框图

图2 基本硬件电路图

5.2 功能模块

根据上面对工作流程的分析,系统软件可以分为以下几个功能模块:

(1) 键盘管理:监测键盘输入,接收温度预置,启动系统工作。

(2) 显示:显示设置温度及当前温度。

(3) 温度检测及温度值变换:完成A/D转换及数字滤波。

(4) 温度控制:根据检测到的温度控制电炉工作。

(5) 报警:当预置温度或当前炉温越限时报警。

5.3 系统硬件设计

5.3.1 DS18B20测温电路

DS18B20数字温度计是Dallas公司生产的1-Wire器件,即单总线器件。与传统的热敏电阻有所不同,DS18B20可直接将被测温度转化成串行数字信号,以供单片机处理,具有连线简单、微型化、低功耗、高性能、抗干扰能力强、精度高等特点。因此用它来组成一个测温系统,具有电路简单,在一根通信线上可以挂很多这样的数字温度计,十分方便。目前已被众多行业进行广泛的运用(锅炉、温控表粮库、冷库、

工业现场温度监控、仪器仪表温度监控、农业大棚温度监控等)。

通过编程,DS18B20可以实现9~12位的温度读数。信息经过单线接口送入DS18B20或从DS18B20送出,因此从微处理器到DS18B20仅需连接一条信号线和地线。读、写和执行温度变换所需的电源可以由数据线本身提供,而不需要外部电源。

每片DS18B20在出厂时都设有唯一的产品序列号,因此多个DS18B20可以挂接于同一条单线总线上,这允许在许多不同的地方放置温度传感器,特别适合于构成多点温度测控系统。

5.3.2 DS18B20的特点介绍

(1)独特的单线接口方式,与单片机通信只需一个引脚,DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)在使用中不需要任何外围元件。

(3)可用数据线供电,电压范围:+3.0~+5.5 V。

(4)测温范围为-55~+125 ℃。在-10~+85℃范围内误差为0.5 ℃。

(5)通过编程可实现9~12位的数字读数方式。

(6)用户可自设定非易失性的报警上下限值。

(7)支持多点组网功能,通过识别芯片各自唯一的产品序列号从而实现单线多挂接,多个DS18B20可以并联在唯一的线上,简化了分布式温度检测的应用,实现多点测温。

(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

(9)告警寻找命令可以识别和寻址那些温度超出预设告警界限的器件。

5.3.3 单线(1-wire)技术

目前常用的微机和外设之间数据传输的串行总线有I2C总线、SPI总线等,其中,I2C总线采用同步串行两线(一根时钟线、一根数据线)方式,而SPI总线采用同步串行三线(一根时钟线、一根输入线和一根数据出线)方式。这两种总线需要至少两根或两根以上的信号线。美国达拉斯半导体公司推出了一项特有的单线(1-wire)技术。该技术与上述总线不同,它采用单根信号线,即可传输时钟,又能传输数据,而且数据传输是双向的,因而这种单线技术具有线路简单、硬件开销少、成本低廉、便于扩展的优点。

单线技术适用于单主机系统,单主机能够控制一个或多个从机设备。主机可以是微控制器,从机可以是单线器件,它们之间的数据交换、控制都由这根线完成。主机或从机通过一个漏极开路或三态端口连至数据线,以允许设备在不发送数据时能够释放该线,而让其他设备使用。单线通常要外接一个约5KΩ的上拉电阻,这样,当该线闲置时,其状态为高电平。

主机和从机之间的通信主要分3个步骤:初始化单线器件、识别单线器件和单线

数据传输。由于只有一根线通信,所以它们必须是严格的主从结构,只有主机呼叫从机时,从机才能应答,主机访问每个单线器件必须严格遵循单线命令序列,即遵守上述3个步骤的顺序。如果命令序列混乱,单线器件将不会响应主机。

所有的单线器件都要遵循严格的协议,以保证数据的完整性。1-wire协议由复位脉冲、应答脉冲、写0、写1、读0和读1这几种信号类型组成。这些信号中,除了应答脉冲,其他均由主机发起,并且所有命令和数据都是字节的地位在前。

5.3.4 DS18B20的引脚及功能介绍

DS18B20的外形及TO-92封装引脚排列见左图,其引脚功能描述见表1,实测温度和数字输出的对应关系见表

2.

表1DS18B20详细引脚功能描述

表2 温度值分辨率配置表

5.3.5 DS18B20的使用方法

由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

(1) DS18B20的复位时序,见图3

图3 DS18B20的复位时序图

置总线为低电平并保持至少480us,然后拉高电平,等待从端重新拉低电平作为响应,则总线复位完成。

(2) DS18B20的读时序,见图4。

图4 DS18B20的读时序图

对于DS18B20的读时序分为读0时序和读1时序两个过程。对于DS18B20的读时

隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。DS18B20在完成一个读时序过程,至少需要60us才能完成。(3) DS18B20的写时序,见图5。

图5 DS18B20的写时序图

对于DS18B20的写时序仍然分为写0时序和写1时序两个过程。对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。

