当前位置:文档之家› 空气悬架的设计要点

空气悬架的设计要点

空气悬架的设计要点
空气悬架的设计要点

空气悬架的设计要点

一、采用空气悬架的目的――改善汽车使用性能

1.改善平顺性,减小车轮对地面动载

1)影响平顺性的三个主要系统:

(1)轮胎

(2)悬架

(3)座椅

2)影响车轮动载的主要因素:

(1)轮胎刚度

(2)悬架刚度与阻尼

(3)簧上质量与簧下质量的比值

2.空气悬架应达到较好的平顺性指标,才有被选用的价值(改善平顺性的同时,也减小了车轮动载)

1)在B级路面,以50km/h匀速行驶,后轴上方座椅的垂直振动加速度响应Leg≤113dB(或按ISO2631计算耐疲劳限达到4-5h)。

2)偏频――单自由度系统自然振动固有频率(客车):

(1)板簧:95-105cpm(1.6-1.75Hz);

(2)气簧:

①现阶段80-85cpm(1.3-1.4Hz);

②高级阶段(路面不平度进一步提高后)65-70cpm(1.1-1.16Hz)。

3)阻尼――理论上的阻尼比为0.33-0.35

(1)按经验公式选择减振器复原阻力时取上限或超上限值;

(2)有条件时,采用可调阻尼减振器,目前可供选择的有电磁流变改变粘度及继电器改变阻尼孔尺寸两种。有手控、自控两类,按载荷及按路面不平度输入来调节。

4)抗侧倾能力,应在0.4g侧向加速度条件下,稳态侧倾角Φ≤5-6゜。

3.充分认识并利用空气悬架的优点

1)较理想的弹性特性

(1)空、满载之间有高度控制阀调节气压,具有较好的等频性;

(2)振动时,假定没有充放气,弹性特性曲线呈非线性,增大动容量,防止悬架击穿。若反跳行程由减振器或其它机构实施弹性限位,则弹性特性呈反S形的理想特性。

2)可设计成较低的刚度,提高平顺性,不会因为空、满载之间静挠度变化太大,车高超标而受到限制。

3)高度控制阀除了自动调节设计位置的车身高度不变之外,还可用来调节车身抬高或下降(下跪),以提高车身通过性或方便乘客上、下车。

4)几乎消除了全部库伦阻尼,使悬架系统全部由粘性阻尼消振,其效果是:

(1)消除高频微幅振动的锁止作用,改善高频域的传递特性,减小高频动刚度。

(2)消除悬架响声。

但是,若减振器阻尼值不可调节,则阻尼比因载荷变化而变化,无法同时满足空载和满载的要求,只能取折衷值。而库伦阻尼恰与载荷成正比变化,所以像载货车这种后轴负荷变化很大的车型,后悬架采用库伦阻尼值大的多片钢板弹簧,对于保持空、满载阻尼比变化较小是有利的。

二、设计、开发空气悬架的六大技术关键

1.空气弹簧(气簧)

1)类型的选择

(1)囊式(葫芦形),有单曲、双曲、三曲――根据振动行程大小和刚度的要求来选择。目前除轨道车辆和设备基础外很少采用。优缺点:

①橡胶囊的应力小,寿命很长。

②制造工艺简单,零件数量少,成本低。

③因有效面积变化率很大,所以空气弹簧的刚度较大,满足不了低偏频车型的要求。

(2)膜片式(活塞式),囊体有全橡胶型和金属壳连接橡胶膜片两种,目前采用前者较多。优缺点:

①弹性特性与活塞形状有关,可以根据需要设计不同轮廓线的活塞。

②因有效面积变化率较小,一般情况下刚度较低,不必增加辅助气室。活塞内腔可根据刚度要求设计成不储气或储气的。

③金属件数量较多,制造成本高,特别是产量不大成本更高。

2)空气弹簧的布置及空气悬架分类

(1)全空气悬架:系统垂直振动的弹性作用全部由空气弹簧承担。

(2)复合式空气悬架:系统垂直振动的弹性作用75%以上由空气弹簧承担。

(3)辅助式空气悬架:系统垂直振动的弹性作用75%以下由空气弹簧承担。

注:弹性作用的度量似应以折算静挠度为宜,参阅复合式空气悬架的计算公式,参见附件A。

3)刚度计算公式

(1)空气弹簧刚度计算公式,见附件B。注意标准大气压的取值与单位有关。

(2)全空气悬架的刚度为空气弹簧刚度或多个空气弹簧刚度折算到车轴上的刚度之和(除以杠杆比平方)。

(3)复合式空气悬架的刚度为空气弹簧刚度和其它弹簧刚度折算到车轴上的刚度之和,参见附件C。

(4)公式中的气压p0、承压面积A、体积V及有效面积变化率dA/dx 等的特性曲线均由试验确定,应由空气弹簧供应商提供。目前还没有办法用理论的方法按气囊的结构参数和尺寸来推算(虽有学者做过这类工作,但不成熟)。

4)空气弹簧的气密性,按标准检验。

(1)封口气密性

①机械式

a. 嵌压式,可靠,但只一次性使用,金属件与气囊一起更换。

b. 螺栓夹紧式,金属件不必更换,但初始成本较高。

②自封式:成本低,结构简单。封口精度要求较高,否则会漏气。悬架反向限位要可靠,否则会出现行驶中脱囊大事故。

(2)囊体橡胶的气囊性要好,否则会发生慢漏。

5)气囊的疲劳寿命,按标准试验。目前国外、国内的产品都能满足要求。

2.高度控制阀

1)分类

(1)有延时作用:控制杆非刚性,即装有弹性件,再加上液压阻尼,使控制杆在较高频率振动时,输出端不运动,因而不开、关阀芯;当慢速运动时,阻尼力很小,输出端随输入端运动而开、闭阀门。这种阀可使空气悬架在行驶中不耗气。