(4) DS18B20在电路中的连接,见图6。

1-wire总线支持一主多从式结构,硬件上需外接上拉电阻。当一方完成数据通信需要释放总线时,只需将总线置高点平即可;若需要获得总线进行通信

时则要监视总线是否空闲,若空闲,则置低电平获得总线控制权。

图6 DS18B20测温电路

5.3.6 输出控制电路

MOC3041内部带有过零控制电路,MOC3041输出端额定电压为400V。加热电路中采用MOC3041的目的有两个:其一是实现强电与弱电的隔离;其二是实现双向可控硅的过零触发,从而使流过双向可控硅的电流波形为正弦波,减少谐波。电路连接如图6所示,其在电路中的工作原理是单片机根据传感器和设定开关输入的控制指令,控制电器的电源通断。Q2为MAC97A6型小型塑封双向晶闸管,其最大通态电流为1A。当电源控制电路的输出管脚送出的开关控制指令为高电平,MOC3041截止,Q2截止,电器被关闭;当电源控制电路送出的开关控制指令为低电平,MOC3041导通,Q2导通,电器被打开。通过MOC3041内部的过零触发电路,保证Q2在电压过零时导通和截止,对供电系统干扰极小。R8和C6是Q2的保护电路。

图7 光耦控制输出

5.3.7 温度越线报警电路

报警电路如图8所示,该电路采用一个小功率三极管Q1驱动蜂鸣器BELL,当单片机接收到超额温度信号或危险信号时,输出脚BELL输出高点平,Q1导通,致使蜂鸣器BELL得电工作,发出报警声。同时,电路中的发光二极管指示出电路的工作状态。

图8 报警电路

6 系统的应用软件设计

6.1 软件描述

在软件设计时,必须先弄清恒温控制系统的操作过程和工作过程。加热器开始时处于停止状态,首先设定温度,显示器显示温度,温度设定后则可以启动加热。温度检测系统不断检测并显示系统中的实时温度,当达到设定值后停止加热,当温度下降到下限(小于设定值3℃)时再自动启动加热,这样不断的循环,使温度保持在设定范围之内。启动加热以后就不能再设定温度,因为温度的设定可以根据实验要求改变。若要改变设定的温度,可以先按复位/停止键再重复上述过程。

根据以上对操作和工作过程的分析,程序应分为两个阶段:一是通电或复位后到启动加热,程序主要是按键设定、显示器显示设定温度;二是检测并显示系统的实时温度,并根据检测的结果控制电热器,这时系统不接收键盘的输入。因此,程序可以分为以下几个功能模块:温度设定和启动;显示;温度检测;温度控制以及报警。6.1.1 键盘管理模块

键盘管理子程序流程如图9所示。

图9 键盘处理程序流程

当通电或复位以后,系统进入键盘管理状态,单片机只接收设定温度和启动。当检测到有键闭合时先去除抖动,这里采用软件延时的方法,延时一段时间后,再确定是否有键闭合,然后将设定好的值送入预置温度数据区,并调用温度合法检测报警程序,当设定温度超过最大值如90℃时就会报警,最后当启动键闭合时启动加热。

键盘设定:用于温度设定。共三个按键。

KEY1(P1.1): 状态切换;温度设置确认;温度重新设置。

KEY2(P1.2): 设置温度“+”。

KEY3(P1.3): 设置温度“-”。

系统上电后,数码管全部显示为零,根据按 KEY1 次数,决定显示的状态,根据相应的状态,利用KEY2、KEY3进行加减,当温度设定好之后,再按KEY1确定,系统开始测温,开启加热器。

6.1.2 显示模块

显示子程序的功能是将缓冲区的二进制数据先转换成3个BCD码,再将其分别存入百位、十位、个位3个显示缓冲区,送往串行口,利用单片机的P2口进行扫描,让数据动态的显示出来,可显示设置温度和测量温度。

6.1.3 控制模块

温度控制子程序流程如图10所示,将当前温度与设定好的温度比较,当当前温度小于设定温度时,开启电热器;当当前温度大于设定温度时,关闭电热器;当二者相等时,电热器保持这一状态。

图10 控制模块程序流程

6.1.4 温度报警模块

报警子程序流程如图11所示。根据设计要求,当检测到当前温度值高于设定温度值3℃时报警,报警的同时关闭电热器。为了防止误报,设置了报警允许标志,只有在允许报警的情况下,温度值高于设定温度值时才报警。

图11 报警子程序流程

6.1.5 主程序和中断服务程序流程

主程序采用中断嵌套方式设计,各功能模块可直接调用。主程序完成系统的初始化,温度预置及其合法性检测,预置温度的显示及定时器0设置。定时器0中断服务

子程序是温度控制体系的主体,用于温度检测、控制和报警(包括启动温度转换、读入采样数据、数字滤波、越限温度报警和越限处理、输出控制脉冲等)。中断由定时器0产生,根据需要每隔15 s中断一次,即每15 s采样控制一次。但系统采用6 MHz 晶振,最大定时为130 ms,为实现15 s定时,这里另行设了一个软件计数器。

图12 主程序流程图

图13 中断服务程序流程图

7 系统调试与仿真

7.1 硬件调试

根据设计的原理电路做好实验样机,便进入硬件调试阶段。调试工作的主要任务是排除样机故障,其中包括设计错误和工艺性故障。

7.1.1 脱机检查

用万能表或逻辑测试笔逐步按照逻辑图检查机中各器件的电源及各引脚的连接是否正确,检查数据总线、地址总线和控制总线是否有短路等故障。有时为保护芯片,先对各管座的电位(或电源)进行检查,确定其无误后再插入芯片检查。

7.1.2 仿真调试

暂时排除目标板的CPU和EPROM,将样机接上仿真机的40芯仿真插头进行调试,调试各部分接口电路是否满足设计要求。这部分工作是一种经验性很强的工作,一般来说,设计制作的样机不可能一次性完好,总是需要调试的。通常的方法是,先编调试软件,逐一检查调试硬件电路系统设计的准确性。

7.1.3 检查CPU的时钟电路

通过测试ALE信号,如没有ALE信号,则判断是晶体或CPU故障,这称之为“心脏”检查。

检查ABUS/DBUS的分时复用功能的地址锁存是否正常。

检查I/O地址分配器。一般是由部分译码或全译码电路构成,如是部分译码设计,则排除地址重叠故障。

7.1.4 对扩展的RAM、ROM进行检查调试

一般先后写入55H、AAH,再读出比较,以此判断是否正常。因为这样RAM、ROM 的各位均写入过‘0’、‘1’代码。

7.2 软件调试

软件调试软件调试根据开发的设备情况可以有以下方法:

7.2.1 交叉汇编

用IBM PC/XT机对MCS—51系列单片机程序进行交叉汇编时,可借助IBM PC/XT 机的行编辑和屏幕编辑功能,将源程序按规定的格式输入到PC机,生成MCS—51 HEX 目标代码和LIST文件。

7.2.2 用汇编语言

现在有些单片STD工业控制机或者开发系统,可直接使用汇编语言,借助CRT

进行汇编语言调试。

7.2.3 手工汇编

这种方法是最原始,但又是一种最简捷的调试方法,且不必增加调试设备。这种方法的实质就是对照MCS—51指令编码表,将源程序指令逐条地译成机器码,然后输入到RAM重新进行调试。在进行手工汇编时,要特别注意转移指令、调用指令、查表指令。必须准确无误地计算出操作码、转移地址和相对偏移量,以免出错。

以上3种方法调试完成以后,即可通过EPROM写入器,将目标代码写入EPROM中,并将其插至机器的相应插座上,系统便可投入运行。

7.3 系统仿真

因本系统是利用单片机进行系统控制,所以需采用单片机仿真工具Proteus进行仿真。Proteus软件是来自英国Labcenter electronics公司的EDA工具软件,Proteus软件有十多年的历史,在全球广泛使用,除了其具有和其它EDA工具一样的原理布图、PCB自动或人工布线及电路仿真的功能外,其革命性的功能是,他的电路仿真是互动的,针对微处理器的应用,还可以直接在基于原理图的虚拟原型上编程,并实现软件源码级的实时调试,如有显示及输出,还能看到运行后输入输出的效果,配合系统配置的虚拟仪器如示波器、逻辑分析仪等,Proteus为使用者建立了完备的电子设计开发环境! Proteus产品系列也包含了革命性的VSM技术[8],用户可以对基于微控制器的设计连同所有的周围电子器件一起仿真,是一款非常优秀的单片机仿真软件。可以使用Keil c51和 Proteus进行联调,使调试、仿真更为方便。

由于Proteus软件库内没有本系统所用到的DS18B20测温元件,所以在仿真时,系统电路作了一些调整。

首先画好仿真图,将程序的二进制文件调入单片机对话框的Program File栏内,如图14 所示。

图14 二进制文件的调入

仿真开始时,仿真图如图15所示,数码管都显示为零,只有红色“未加热状态灯”D1亮。

图15 刚启动的仿真图

在设置好温度值如100摄氏度并按SET键确定后,数码管显示实时温度值26摄氏度,系统开始进入加热状态,如图16所示。绿色“加热状态灯”D2亮,黄色“输出控制状态灯”D3亮,系统控制加热器对水进行加热。

图16 系统启动加热仿真图

系统启动加热一段时间后,达到设定的温度值,系统停止加热,状态灯D1重新点亮,如图17所示。

恒温箱的控制设计毕业设计论文

摘要 温度与生物的生活环境密切相关,不同的生物或物体对温度的要求都不同。随着智能控制技术不断的发展,在现代工业生产以及科学实验的许多场合,为了获取生物或物体所需求的温度,需要及时准确的获取温度信息,同时完成对温度的预期控制,这时候温度检测与控制系统就显得尤其的重要。因此,温度检测系统的设计与研究一直备受广大科研者重视。 本次课题设计了一个低成本,高精度的恒温箱。该设计主要从硬件和软件两个方面出发: 1)在硬件上,选择AT89C52单片机为核心,采用了TL431组成2.5V的恒流源,并以Pt100温度传感器作为温度检测仪器,通过ICL7135模数转换器采集数据,用LED数码管作为显示器,构成了一个恒温箱; 2)在软件上,设计了温度检测算法,并在C语言编程环境下,编写了相应的程序来实现所设计的算法。最后通过Proteus ISIS与Keil的联合仿真,保证了算法的可行性。 通过仿真实验可以发现所设计的系统可以较好的检测、控制并且保持温度。但是由于温度调节的迟滞性以及设计上的不足,该系统具有一定的局限性。 关键词:温度检测;AT89C52单片机;恒温箱;C语言编程