(2)无延时作用:控制杆刚性联接,直接操纵阀门。结构较简单,成本低。行驶中因车轴不停跳动,高度阀总在充、放气,增加耗气量,且有响声。为减少耗气量,可在阀内或阀外增设节流孔,或将阀门空程加大。对于客车,因上、下乘客载荷变化很慢,采用无延时加节流孔较合适。对于自卸车或一次性加、卸载很大的货车,采用有延时的高度阀较合适。

2)可调节车身高度的高度阀

高档客车要求装有“下跪”调节,可采用调节控制杆的支点位置或连杆长度来实现,也可以另设阀门及管路来控制。车身特别低的客车,可以靠它提高离地间隙,在坏路上改善通过性。

3)电控高度阀

车轴与车身的相对运动靠杠杆控制电量位移传感器,再用其输出电压来控制继电器及气路系统。用电量控制容易实现延时、下跪、举升等要求。

4) 高度阀的布置

高度控制阀的数量及布置有下列几种:

(1)三阀:理论上讲三点定一个平面,所以采用三阀布置最合理。因为采用单阀的悬架,左、右空气弹簧气路相通,其角刚度为零,所以采用前1后2较合理。左、右相通的气簧往往要加节流,使动态侧摇时增加角刚度。

(2)四阀:前、后悬架各2个高度阀,使前、后气簧的角刚度都得到利用。四个阀属于超定位,只适用于在平路面上行驶的客车。

(3)五阀:除了一、二桥采用四阀外,第三桥又装一个高度阀(左、右气簧连通)。这种布置属于严重超定位,有一个高度阀对应的车轮或车轴下落,会将所有的压缩空气放光。装车后高度阀也很难调整。

(4)二阀:前、后悬架各只装一个阀,左、右气簧连通,其角刚度为零,汽车的左、右支撑全靠稳定杆和导向臂来实现。这种布置极罕见。

3.减振器

1)减振器的选型

目前还缺乏理论计算公式可遵循,一般借助经验公式选取复原阻力,再按产品说明书选择工作缸尺寸。由于空气悬架几乎没有库伦阻尼,所以公式中系数应选上限甚至超上限,以期达到理论上的阻尼比0.33-0.35。

减振器的行程为压缩行程与拉伸行程之和。前者取决于悬架上跳行程限位块的设计,最好以“铁碰铁”来确定,也可按悬架动载(可取静载的2.5倍)分摊给限位块的压缩量加上动行程(限位块开始接触)来求得。减振器的压缩行程要比悬架上跳行程大5-10mm,以免万一顶弯连杆。拉伸行程取决于悬架反跳行程的限位值,空气悬架多数利用减振器作为反向限位,其限位值就是减振器的拉伸行程,其大小取决于空气弹簧本身规定的最大拉伸量。减振器拉伸限位器完全限位时的行程要略小于空气弹簧允许的最大拉伸量。

计算行程时要计算杠杆比的影响。减振器的长度尺寸

Lmin=L0+S

Lmax=Lmin+S=L0+2S

式中:Lmax、Lmin为减振器最大、最小长度

S为减振器总行程

L0为减振器基长,为设计的基本指标。

减振器规格的最终确认,只能通过试验,达到满意的平顺性和可靠性之后才算完成。

2)阻尼可调的减振器

减振器的阻尼值一般是不变的,在汽车悬架中称为被动悬架,它存在两个缺点:

(1)悬架载荷变化后,系统阻尼比也变化。即,若满载时阻尼合适,空载时则过大,反之亦然。设计时只能选折衷值,这样,满载时阻尼值就偏小些,空载时则偏大。平顺性总不能保持最佳。

(2)路面不平度输入不同时,若阻尼比不变,则低频大振幅输入时略显阻尼不足,而高频小振幅输入时又显阻尼过大。所以,阻尼值应随不同路况及车速而改变,才能保持平顺性最佳。

调节减振器阻尼值的方法目前有两种,一种借助电磁阀改变减振器阀门的节流孔大小;另一种靠磁场改变减振器内液体的粘度,即所谓电磁流变原理。控制方法分为手动及自动控制两类,后者则是目前流行的半主动悬架或自适应悬架。空气悬架要达到理想的性能,最终要发展到半主动甚至全主动悬架(阻尼、刚度都自动调节)。

3)有反向限位的减振器

若空气悬架系统中没有反向限位装置(如钢丝绳、钢箍带、半随圆板簧、反向限位块等),就必须利用减振器来实施反向限位。

主要结构有两种:

(1)橡胶缓冲圈。当活塞被拉伸到最高点前与橡胶圈接触,压缩橡胶圈,阻力急骤增大,起到缓冲限位作用。

(2)液压节流。当活塞被拉伸到最高点附近,节流孔被关闭,阻力急骤增大,上腔油压也急骤增大,起到缓冲限位作用。

4.抗侧倾能力

1)计算方法及限值

悬架弹簧、稳定杆的角刚度,侧倾力臂以及稳态侧倾角的计算公式见附件D。其中前、后悬架的侧倾中心离地高度可用两种方法来求解:

(1)利用运动学的方法。根据悬架导向杆系,求车轮相对车身运动的瞬时中心,再划出轮胎接地点到瞬时中心的连线,此连线与汽车对称中心线的交点即是该悬架的侧倾中心。

(2)利用静力学的方法。有些悬架导向杆系很难求出瞬时中心,则可求出簧上质量与簧下质量之间的侧向力传递的合力中心,根据理论验证,该合力中心就是瞬时中心即侧倾中心。

有些悬架若装有较大弧高的钢板弹簧,侧向力的传递是沿着有弧高的主片,高度在变化。也就是说,簧上与簧下的分界点应选在什么地方?我们建议按比较保守的办法,统一选在车轴上板簧主片的上表面。

空气悬架的抗侧倾能力一般较差,应根据使用要求来确定。我们推荐稳态转向工况,在侧向加速度为0.4g时,侧倾角不大于5-6゜,高档车取下限。悬架角刚度也不宜选太大,因为在坏路行驶,路面角振动输入很大时,悬架反而不能起缓冲作用,汽车的侧向角振动反而更大。