ABSTRACT Temperature is closely related to life and environment. Different creature or object have different requirements to temperature. With the development of the intelligent-control- technology, and in order to arrive to the creature's or object's temperature-demand, we should take the information of temperature timely and accuratly, and control the temperature to the expected degree, in the modern industrial production and scientific experiment many occasions . I n this situation, the testing and controlling system for temperature is especially important. Therefore, the designs for temperature detection system attract researchers' attentions. In this dissertation, we designed a box with constant temperature which has low cost as well as high accuracy. We designed the system mainly from two aspects: hardware and software 1)Hardware's design: At first, we chosed AT89C52 SCM as the core of the system. And then we selected TL431 to compose the 2.5 V constant and Pt100 temperature sensor for testing temperature. At last, we collecte data througn the ICL7135 ADC and display data them on the LED. All of this consists of a the constant-temperature-box; 2)Software's design: In this papar, we designed a algorithm detecte temperature and implemented it based on the C programming language's environment. Finally we did a series of simulation experiment through the Proteus ISIS and Keil to ensure that the algorithm is feasible. Simulation results show that the system designed had a very good effect on temperature's detection, controlling and keeping . Because of the adjustmentand of the temperature and the insufficiency of the design, this system has some limitations. Keywords:Temperature detection;AT89C52 SCM; Box of constant temperature ; C language programming

基于单片机的恒温箱控制器的设计

唐山学院 测控系统原理课程设计 题目恒温箱控制器的设计 系 (部) 机电工程系 班级 姓名 学号 指导教师 2014 年 03 月 02 日至 03 月 13 日共两周 2014年 03 月 13 日

测控系统原理课程设计任务书 一、设计题目、内容及要求 1、设计题目:恒温箱控制器的设计 2、设计内容:运用所学单片机、模拟和数字电路、以及测控系统原理与设计等方面的知识,设计出一台以AT89C52为核心的恒温箱控制器,对恒温箱的温度进行控制。完成恒温箱温度的检测、控制信号的输出、显示及键盘接口电路等部分的软、硬件设计,A/D和D/A 转换器件可自行确定,利用按键(自行定义)进行温度的设定,同时将当前温度的测量值显示在LED上。 恒温箱控制器要求如下: 1)目标稳定温度范围为100摄氏度——50摄氏度; 2)以PID控制算法实现控制精度为±1度; 3)温度传感器输入量程:30摄氏度——120摄氏度,电流4——20mA; 4)加热器为交流220V,1000W电炉。 3、设计要求: 1)硬件部分包括微处理器(MCU)、D/A转换、输出通道单元、键盘、显示等; 2)软件部分包括键盘扫描、D / A转换、输出控制、显示等; 3)用PROTEUS软件仿真实现; 4)用Protel画出系统的硬件电路图; 5)撰写设计说明书一份(不少于2000字),阐述系统的工作原理和软、硬件设计方法,重点阐述系统组成框图、硬件原理设计和软件程序流程图。说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及硬件电路图和软件程序框图等材料。 二、设计原始资料 Proteus 及KEIL51仿真软件,及软件使用说明。 三、要求的设计成果(课程设计说明书、设计实物、图纸等) 设计说明书一份(不少于2000字)。

设计报告——温控电路设计

温控电路设计 报告书 姓名: 学校: 专业: 完成日期:2014/05/16

目录 1.设计要求 (1) 2.总体设计方案 (1) 2.1原理分析 (1) 2.2功能模块的实现 (1) 2.2.1控制模块 (1) 2.2.2温度采集模块 (1) 3.控制程序设计 (2) 3.1程序流程图 (2) 3.2程序模块说明 (2) 附录 (3) 1.主函数 (3) 2.ADS1115驱动程序 (6) 3.原理图 (13)

1.设计要求 设计一个温度测量电路,根据设定温度和测量值比较实现以下控制: 定义: 设定温度:ST(单位℃) 测量温度:T(单位℃) 控制逻辑要求: 当ST> T+2时,继电器闭合(如果当前继电器为断开状态,并且断开时间不够3分钟,不允许闭合); 当ST

单片机恒温箱温度控制系统的设计说明

课程设计题目:单片机恒温箱温度控制系统的设计 本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定围,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。 技术参数和设计任务: 1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。 2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。 3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。 4、温度超出预置温度±5℃时发出声音报警。 5、对升、降温过程没有线性要求。 6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输 7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述 1、系统原理 选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。2、系统总结构图 总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图: 图1系统总体框图 二、硬件各单元设计 1、单片机最小系统电路 单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。 AT89C2051是AT89系列单片机中的一种精简产品。它是将AT89C51的P0口、P2口、EA/Vpp、ALE/PROG、PSEN口线省去后,形成的一种仅20引脚的单片机,相当于早期Intel8031的最小应用系统。这对于一些不太复杂的控制场合,仅有一片AT89C2051就足够了,是真正意义上的“单片机”。AT89C2051为很多规模不太大的嵌入式控制系统提供了一种极佳的选择方案,使传统的51系列单片机

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

基于单片机的小型恒温箱

论文题目基于单片机的小型恒温箱驱动电路的设计与实现 姓名金慧娇 学院大连东软信息技术职业学院 专业嵌入式系统工程 指导教师孙丽飞讲师 备注 2012年6月3日

基于单片机的小型恒温箱驱动电路的设计与实 现 作者姓名:金慧娇 指导教师:孙丽飞讲师 单位名称:嵌入式系统工程系 专业名称:嵌入式系统工程 大连东软信息技术职业学院 2012年6月