2)提高抗侧倾能力的方法

(1)采用独立悬架

独立悬架的弹簧跨距就是轮距,一般比非独立悬架要大一倍,使角刚度增到四倍以上。

(2)加大空气弹簧的跨距

通常是采用香蕉梁或井字架,将气簧布置在轮胎前后。因角刚度与跨距平方成正比,这方法很有效。缺点是重量很大,成本高,质量好坏取决于材料及工艺。

(3)采用半刚性的单臂导向杆,即导向臂与车轴(或扭力梁)构成一个很强的稳定杆,有以下几种方案:

①采用刚度很大的四分之一椭圆钢板弹簧,一般为单片或双片少片簧。

②刚性单臂通过两个橡胶衬套再与车轴连接。

③刚性臂后端通过橡胶衬套再与一根扭力管连接,实质上属扭力梁式悬架。刚性臂可用一个或两个橡胶衬套与车轴连接。

④刚性臂直接刚性地与前轴连接,这时,前工字梁就成为扭力梁。

(4)加装横向稳定杆

一般先加前悬架,角刚度不够时再加后悬架。为了提高不足转向效应,希望前轮偏离角大于后轮,则前悬架角刚度应相对地大于后悬架。

请注意,在一定尺寸限制下,稳定杆的角刚度是有限的,选用过大角刚度会导致应力过高,使用中会塑变或断裂。

(5)提高弹性元件刚度,包括提高复合式空气悬架中半椭圆板簧的刚度。

这是下策,牺牲了平顺性,但有时对操纵稳定性、抗制动点头有利,应综合考虑。

5.导向杆系

空气悬架的导向杆系是变化最多,最富有创造性,也是较难设计好的系统。本文仅就目前常见的几种方案以及设计时应注意的事项做简要介绍。

1)方案介绍

(1)独立悬架

客车独立悬架都是采用不等长双横臂结构,空气弹簧坐落在上臂,只用在前悬架。独立悬架的本质优点是:

①角刚度特别大,在同等条件下可以大大减小垂直刚度,使偏频降低,提高平顺性。

②簧下质量减小,使簧上、簧下质量比值变大,可减小车轮对路面的动载荷。

③减小陀螺效应,对高速行驶的车辆可避免引起转向轮摆振。

缺点:

①结构较复杂,成本增加。

②可靠性往往不易保证,容易引发铰链松动、摆振、跑偏、轮胎磨损等。

(2)纵置四连杆机构,即双纵臂。

前、后悬架皆可采用,常见的布置型式有:

①下2纵,上1纵1横,有时下纵臂同时承载。

②下2 纵、上V形杆。

③下V形杆,上2纵,多用于超低地板客车。

④上、下均为2纵,再加1横杆。这种结构4根纵杆必须等长、平行,侧倾时才不会产生运动干涉。

(3)单纵臂加柔性连接,起稳定杆作用,但运动轨迹不好。

①刚性臂加双个橡胶套铰链。

②刚性臂后端连扭力轴。

③板簧立置(相当于刚性臂,但横向柔性大)并于前轴刚性连接,前轴成为扭力梁。

(4)钢板弹簧复合型导向。

①半椭圆板簧与气簧并联,纵向及横向均由板簧导向,结构简单,但整体悬架刚度降低不下来。

②四分之一椭圆板簧导向,采用大刚度少片簧,起稳定杆作用,但整体悬架刚度仍较低。缺点是运动轨迹不好,车桥倾角变化大。

往往在板簧延伸段布置气簧,形成一定杠杆比,为半空气悬架(即复合式空气悬架)。若气簧置于车轴上,杠杆比为1,板簧不承受垂直载荷,即为全空气悬架。

(5) A形架。

实质上是单纵臂刚性连接,前铰链点合并在中间一个点,臂长应尽可能大,所以只用在后悬架。要装横向拉杆传递侧向力。

2)设计要点

(1)所有橡胶铰链必须设计得可靠耐用。

所有橡胶衬套各向位移时只能是橡胶变形,绝不能使橡胶与金属间发生相对滑动。这只能靠选择合适的自由面积和封闭面积,加上合适的粘结或预压缩量来实现。

有的橡胶衬套为了消除扭转应力,让轴销与橡胶之间可相对转动。这时要加一铜套或复合衬套,内腔有润滑脂且密封好,可绕轴销转动,外圆与橡胶粘度或压配,没有相对滑动。

凡是与金属粘接的橡胶都会产生收缩应力(拉应力),对橡胶使用寿命很不利。对于自由面小,粘接面(封闭面)大的衬套,收缩应力很大,甚至未使用就已有裂纹。对这种衬套,应采用施加预压缩的方法来消除收缩应力,转变成为压缩预应力,可大大提高使用寿命。

目前有些衬套采用聚胺脂橡胶,因其特好的强度和耐磨性,工作时可以又变形又滑动,仍有可观的使用寿命。

(2)运动轨迹的校核。

导向杆系决定了车轴的运动,所有与车轴连接的其它部件都可能产生运动干涉,引起跑偏、摆振、响声、磨损、磕碰等问题。所以必须对转向纵拉杆、横拉杆(对于独立悬架)、传动轴、气簧底座(活塞)等进行干涉校核,并控制在许用值以内。校核方法一般用作图法,也可列式计算,参阅附件D、E。

导向杆系的布置原则是,运动当量杆与上述部件的杆件应该:一、固定端同向;二、杆线平行;三、杆子等长。完全做到这三点很难,但应依序尽量做到。

(3)其它考虑。

导向杆系还会影响整车的其它性能,如操纵稳定性中的稳态转向特性(不足、过度转向),主要是侧倾轴转向和侧倾拉杆转向、侧倾时车轮外倾角变化等;以及制动跑偏、制动点头等问题。这些都有专门论著,可参阅附件E、F。例如,转向节臂球头若置于板簧纵扭瞬时中心之上,就会引起右跑偏(对左置转向盘);若前悬架导向杆固定端在前,后导向杆固定端在后,如果悬架刚度较低,往往制动点头角就过大。