Microcontroller-based small incubator the drive circuit design and implementation by Jin Huijiao Supervisor: Sun Lifei Dalian Neusoft Institute of Information Technology June 2012

毕业设计(论文)任务书 毕业设计(论文)题目: 基于单片机的小型恒温箱——驱动电路设计 设计(论文)的基本内容: 随着科学技术的不断发展各企业对温度检测技术提出了更高的要求, 希望利用新的检测方法, 制造出适应性更强、精度更高、性能更稳定、并具有智能功能的新一代温度检测仪表。单片机在检测和控制系统中得到了广泛的应用 温度是一个系统经常需要测量、控制和保持的量 而温度是一个模拟量,不能直接与单片机交换信息,采用适当的技术将模拟的温度量转化为数字量在原理上虽然不困难但成本较高,还会遇到其它方面的问题。因此对单片机温度控制系统的研究有重要目的和 意义。因此本系统采用AT89C51 设计了温度实时测量及控制系统 具有安全可靠、操作简单方便、智能控制等优点。另外, 此测控系统以及相关产品的研发, 既有利于推动工控技术的发展, 又能带来可观的经济效益和社会效益。 毕业设计(论文)专题部分: 题目: 设计或论文专题的基本内容: 学生接受毕业设计(论文)题目日期 第 1 周 指导教师签字:孙丽飞 2011年月日

高精度恒温控制电路

第28卷第4期 武汉理工大学学报?信息与管理工程版 V o l .28N o .42006年4月 JOU RNAL O F WU T (I N FORMA T I O N &MANA GEM EN T EN G I N EER I N G ) A p r .2006 文章编号:1007-144X (2006)04-0038-03 收稿日期:2005-06-02. 作者简介:张洪昌(1980-),男,山东烟台人,武汉理工大学机电工程学院硕士研究生. 高精度恒温控制电路 张洪昌,田会方,赵 恒 (武汉理工大学机电工程学院,湖北武汉 430070) 摘 要:常用的温度调节方法有继电式调温、调压器调压调温和电子式(多用可控硅)调压调温等几种。继电式调温依靠继电器的频繁切换来保持温度,它的温度调节比较粗略,精度不高,响声大,使用寿命低。调压法调压的特点是对电网电压影响小,但比较笨重,调节粗糙,精度较低。而可控硅调压调温的特点是体积小、无噪声、调节方便且控制精度高,但对电网会产生一些影响,适用于科研实验等小功率加热器。所设计的恒温控制电路由于采用单片机作为控制器,其电路设计简单,控制精度高,可达到±0.04℃。关键词:可控硅;移相调压;P I D 算法;移相控制中图法分类号:T P 273.2 文献标识码:A 1 引 言 在实际工作和科研中,许多实验均需要用加热器来加热实验对象,使其达到并保持在某一设 定温度,而且在实验过程中,对象的温度有时要求稳定性很高,有时需要不断地调节。常用的调节方法有继电式调温、调压器调压调温和电子式(多用可控硅)移相调压调温等几种。可控硅调压调温的特点是体积小、无噪声、调节方便、控制精度高,但会对电网产生一定影响,适用于科研实验等小功率加热器,笔者设计的高精度恒温控制电路采用单片机作为控制器,其电路设计简单,控制效果好,以下将对利用可控硅设计的恒温控制电路做具体的介绍和分析。 2 控制原理 在交流电的一个周期中,从过零点起,延时一 段时间再给可控硅一个触发信号使其导通。这样,加在负载上的有效功率由延迟导通时间控制,延迟导通时间越长,负载的有效功率越低。因此,可对可控对象的温度进行控制[1]。 加热器的温度控制电路结构图如图1所示。图1中,U 1为电压;U 2为可控硅调节后的制热电压;T 为加热器反映到温度传感器的温度;T c 为反馈给温度控制算法计算移相控制量的温度信号;T k 为温度控制给定值; C t 为经过温度控制算法计算后的移相控制值,即可控硅延迟导通时间;P 为控制触发电路的电压;a 为触发可控硅导通的脉冲信号。整个电路可分成过零检测电路、温度检测电路、控制电路和算法计算主电路4个部分。 3 温控电路的设计与分析 3.1 过零检测电路 过零检测电路如图2所示。 图1 加热器的温度控制电路结构图

恒温箱设计

西南科技大学信息工程学院自动化系《计算机控制系统》课程课外设计 设计题目:恒温箱温度计算机控制系统设计 学院名称:信息工程学院 专业班级: 学生姓名: 学生学号: 指导教师:聂诗良 二〇一六年十二月

恒温箱温度计算机控制系统设计 摘要:本设计的温度测量及加热控制系统以AT89S52单片机为核心部件,外加温度采集电路、按键及显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器DS18B20,及按键控制温度和动态显示的方式,以容易控制的继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定在这一温度。 关键词:单片机;恒温控制;DS18B20

The design of incubator tem perature computer control system Abstract: The design of the temperature measurement and heati ng control systems to AT89S52 microcontroller core component, plus the temperature acquisition circuit, keyboard and displ ay circuit, heating circutal temperature sensor DS18B20, and the determinant of the keyboard and dynamic display in order to easily control the solid-state relays for heating contro l of the switching device. This works both on the current temperature in real-time display of temperature can be contro lled in order to enable users to reach the required tempera ture, and make it constant at this temperature. Key words: microcontroller; temperature control; DS18B20