6.空气管路及相关系统各元件的气密性

1)空气悬架系统各元件(如:气簧、高度阀、储气筒、单向阀等)及管接头必须有可靠的气密性,并且气路要排除油、水,防锈,否则空气悬架就不可能可靠工作。

2)车的其它系统的元件、管路也应保证气密性,主要是气制动系统、离合器气助力等,它们漏气最终也会使空气弹簧塌下来。在整车各系统没有全面过关之前,建议空气悬架系统采用独立储气筒,并用单向阀与其它系统隔离开,这样可能延长停车后气簧塌下来的时间。

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

电动车悬架系统设计

摘要 随着汽车工业技术的发展,人们对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高。汽车行驶平顺性反映了人们的乘坐舒适性,而舒适性则与悬架密切相关。因此,悬架系统的开发与设计具有很大的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度及选择出弹簧的各部分尺寸,并且通过阻尼系数和最大卸荷力确定了减振器的主要尺寸,最后进行了横向稳定杆的设计以及汽车平顺性能的分析。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架。前、后悬架的减振器均采用双向作用式筒式减,后悬则采用半拖曳臂式独立悬架振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。采用CAXA软件分别绘制前后悬架的装配图和部分主要零件图。 关键词:悬架;平顺性;弹性元件;阻尼器;

Abstract With the development of the automobile industry of motor vehicles on ride comfort, handling and stability as well as comfort and safety of the increasingly demanding, Vehicle Ride also closely related with the suspension. Therefore, the design of the suspension system has a practical significance. The main design of the study is BYD F3 car front and rear the suspension system of choice of hardware design, calculate the suspension stiffness, static and dynamic deflection deflection. By damping and unloading of the largest absorber identified the main dimensions. Finally, the design of the horizontal stabilizer. The design of the car before and after the suspension are used in the selection of independent suspension. Suspension of them adopted before the current family sedan before hanging popular McPherson suspension, was suspended after a drag arm suspension. Before and after the suspension of the shock absorber have adopted a two-way role-Shock Absorber. The design of this structure, effectively raising theof comfort and driving stability. By CAXA software were drawn before and after the suspension of the assembly and parts plans. Key words: suspension; ride comfort; elastic element;buffer;

大学生方程式赛车悬架系统设计

大学生方程式赛车悬架系统设计 中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。 本课题的重点和难点 1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。 2、对前后悬架的主要参数和导向机构进行初步的设计。 3、用Catia或Proe建立悬架三维实体模型。 4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 5、悬架设计方案确定后的优化改良。优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。 1、查阅FSAE悬架的设计。 2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。 3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 4、用ADAMS/Insight进行优化,改善操纵稳定性。

5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。 悬架设计流程如下: 首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。 确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。 确定赛车的偏频和赛车前后偏频比。 估计簧上质量和簧下质量的四个车轮独立负重。 根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。 推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。 计算没安装防侧倾杆时赛车的横向负载转移分布。 根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。最后确定减振器阻尼率。 上面计算和选型完成后,再重新对初值进行校核。 运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。 使用Ansys软件进行模拟悬架工作状况,进行受力分析,

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

轿车悬架系统设计

摘要 随着汽车工业技术的发展对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高,汽车行驶平顺性又与悬架密切相关。因此,对悬架系统的设计具有一定的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度。通过阻尼系数和最大卸荷力确定了减振器的主要尺寸。最后进行了横向稳定杆的设计。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架,后悬则采用拖曳臂式悬架。前、后悬架的减振器均采用双向作用式筒式减振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。、采用CAXA软件分别绘制前后悬架的装配图和零件图。 关键词:家庭轿车;悬架;平顺性;弹性元件

Abstract With the development of the automobile industry of motor vehicles on ride comfort, handling and stability as well as comfort and safety of the increasingly demanding, Vehicle Ride also closely related with the suspension. Therefore, the design of the suspension system has a practical significance. The main design of the study is BYD F3 car before and after the suspension system of choice of hardware design, calculate the suspension stiffness, static and dynamic deflection deflection. By damping and unloading of the largest absorber identified the main dimensions. Finally, the design of the horizontal Wending Gan. The design of the car before and after the suspension are used in the selection of independent suspension. Suspension of them adopted before the current family sedan before hanging popular McPherson suspension, was suspended after a drag arm suspension. Before and after the suspension of the shock absorber have adopted a two-way role-Shock Absorber. The design of this structure, effectively raising theof comfort and driving stability. By CAXA software were drawn before and after the suspension of the assembly and parts plans. Key words: family sedan; suspension; ride; flexible components

悬架系统设计资料

目录 1 绪论 (2) 1.1 悬架的概述 (2) 1.2 悬架的分类 (3) 1.3 重型载货汽车悬架系统目前的工作状况 (4) 1.4 悬架技术的研究现状及发展趋势 (5) 1.4.1悬架技术的研究现状 (5) 1.4.2悬架技术的发展趋势 (5) 1.4.3悬架设计的技术要求 (5) 2 空气悬架结构 (6) 2.1 空气悬架结构简介 (6) 2.1.1空气悬架系统的基本结构 (6) 2.1.2空气弹簧的类型 (6) 2.1.3导向机构 (7) 2.1.4高度控制阀 (7) 2.2 空气悬架系统的工作原理 (7) 3 悬架主要参数的确定 (8) 3.1 载货汽车的结构参数 (8) 3.2 悬架静挠度 (8) 3.3 悬架动挠度 (9) 3.4 悬架弹性特性 (10) 4 弹性元件的设计 (11) 4.1 空气弹簧力学性能 (11) 4.1.1空气弹簧刚度计算 (11) 4.1.2空气弹簧固有频率的计算 (13) 4.1.3空气弹簧的刚度特性分析 (14) 4.2 高度控制阀 (16) 5 悬架导向机构的设计 (17) 5.1 悬架导向机构的概述 (17) 5.2 横向稳定杆的选择 (17) 5.3 侧顷力臂的计算方法 (18) 5.4 稳定杆的角刚度计算 (19) 5.5 悬架的侧倾角校核 (20) 6 减振器机构类型及主要参数的选择计算 (21) 6.1 分类 (21) 6.2 主要参数的选择计算 (22) 7 技术与经济性分析 (26)

1 绪论 1.1 悬架的概述 悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩都要传递到车架(或承载式车身)上,以保证汽 车的正常行驶]1[。 现代汽车的悬架尽管有各种不同的结构形式,但是一般都由弹性元件、减振器和导向机构三部分组成。由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。冲击力传到车架和车身时,可能引起汽车机件的早期损坏,传给乘员和货物时,将使乘员感到极不舒适,货物也可能受到损伤。为了缓和冲击,在汽车行驶系统中,除了采用弹性的充气轮胎之外,在悬架中还必须装有弹性元件,使车架(或车身)与车桥(或车轮)之间作弹性联系。但弹性系统在受到冲击后,将产生振动。持续的振动易使乘员感到不舒适和疲劳。故悬架还应当具有减振作用,使振动迅速衰减(振幅迅速减小)。为此,在许多结构形式的汽车悬架中都设有专门的减振器。 以下对悬架重要的组成部分进行简单的介绍。 (一)弹性元件 弹性元件主要是把车架或车身与车桥或车轮弹性的连接起来,主要有空气弹簧,钢板弹簧、螺旋弹簧、扭杆弹簧等。 (1)空气弹簧 空气弹簧是由橡胶囊所围成的一个密闭容器,在其中贮入压缩空气,利用空气的可压缩性实现其弹簧的作用。这种弹簧的刚度是可变的,因为作用在弹簧上的载荷增加时,容器内的定量气体气压升高,弹簧刚度增大。反之,当载荷减小时,弹簧内的气压下降,刚度减小,故空气弹簧具有较理想的弹性特性。 随着科学技术突飞猛进,生活水平的不断提高,人们对汽车的乘坐舒适性及各方面的性能提出了更高的要求,这便迫使各汽车生产厂家不断的引进先进技术,生产出更好的产品,保持强大的竞争能力。从而空气弹簧的设计与研究也越来越受到车辆设计人员的青睐。在本论文主要是对空气弹簧进行了研究与探讨。 (2)钢板弹簧 由多片不等长和不等曲率的钢板叠合而成。钢板弹簧除具有缓冲作用外,还有一定的减震作用。 (3)螺旋弹簧 只具备缓冲作用,多用于轿车独立悬挂装置。由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。 (4)扭杆弹簧 将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。 (二)导向装置

悬架设计计算说明书

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计(论文)客车悬架系统设计计算说明书 院系:长安大学汽车学院 指导教师:张平 专业班级: 22010803 学生姓名:杨文亮 2012年6月18日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 目前我国的客车普遍采用的是传统钢板弹簧悬架,只有少数的高级客车才配置了空气悬架。传统钢板弹簧的结构简单,成本较低。而相对于传统机械钢板弹簧悬架而言,空气悬架具有乘坐更舒适、更好改善车辆的行驶平顺性等显著优点,但是造价也相对较高。 本文针对客车的悬架设计,在传统钢板弹簧悬架的基础上对前悬进行改进,前悬采用钢板弹簧与空气弹簧并联的混合式空气悬架,而后悬采用主副复合式钢板弹簧悬架。前悬的混合式空气悬架能满足驾驶员舒适性的要求,而后悬架的主副复合式钢板弹簧降低了整车的生产成本。 对前、后悬架的主要零部件的尺寸进行设计计算,并运用CATIA进行建模和装配。关键词混合式空气悬架,CATIA,主副复合式钢板弹簧悬架

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ ABSTRACT At present, buses generally use the traditional leaf spring suspension in our country , only a handful of senior buses was equipped with air suspension. Traditional leaf spring structure is simple and with low cost . In contrast to traditional mechanical leaf spring suspension, the air suspension has more significant advantages, such as , more comfortable to ride, better improvement of the vehicle ride comfort. However , the cost is relatively high. This paper is about the bus suspension design .to improve the front suspension on the basis of the traditional leaf spring suspension , front suspension uses hybrid air suspension combined parallel with leaf springs and air springs , and then rear suspension uses primary and secondary compound leaf spring suspension. the front air suspension can meet the requirements of driver comfort , but leaf spring in the rear suspension can reduce the manufacturing cost. Design and calculate the size parameters of the main components in the front and rear suspension, and modeling and assembly in use of CATIA. KEYWORDS: hybrid air suspension ,catia ,primary and secondary compound leaf spring suspension

车辆工程毕业设计86低速载货汽车车架及悬架系统

第1章前言 车架和悬架系统是汽车设计的重要部分,因为它们的好坏直接关系到汽车各个方面(操控、性能、安全、舒适)性能。 现代汽车绝大多数都具有作为整车骨架的车架。汽车绝大多数部件和总成都是通过车架来固定其位置的,如发动机、传动系统、悬架、转向系统、驾驶室、货箱和有关操纵机构。车架是支撑连接汽车的各零部件,并承受来自车内、外的各种载荷,所以在车辆总体设计中车架要有足够的强度和刚度,以使装在其上面的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小,车架的刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。过去对车辆车架的设计与计算主要考虑静强度。当今,对车辆轻量化和降低成本的要求越来越高,于是对车架的结构形式设计有高的要求。首先要满足汽车总布置的要求。汽车在复杂多边的行驶过程中,固定在车架上的各总成和部件之间不应发生干涉。汽车在崎岖不平的道路上行驶时,车架在载荷作用下可能产生扭转变形以及在纵向平面内的弯曲变形;车架布置的离地面近一些,以使汽车重心位置降低,有利于提高汽车的行驶稳定性。[]1 悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力(支撑力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。在进行设计时,要满足以下几点要求: a.规范合理的型式和尺寸选择,结构和布置合理。 b.保证整车良好的平顺性能。 c.工作可靠,结构简单,装卸方便,便于维修、调整。 d.尽量使用通用件,以便降低制造成本。 e.在保证功能和强度的要求下,尽量减小整备质量。 f.其它有关产品技术规范和标准。[]2 目前,农用运输车不能满足“三农”市场需求,突出表现为一般产品生产能力过剩,技术水平低,质量和维修服务水平差,价格较高,而市场急需的高质量经济型产品不能满足需求。结合生产实际,在农用运输车基础上对低速载货汽车车架及悬架系统进行了设计。