(完整版)基于单片机的恒温箱控制系统毕业设计论文

一.课程设计内容 运用所学单片机、模拟和数字电路、以及测控系统原理与设计等方面的知识,设计出一台以AT89C52为核心的恒温箱控制器,对恒温箱的温度进行控制。完成恒温箱温度的检测、控制信号的输出、显示及键盘接口电路等部分的软、硬件设计,AD和DA转换器件可自行确定,利用按键(自行定义)进行温度的设定,同时将当前温度的测量值显示在LED上。 恒温箱控制器要求如下: 1)目标稳定温度范围为100摄氏度——50摄氏度。 2)控制精度为±1度。 3)温度传感器输入量程:30摄氏度——120摄氏度,电流4—— 20mA。 加热器为交流220V,1000W电炉。 二.课程设计应完成的工作 1)硬件部分包括微处理器(MCU)、DA转换、输出通道单元、键盘、显示等; 2)软件部分包括键盘扫描、D A转换、输出控制、显示等; 3)用PROTEUS软件仿真实现; 4)画出系统的硬件电路结构图和软件程序框图; 5)撰写设计说明书一份(不少于2000字),阐述系统的工作原理和软、硬件设计方法,重点阐述系统组成框图、硬件原理设计和软件程序流程图。说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及硬件电路结构图和软件程序框图等材料。

注:设计说明书题目字体用小三,黑体,正文字体用五号字,宋体,小标题用四号及小四,宋体,并用A4纸打印。 三.课程设计进程安排 课程设计各阶段名称日期、周次 序 号 1 总体设计,硬件设计2012年12月24日~25日,17周 2012年12月26日~28日,17周 2 绘制软件程序流程图,编写软 件 3 软、硬件仿真调试2012年12月27日,18周 4 软、硬件仿真调试2013年1月2日~3日,18周 5 撰写设计说明书2013年1月4日,18周 四、.设计资料及参考文献 1.王福瑞等.《单片微机测控系统设计大全》.北京航空航天大学出版社,1999 2.《现代测控技术与系统》韩九强清华大学出版社 2007.9 3.《智能仪器》程德福,林君主编机械工业出版社 2005年2月4.《测控仪器设计》浦昭邦,王宝光主编机械工业出版社 2001 5.Keil C51帮助文档 五.成绩评定综合以下因素: (1) 说明书及设计图纸的质量(占60%)。 (2) 独立工作能力及设计过程的表现(占20%)。 (3) 回答问题的情况(占20%)。 说明书和图纸部分评分分值分布如下: 1、需求分析与设计思路(10分)

恒温箱自动控制系统设计报告

恒温箱自动控制系统设计 组员: 院系: 指导教师:

【摘要】 本组设计的恒温箱自动控制系统主要由中央处理器、温度传感器、半导体制冷器、键盘、显示、声光报警等部分组成。处理器采用AVR Mega128单片机,温度传感器采用DS18B20,利用半导体制冷片一面制冷一面发热的工作特性进行升降温,用LCD12864作为显示输出。温度传感器检测到温度数据传送给单片机,单片机再将温度数据与给定值进行比较,从而发出对半导体制冷器的控制信号,使温度维系在给定值附近(偏差小于±2℃),同时单片机将数据送与显示器。 【关键字】 单片机温度传感器半导体制冷器控制 一、设计方案比较 1.1总体设计方案 这里利用DS18B20芯片作为恒温箱的温度检测元件。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。单片机从外部的两位十进制拨码键盘进行给定值设定,读入的数据与给定值进行比较,根据偏差的大小,采用闭环控制的方法使控制量更加精准。控制结果通过液晶显示器LCD12864予以显示。 系统整体框图如图一所示: 图一、系统整体框图 1)温度检测元件的选择: 方案一:这里所设计的是测温电路,因此可以采用热敏电阻之类的器件利用其感温效应,检测并采集出随温度变化而产生的电压或电流,进行A/D转换后送给单片机进行数据处理,从而发出控制信号。此方案需要另外设计A/D转换电路,使得温测电路比较麻烦。 方案二:上网查得温度传感器DS18B20能直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读取方式,它内部有一个结构为8字节的高速暂存RAM存储器。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。与方案一比较更加简单实用,因此我们选择方案二。

恒温控制电路设计

毕业设计论文 作者学号 系部 专业 题目恒温控制电路的设计 指导教师 评阅教师 完成时间:年月日

毕业论文外文摘要 题目:恒温控制电路的设计 摘要:本设计采用AT89C51单片机为核心部件,采用单总线型数字式的温度传感器DS18B20作为温度采集设计制作了带键盘输入控制,动态显示和越限报警功能的恒温控制系统。该系统既可以对当前温度进行实时显示,又可以对温度进行控制,并使其恒定在某一温度范围。控制按键设计时设置温度简单快捷,两位整数一位小数的显示方式具有更高的显示精度。通过对系统软件的合理规划,发挥单片机自身集成多系统功能单元的优势,在不减少功能的前提下有效降低了成本,系统操作简单。 关键词: AT89C51 单片机恒温控制 DS18B20 精度