空气悬架系统设计

优秀完整毕业设计资料,欢迎下载借鉴!!! 摘要 本论文根据有关汽车模型简化的理论,在现有的四分之一模拟悬架机械装置的基础上,用空气弹簧代替普通螺旋弹簧设计空气悬架试验台系统。 本试验台实现的是悬架的刚度可调。设计一个副气室,通过一个步进电机控制主、副气室间通路的大小来实现空气弹簧刚度的调节。本试验台由空气压缩机、滤清器、安全阀、空气弹簧、减振器和其它的相关部件组成机械振动系统,由传感器、ECU和执行元件组成测控系统,利用传感器采集信号,通过计算机处理,控制高度阀和步进电机,从而使簧上质量的高度和振动频率都在一定的范围之内。本论文首先进行了弹簧的选用并计算以及减振器、传感器、气动元件和步进电机的选用,然后是设计台架总体结构,布置信号采集装置以及校核重要零件,最后是画出总成的装配图、重要零件的零件图。 关键词:汽车振动;空气弹簧;可控空气悬架;悬架试验台

Abstract The thesis according to the theory which simplifies about the model of vehicle, on the base of a quarter car simulation suspension mechanism rig, the ordinary helical spring is replaced by an air spring, and the air suspension testing rig have been designed. The test rig put the suspension rigidity adjustment into practice. Designs an accessory airspace, controls the pipeline size between the main and the accessory airspace with the stepper motor and realizes the air spring variable stiffness. The mechanical vibrating system of the test rig is composed of the air compressor、the filter、the safety valve、the air spring、the shock absorber and other related parts, the measure and control system is composed of the sensor、ECU and the performance element. Using the sensor gathers signal, then the ECU analyses and controls the height valve and the stepper motor to make the height and the vibration frequency of the objects on the air spring in certain scope. The thesis has first carried on spring selection and calculates as well as the shock absorber, the sensor, the air operated part and the stepper motor selection, then designs the test rig structure, arranges signal gathering equipment and examine the important components, finally draws the assembly drawing and the detail drawings of the important parts. Key Words:Automobile vibration, Air spring, Controllable air suspension, The suspension test rig

汽车悬架系统设计毕业设计和分析

轿车动力总成悬置系统优化设计研究 摘要 随着社会的日益进步和科学技术的不断发展,人们对汽车舒适性的要求也越来越高,良好的平顺性和低噪声是现代汽车的一个重要标志。NVH已经成为衡量汽车质量水平的重要指标之一。而动力总成是汽车最重要的振源之一。如何合理设计动力总成悬置系统能明显降低汽车动力总成和车体的振动已经成为一个重要的课题。 本课题研究的目的是在现有动力总成悬置系统的基础上,优化动力总成悬置系统参数,达到提高整车平顺性和降低噪声的目的。 对动力总成悬置系统进行优化仿真,通过比较优化前的性能可知,优化后悬置系统隔振性能明显改善。 关键词:动力总成;悬置系统;优化

Investigation on Optimization Design of Plant Mounting System of a Passenger Car Abstract With the increasing social progress and the continuous development of science and technology, people on the requirements of automotive comfort become more sophisticated and good ride comfort and low noise is an important sign of the modern automobile. NVH levels have become an important measure of vehicle quality indicator. The vehicle powertrain is one of the most important vibration source. How to design mounting system can significantly reduce the vehicle powertrain and body vibration has become an important issue. This study is aimed at existing powertrain mounting system, based on parameters optimization of powertrain mounting system, to improve vehicle ride comfort and reduce noise. On the optimization of powertrain mounting system simulation, the performance by comparing the known before the optimization, the optimized mounting system significantly improved. Key words: Powertrain;Mounting system;Optimization

2 空气悬架结构

2 空气悬架结构 2.1 空气悬架结构简介 2.1.1 空气悬架系统的基本结构 空气弹簧悬架具有变刚度、刚度小、振动频率低、车身高度不变等优点。典型的机械式空气悬架主要包括以下几个部分: (1)空气弹簧 空气弹簧是由橡胶囊所围成的一个密闭容器,在其中贮入压缩空气,利用空气的可压缩性实现其弹簧的作用。这种弹簧的刚度是可变的,因为作用在弹簧上的载荷增加时,容器内的定量气体气压升高,弹簧刚度增大。反之,当载荷减小时,弹簧内的气压下降,刚度减小,故空气弹簧具有较理想的弹性特性。 (2)导向机构 导向机构是承受汽车的纵向力、力矩及横向力。由于空气悬架只能承受垂直载荷,所以需要安装导向机构以承受横向力、纵向力及力矩以使车桥(或者车轮)按一定的轨迹相对车身或车架跳动。 (3)减振装置 减振装置主要是用来消耗振动能量,衰减振动。空气作为空气弹簧的工作介质,内摩擦极小,与板簧相比空气弹簧本身只有少量阻尼,所以空气悬架必须装有阻尼器,而且其阻尼要相应增加以达到迅速衰减振动的目的。但如果阻尼过大又会使反应迟钝并向车身传递过多的高频振动和冲击,所以减振器阻尼的匹配是否合理将影响悬架的性能。 (4)高度控制阀 高度控制阀是空气弹悬架系统的一个重要组成部分,其主要功能是:①随整车载荷变化保持合理的悬架行程;②高速时降低车身高度,保持车身稳定性,减少空气阻力;⑨在起伏不平的路面上,可以提高车身高度从而提高了汽车的通过性,空气弹簧的优越性通过安装高度控制阀充分的显现出来。 (5)其它附属装置 空气弹簧以压缩空气作为介质,所以必须装有压气机以产生压缩空气,另外为了进一步提高空气弹簧的性能大部分空气悬架还装有辅助气室。现如今,随着科技的迅速发展,很多高档的客车、轿车以及商用车上已经成功的使用了电控空气悬架,这种悬架使用高度传感器和电子控制单元来控制空气弹簧的充气和排气,从而更加提高了空气悬架的控制精度和反应速度。但在功能好的同时也有其缺点:这种汽车悬架的结构更为复杂,而且成本非常高。 所以在国内应用的还不是很广泛,但是这是汽车悬架发展的必然趋势]3[。 2.1.2 空气弹簧的类型 空气弹簧的结构可以设计成很多类型,根据压缩空气所用容器不同,可以将空气弹簧分为囊式、膜式两种形式。