毕业论文外文摘要 Title:The constant temperature control circuit design Abstract: This design uses an AT89C51 microcontroller as the core components, the use of single-bus digital temperature sensor DS18B20 which uses keyboard input control as a temperature collections device. It's an thermostat controlling system that has the ability to dynamically display temperature and function as off-limit alarm. The system can not only display real-time temperature but also keep the temperature staying in a constant region. It's very easy and fast to use the button to set the system temperature. Displaying two integer and a decimal makes the system even accurate. Through wise system software usage, we can bring the microcontroller's integration of multi-system functional units into full play, reduce system cost effectively without losing useful functions. The system is easy to operate. Keyword:AT89C51 MCU Microcomputer temperature control DS18B20 Precision

基于单片机的恒温箱课程设计(参考模板)

成都理工大学工程技术学院 《恒温箱控制系统》课程设计报告 系别:自动化工程系 专业:自动化 姓名:杜亮 学号: 201120307202 2014年6月16日

摘要 温度的测量与控制在工业、农业、国防等行业有着广泛的应用。随着微电子技术的发展,各种高性能的半导体集成温度传感器,在温度测控领域得到了极为广泛的应用。恒温箱的智能控制系统是用半导体温度传感器做测温器,用单片机控制温度平衡,最终达到恒温的目的。 本文对系统所能实现的功能做了简单介绍,并简单介绍了系统使用的51单片机的性能和发展情况;同时对DS18B20做了介绍。 本文重点介绍了系统硬件的分析与设计,对硬件各部分的电路一一进行了介绍。绘制了电路原理图,并进行了电路的焊接,完成了系统的硬件调试。根据硬件的设计和系统所要实现的功能,本设计对软件也进行了设计,并经过反复的模拟运行、调试,完成了系统的软件设计,最后形成了一套完整的智能温度控制系统。 关键词:温度平衡 DS18B20 51单片机

目录 摘要 ............................................................................................................................................. - 1 - 目录 ............................................................................................................................................. - 2 -前言 ............................................................................................................................................. - 3 -1 系统设计分析.......................................................................................................................... - 4 - 1.1 设计题目要求............................................................................................................... - 4 - 1.2 设计方案选择............................................................................................................... - 4 - 2 硬件电路设计.......................................................................................................................... - 5 - 2.1 硬件电路设计............................................................................................................... - 5 - 2.1.1 传感器................................................................................................................ - 5 - 2.1.2 温度传感器DS18B20 ....................................................................................... - 6 - 2.1.3 LED数码管显示电路........................................................................................ - 6 - 2.2 硬件总电路图............................................................................................................... - 7 - 3 程序设计.................................................................................................................................. - 7 - 3.1 程序设计介绍............................................................................................................... - 7 - 3.2 程序编写....................................................................................................................... - 7 - 4 总结 ....................................................................................................................................... - 14 -

单片机课设报告—温度控制系统,恒温箱。我自己的作品,含有全部程序 全面详细

2011年电气工程及其自动化专业 《计算机原理及应用》课程设计任务书 班级:学号:姓名: 题目3 简易温度控制系统 设计并制作一个简易的单片机温度自动控制系统(见图一)。控制对象为自定。 图一恒温箱控制系统 (一)设计要求如下 (1)温度设定范围为40℃~90℃,最小区分度为1℃ (2)用十进制数码显示实际温度和设定温度。 (3)显示加热器工作时间。 (4)显示加热器的工作状态:加热、恒温保持。 (5)温度控制的静态误差≤2℃。 (6)当温度越过上限时(自己设定),声光报警 (二)扩充功能: (1)控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。 (2)显示调节时间和超调量

目录 摘要 (1) 第一章硬件设计 (2) 1.1控制电路和显示电路方案与选择 (2) 1.2测温电路方案选择 (2) 1.3调温电路方案选择 (3) 1.4硬件电路设计 (3) 1.4.1 温控系统硬件接线原理图 (3) 1.4.2 单片机设计 (3) 1.4.3 温度传感电路设计 (4) 1.4.4 温控电路的设计 (5) 第二章软件设计 (6) 2. 1 主程序设计 (6) 2.2 DS18B20初始化程序设计 (7) 2.3 DS18B20读写子程序设计 (7) 2.3.1 DS18B20写入子程序框图 (8) 2.3.2 DS18B20读取子程序框图 (9) 2.4 键盘扫描子程序设计 (10) 2.5 温度调节子程序设计 (11) 第三章实物调试 (13) 第四章功能总结 (16) 附录 (20) 附件一:电路原理图 (20) 附件二:程序 (21)

模电温控电路设计与仿真

水温测量与控制电路的设计与仿真 1设计任务与要求 温度测量,测量范围0~100 ℃; 控制温度±1 ℃; 控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V,10A)。 学习并运用proteus仿真软件,绘制电路图,进行基本的仿真实验对所设计的电路进行分析与调试。 2方案设计与论证 温度控制器是实现可测温度和控制温度的电路,通过对温度控制电路的设计、调试了解温度传感器的性能,学会在实际电路中的应用。进一步熟悉集成运算放大器的线性和非线性应用。 Proteus介绍: Proteus 软件是由英国 Labcenter Electronics 公司开发的EDA工具软件,已有近20年的历史,在全球得到了广泛应用。Proteus 软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能够对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子线路设计与仿真软件。 Proteus软件和我们手头的其他电路设计仿真软件最大的不同即它的功能不是单一的。它的强大的元件库可以和任何电路设计软件相媲美;它的电路仿真功能可以和Multisim相媲美,且独特的单片机仿真功能是Multisim 及其他任何仿真软件都不具备的;它的PCB电路制版功能可以和Protel相媲美。它的功能不但强大,而且每种功能都毫不逊于Protel,是广大电子设计爱好者难得的一个工具软件。

Proteus具有和其他EDA工具一样的原理图编辑、印刷电路板(PCB)设计及电路仿真功能,最大的特色是其电路仿真的交互化和可视化。通过Proteus 软件的VSM(虚拟仿真模式),用户可以对模拟电路、数字电路、模数混合电路、单片机及外围元器件等电子线路进行系统仿真 Proteus软件由ISIS和ARES两部分构成,其中ISIS是一款便捷的电子系统原理设计和仿真平台软件,ARES是一款高级的PCB布线编辑软件。 Proteus ISIS的特点有: 实现了单片机仿真和SPICE电路仿真的结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真等功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 具有强大的原理图绘制功能。 支持主流单片机系统的仿真。目前支持的单片机类型有68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 2.1温度控制系统的基本原理: 温度测量与控制原理框图如图下所示。本电路有温度传感器,K-OC变换、控制温度设置、数字电压表(显示)和放大器等部件组成。温度传感器的作用是把温度信号转换成电流信号或电压信号,K-OC变换将热力学温度K 转换成摄氏温度OC。信号经放大器放大和刻度定标后由数字电压表直接显示温度值,并同时送入比较器与预先设定的固定温度值进行比较,由比较器输出电平的高低变化来控制执行机构(如继电器)工作,实现温度的自动控制。 2.2AD590温度传感器简介: AD590是单片集成感温电流源,具有良好的互换性和线性性质,能够消

恒温控制电路的设计

恒温控制电路的设计 发表时间:2012-06-28T13:25:16.640Z 来源:《时代报告(学术版)》2012年5月(上)供稿作者:李毅 [导读] 本系统的开发与利用,具有安全舒适,结构简单,成本低,方便易用等特点。 李毅(黔南民族师范学院物理与电子科学系贵州都匀 558000)中图分类号:TM13 文献标识码:A 摘要:本文介绍了以89C51单片机为核心控制芯片,采用sht10温湿度传感器为主要部件,并加以键盘控制设置的睡枕恒温控制系统。阐述了系统的总体设计思想,介绍了系统的工作方式,分析了系统的硬件设计,并说明了89C51单片机的协调处理过程。 关键词: 89C51单片机控制芯片温湿度控制漏电保护 sht10 LCD 随着社会的进步与发展,电脑工作者、办公室工作者和老年人,由于工作和年龄的原因,颈椎病成为困扰人类的一大病痛。一个能一直保持着恒定温度的枕头,既能让颈椎病人保持良好的睡眠,也能在无形中改善和治疗着他们的病痛。据此,睡枕恒温控制系统应运而生,下面阐述设计原理。 一、系统设计 睡枕恒温控制系统由软件和硬件两部分组成。 (一)系统控制模块的硬件构成及简介 系统控制单元是以STC89C51单片机基本工作模块为核心,其它外围电路主要包括:按键控制模块,温湿度监测控制模块,报警显示模块,lcd数字显示模块,加热及保护模块,供电模块及漏电保护模块。其结构框图如图2-1所示。 图2-1 (二)系统控制的主要硬件电路 考虑到本系统直接用于人体,所以在设计过程中,电子元器件的选用、线路布置和设备的安放要充分考到安全及稳定性等问题。 1.单片机基本工作模块。本系统的主控模块采用STC89C51作为主控芯片,它是一种低功耗,8位CMOS工艺处理器,具有8K在线可编程Flash存储器,片内的Flash可多次编程,为在线编程提供了方便。片内有128字节的RAM,由于程序比较简单,不需要扩展外部RAM,因而电路结构简洁。 2.系统供电电路。系统供电原理如图2-3所示,采用+5V电压供电。本设计采用输出电压为9V的变压器。 图2-3 3.按键控制模块。本系统采用矩阵式按键,采用8个I/O满足16个按键的使用需求。矩阵键盘实现方法非常简单,采用扫描模式,即开始给行向加入高电平,列向加入低电平,若按下相应的键,则对应的行向就变为低了。 4.温湿度检测控制模块。本系统温度检测使用的是SHT10,该系列单芯片传感器是一款含有已校准数字信号输出的温湿度复合传感器。该产品具有品质卓越、超快响应抗干扰能力强、性价比极高、接线简单等优点。 5.报警显示模块。此设计主要是监测系统出现温度过低或过高而设计报警系统,正常使用中蜂鸣器不会响但在人体熟睡或行动不便时外加的报警,防止因系统出现故障时而引起的持续加热等现象。 6.LCD数字显示模块。在单片机的人机交流界面中,一般的输出方式有以下几种:发光管、LED数码管、液晶显示器。发光管和LED 数码管比较常用,软硬件都比较简单,显示形式比较简单,本方案显示内容符号较多,因而采用液晶板比较合适 7.加热及保护模块。本设计通过单片机控制加热热丝给睡枕加热,因而涉及到加热及保护部分,睡枕温度一般在30多度,加热丝功率不必很大,取200W-400W即可。为防止交流电对单片机影响,采用光电隔离的方式。 8.漏电保护模块。本设计为确保安全可靠,特引进漏电保护电路,此电路采用漏电专用芯片IC54123,该电路具有灵敏度高,当有人

相关主题
文本预览
相关文档 最新文档