空气悬架设计总结

空气悬架设计 一、设计所需参数 (1)平顺性 m1=3000 m2=6000 前、后轴荷质量(kg ) m31=370 m32=590 m4= 汽车前、后非簧载质量(kg ) 簧载质量绕其质心的转动惯量(kg.m 2) M5= 驾驶员座椅坐垫上承受的那部分人体质量(kg ) k1= k2= K1=205 K2=305 前、后轮胎刚度(N/m ) 前、后悬架刚度(N/mm) k5= 座椅刚度(N/m ) c1= c2= 前、后轮胎垂直阻尼系数(N.s/m ) c3= c4= 前、后减震器阻尼系数(N.s/m ) c5= 人座椅系统阻尼系数(N.s/m ) L1= 座椅中心到簧载质量质心的水平距离(m ) (2)操纵稳定性 l=3800(mm ) 轴距 I Z 整车绕垂直轴线的转动惯量(kg.m 2) I XC 悬架上质量绕通过悬挂质量重心的X 轴的转动惯量(kg.m 2) I XZ 悬架上质量绕通过悬挂质量重心的X ,Z 的轴惯性积(kg.m 2) K f 前轮侧偏刚度(单轮) k r 后轮侧偏刚度(单轮) f N 前轮回正力矩系数(N.m/rad) r N 后轮回正力矩系数(N.m/rad) f E 前侧倾转向系数 r E 后侧倾转向系数 1φC 前侧倾角刚度(N.m/rad) 2φC 后侧倾角刚度(N.m/rad) f D 前侧倾角阻尼(N.m/rad/s) r D 后侧倾角阻尼(N.m/rad/s) h 侧倾力臂(m)

二、悬架布置要求 满载工况:为了在汽车驱动时车身后部能接近水平,所以车身前面要低一些。δ=0.5-1.5 °。 满载工况前轮中心比后轮中心低31mm 。 轮胎:7.50—20 14PR 最大使用直径尺寸972mm 空气弹簧布置:在布置允许的情况下,尽可能把空气弹簧布置在车架以外,以便加大弹簧 的中心距,提高汽车的横向角刚度。 1、 前悬 [1] 前桥参数:主销内倾角7.5°,主销后倾角0°。 [2] 满载前桥仰角:动力转向(楔铁3.7°+ 板簧1°=4.7°,增加回正力矩);非动 力转向(楔铁2°+板簧1°=3°)。 [3] 前轮最大转向:39°和32° 2、后悬 [1] 满载后桥仰角:悬架前仰角4°+ 后桥自身前仰角1°=5° 三、气囊选择 囊式空气弹簧主要靠橡胶气囊的挠曲获得弹性变形;膜式空气弹簧主要靠橡胶气囊的 卷曲获得弹性变形;混合空气弹簧则兼有以上两种变形方式。 1、 空气弹簧的刚度 F :空气弹簧承受的载荷;P :空气弹簧内的绝对气压;A :有效面积,它随气囊高度变化;f :空气弹簧垂直位移;k :多变指数,当汽车振动缓慢时,气体状态的变化接近于等温过程,k=1,当汽车在坏路上行驶,振动激烈时,气体的变化接近于绝热过程,k=1.4,在一般情况下,k=1.3-1.38;00,V p :静平衡位置时,气体的绝对压力和容积;V p ,:任意位置时,气体的绝对压力和容积; A p F )1(-= (1) k V V p p ?? ? ??=00(2) 把(2)带入(1)得: A V V p P k ??? ?????-??? ??=100(3) 将p 对空气弹簧垂直位移f 求导数,则空气弹簧刚度为: df dV V k V Ap df dA V V p df dP C k k k 1000011+??-???? ??-??? ??==(4) 在静平衡位置时,00,,0p p V V f ===,带入(4)可得静平衡位置时的刚度0C 为: 2 000)1(V A kp df dA p C +-=(5)

方程式赛车悬架系统设计分析中期报告

河北工业大学本科毕业设计(论文)中期报告 毕业设计(论文)题目:方程式赛车悬架系统设计分析 专业:车辆工程 学生信息:学号:082886;姓名:樊广阔;班级:车辆083 指导教师信息:教师号:86024;姓名:武一民;职称:教授 报告提交日期: 一、前期具体工作及取得进展 1.查阅FSAE赛车及相似汽车悬架结构,确定所设计赛车悬架结构。 根据文献及FSAE赛车实车相关图片初步确定采用不等长双横臂拉杆弹簧独立悬架,制动器形式采用盘式制动。上下两横臂采用A型结构,且由杆件代替,上下A臂不平行且不等长,为了保证运动时轮距变化不大采用上横臂短、下横臂长的结构形式。 悬架杆件采用SAE4130钢管,尺寸为12x1.5以及,并采用SA型外螺纹杆端关节轴承,型号为:SA8E。横臂与转向节的链接采用GE型向心关节轴承,型号为:GE8C。减震器及弹簧选取螺旋弹簧套在减震器外侧的结构,减震器的一端通过摇臂与拉杆连接,另一端连接在车架上。横向稳定杆与摇臂的连接同样采用外螺纹杆端关节轴承,型号为:SA6E。摇臂的旋转中心采用的是自润滑轴承,型号为10x14x20。整体结构的布置形式大概如下图所示: 2.初步确定悬架相关参数。 根据赛事规定6.3.1 赛车轮辋直径必须至少为203.2mm(8.0 英寸),因此结合查阅相关资料及简单计算轮辋采用13X8尺寸,即轮辋直径为330mm。轮胎选取Continental轮胎,型号为195/45R13,轮胎外径为510mm。 根据赛事规定6.2 离地间隙:在比赛中,在有车手乘坐时,赛车的静态离地间隙必需至少25.4mm(1 英寸),因此,初步设计赛车最小离地间隙为30mm。 根据赛事规定2.3 轴距赛车的轴距必须至少为1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。因此,初步设计赛车轴距为1535mm。 根据赛事规定2.4 轮距赛车较小的轮距(前轮或后轮)必须不小于较大轮距的75%。 此次设计初步设计前轮距为1200mm,后轮距为1180mm。 根据赛事规定 6.1.1 赛车所有车轮必须安装有功能完善的、带有减震器的悬架。 在有车手乘坐的情况下,轮胎的跳动行程至少为50.8mm(2 英寸),其中向上25.4mm

悬架的设计计算.doc

3.1 弹簧刚度 弹簧刚度计算公式为: 前螺旋弹簧为近似圆柱螺旋弹簧:前 n 8D Gd 3 14 1 1= Cs (1) 1 后螺旋弹簧为圆柱螺旋弹簧:后 n 8D Gd 3 24 2 2= Cs (2) 式中:G 为弹性剪切模量79000N/mm 2 d 为螺旋弹簧簧丝直径, 前螺旋弹簧簧丝直径d 1=11.5mm , 后螺旋弹簧簧丝直径d 2=12mm ; 1D 为前螺旋弹簧中径,D 1=133.5mm 。 D 2为后螺旋弹簧中径,D 2=118mm 。 n 为弹簧有效圈数。根据《汽车设计》(刘惟信)介绍的方法,判断前螺旋弹簧有效圈数为4.25圈,即n 前=4.25;后螺旋弹簧有效圈数为5.5圈,即 n 后=5.5。 前螺旋弹簧刚度: =18.93 N/mm 后螺旋弹簧刚度: 后 n 8D Gd 324 2 2= Cs =22.6N/mm 螺旋弹簧刚度试验值: 前螺旋弹簧刚度:18.8N/mm ; 1 螺旋弹簧刚度计算公式,参考《汽车工程手册》设计篇 3 1 41 116n Gd D Cs 前=

后螺旋弹簧刚度:22.78N/mm 。 前螺旋弹簧刚度和后螺旋弹簧刚度计算值与试验值基本相符。G08设计车型轴荷与参考样车的前轴荷相差<2.0%,后轴荷相差<0.8%。设计车型直接选用参考样车的弹簧刚度,刚度为: Cs=18.8 N/mm; 1 Cs=22.6 N/mm。 2 3.5 减震器参数的确定 汽车的悬架中安装减振装置的作用是衰减车身的振动保证整车的行驶平顺性和操纵稳定性。下面仅考虑由减振器引起的振动衰减,Array不考虑其他方面的影响,以方便对减振器参数的计算。 汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦

汽车设计悬架系统

汽车设计悬架系统

目录第一章悬架的结构形式的选择 第一节悬架的构成和类型--------------------- 第二节独立悬架结构形式分析 第三节前后悬架的选择 第二章悬架主要参数的选择 第一节悬架性能参数的选择 第二节悬架的自振频率 第三节侧倾角刚度 第四节悬架的静动挠度的选择 第三章弹性元件的设计分析及计算 第一节前悬架弹簧 第二节后悬架弹簧 第四章独立悬架导向机构的设计分析及计算第一节导向机构设计要求 第二节麦弗逊独立悬架示意图 第三节导向机构受力分析 第四节横臂轴线布置方式 第五节导向机构的布置参数 第五章减震器的设计分析及计算 第一节

第一章悬架的结构形式的选择 1.1悬架的构成和类型 1.1.1构成 (1)弹性元件 具有传递垂直力和缓和冲击的作用。常见的弹性元件有:钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧、油气弹簧、橡胶弹簧等。 (2)导向装置 其作用是传递除弹性元件传递的垂直力以外的各种力和力矩。常见的导向装置 有:斜置单臂式、单横臂式、双横臂式、双纵臂式、麦弗逊式等。 (3)减震器 具有衰减振动的作用。常见的减震器有:简式减震器、充气式减震器、阻力可调式减震器等。 (4)缓冲块 其作用是减轻车轴对车架的直接冲撞,防止弹性元件产生过大的变形。 (5)横向稳定器 其作用是减少转弯行驶时车身的侧倾角和横向角振动。 1.1.2 类型 悬架可分为非独立悬架和独立悬架。 (1)非独立悬架 非独立悬架的特点是:左、右车轮用一根整体轴连接,再经过悬架与车架连接。

优点是:结构简单、制造容易、维修方便、工作可靠 缺点是:①由于整车布置上的限制,钢板弹簧不可能有足够的长度(特别是前悬架),使之刚度较大,所以汽车平顺性较差。 ②簧下质量较大。 ③在不平路面上行驶时,左、右车轮相互影响,并使车轴和车身倾斜。 ④当两侧车轮不同步跳动,车轮会左、右摇摆,使前轮容易产生摆振。 ⑤前轮跳动时,悬架易与转向传动机构产生运动干涉。 ⑥汽车转弯行驶时,离心力也会产生不利的轴转向特性。 ⑦车轴上方要求有与弹簧行程相适应的空间。 然而由于非独立悬架结构简单、易于维护以及可以使用多种类型的弹性元件等优点,非独立悬架多用于载货汽车和大客车的前、后悬架。 (2)独立悬架 独立悬架的特点是:左、右车轮通过各自的悬架与车架连接。 优点是:①簧下质量小。 ②悬架占用的空间小 ③弹性元件只承受垂直力,所以可以用刚度小的弹簧,使车身振动频率降低,改善了汽车行驶的平顺性。 ④由于采用了断开式车轴,所以能降低发动机的位置高度,使整车的质心高度下降,改善了汽车行驶的稳定性。 ⑤左、右车轮各自独立运动互不影响,可减少车身的倾斜和振动,同时在好的路面上能获得良好的地面附着能力。 缺点是:结构复杂、成本较高、维修困难

相关主题
文本预览
相关文档 最新文档