当前位置:文档之家› 关于锂离子动力电池组的成本分析

关于锂离子动力电池组的成本分析

关于锂离子动力电池组的成本分析
关于锂离子动力电池组的成本分析

关于锂离子动力电池的成本分析

一、锂离子动力电池的目标市场

锂离子电池由于工作电压高、储能较大、无记忆性和质量轻等优势发展迅速,一直在移动通讯、笔记本电脑等电器上大量使用;近年来随着新能源汽车的推广,锂离子电池被认为是最有效的能量工艺装置;同时新能源(太阳能、风能)并网发电站项目建设步伐加快,锂电池组为代表的储能技术成为核心发展的对象。

针对电动汽车使用的电池以功率型电池为主,其特点是:电池的放电倍率很大,那么在设计过程中就要注意减小电池的阻;在极片的选取上,高功率型的电池极片要厚些,在涂敷的厚度上,高功率型的电池极片要涂得薄些,这样锂离子和电子在电阻相对较大的电极活性物质上迁移的距离小,总阻减小,可以支持大电流,以达到高功率的要求;

针对储能电池以能量型电池为主,其特点与功率电池相反。对于高能量型电池,放电的倍率较小,那么在综合考虑阻和容量的时候可以把容量排在前面,当然在增大容量的过程中也要尽可能地减小阻。

二、锂离子动力电池组的产业链状况

结合项目目前的状况,这里重点讨论电芯的成本情况,因为作为一个电池组(电池

包),电芯是基础,多个电芯串并联组成电池组,多电池组串并联组成电池包,然后装在电动车上使用或做储能电源。而且其成本特性属于变动成本,后期电池组装过程中更多的与设备、软件等固定成本相关。电芯的关键是:正极(阴极)、负极(阳极)、电解液和隔膜。

三、锂离子电池的成本分析

1、正极(阴极)材料:锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因此正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前锂离子动力电池场上主要使用以下五种材料:

最新炒作比较火的材料是Li[Ni0.17Li0.2Co0.07Mn0.56]O2,日产公司与日本新能源产业机构(NEDO)联合开发的一种预期可提供更高容量的固溶体材料,预计电位可增至5V以上,能量密度280mAh/g(磷酸铁锂170mAh/g),该材料也是项目组未来使用的主要材料之一。

目前国正极材料的价格:钴酸锂30.3万/吨

钛酸锂21.0万/吨

锰酸锂 6.0万/吨

钒酸锂 6.0万/吨

镍钴酸锂20.1万/吨

镍钴铝酸锂21.6万/吨

三元材料17.2万/吨

磷酸铁锂(三个级别)15.4万/吨17.2万/吨18.3万/吨从目前形势上看,价格整体呈上涨趋势。

2、负极(阳极)材料:锂离子电池负极材料要求具备以下的特点:①尽可能低的电极

电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。但是主要应用于产业化的是碳材料,其中石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。而人造石墨通过对天然石墨的氧化进行表面改性,提高了石墨的电性能,是目前最常用和用量最大的负极材料。

目前国产品价格在6万/吨-10万/吨之间;日本产品价格在10万/吨-15万/吨之间,卖到中国12万/吨-20万/吨。

3、电解液:在锂离子电池的性能和稳定性方面,电解液一直居于中心位置。目前常规的电解液体系一般包括有机溶剂和锂盐,EC、DMC、EMC、DEC、PC为几种常见的有机溶剂,锂盐是LiPF6。锂盐是电解液制造的重点,锂盐目前几乎被日本几家企业垄断。其中,关东电工化学每年生产LiPF6达到950吨(主要用于宇部),SUTERAKEMIFA 年产800吨(主要用于ECOPRO),世界最大的锂盐生产商森田化学年产960吨(主要用于三菱)。目前国一些企业也号称生产出锂动力电池使用的电解液或锂盐,但是否能批量用在动力电池上,还有待商榷。不过,目前国已有多家上市公司在实施锂离子动力电池用电解液的产业化工作。

目前购日本产品价格在35万/吨-40万/吨,其实成本为10万/吨。

4、隔膜:锂离子动力电池隔膜是一种具有纳米级微孔的高分子功能材料,是电芯的重要组成部分,它起到将正、负极隔开,并且具有电子绝缘性和离子导电性;同时还具有“热关闭”的特性。隔膜的性能决定了电池的界面结构、电解液的保持性和电池的阻等,进而影响电池的的容量、循环性能、充放电电流密度、安全性等关键指标,但是隔膜制备的关键技术被日本掌握。国虽有部分厂家,包括一些上市公司在重点实施研发和产业化工作,但是离用于锂动力电池的大规模产业化尚有一段距离。

目前购日本产品价格在20~55元/m2。但是,目前国从日本进口的隔膜也非日本的主流产品。

5、目前单体电芯,国主要材料占比为

6、日本单体电芯的资料:能量型电池

功率型电池

无论是何种工艺,从图表可以看出,隔膜、正极、电解液是材料的主体。

7、锂离子动力电池总成本结构

从上图中可以看到,电池制造过程中主材和折旧是成本的主要组成,这就主要是制造设备的投入、电池设计中开发支出的投入、电池管理系统研发的投入。

8、电池管理系统的成本

电池管理系统对电池组的安全使用至关重要,但是作为一种电路,它的成本主要是设计成本,就像设备一样,是一笔巨大的投入,但是如果电池的生产达到了一定的规模,它是有摊薄效应的。

四、动力锂电池未来成本趋势

主流厂商的成本情况

1、日本的成本降低目标

不断提高锂电池的性能,并通过促进电动汽车的发展达到锂离子动力电池的经济规模产量。

2、我国的成本降低目标

五、未来锂离子动力电池成本降低的设想

1、降低锂离子电池的主要材料成本,尤其是隔膜和电解液成本,目前的隔膜和电解液中的六氟磷酸锂基本靠进口,如果实现国产化则可大大降低制造成本,目前国已经有两三家企业突破了隔膜制造技术,开始批量生产,但还不能完全替代进口隔膜。

2、在保证安全性的基础上不断提高电池的能量密度,可以通过正极材料、负极材料改性及电解液的不断改进来达到目标。

3、提高锂离子动力电池制造设备的自动化程度,减少电池的不良品率和材料的综合利用率

六、成本降低的初步想法

(一)单体电芯的成本估算

(由于该估算考虑了国市场的情况,以及实际情况,所以计算的比例略有出入,而且电池部由于结构、材料掺杂不同也会带来比能量、电压、以及隔膜、电解液的消耗不同,这里只是粗略的计算,随着电池设计工作的不断深入,该数据会不断变化)

1、正极以磷酸铁锂电池为例,其理论比容量为170mAh/g,产品实际比容量一般为

140 mAh/g(0.2C, 25°C);但考虑粘结剂等物质的添加,实际比能量为100

mAh/g。其理论电压为3.6v,但一般认为3.3v-3.6v为虚电,实际电压为3.3v,

但该数据被认为是在小电池上的数据,应用于动力电池后,也就在2.9v以上,

这里按3v计算。

实际比能量:100 mAh/g,即每安时为0.01公斤,按每公斤180元计算,每安

时1.8元。

2、负极以人造石墨为例,其理论可逆比容量260 mAh/g,产品实际比容量一般为240

mAh/g;也是考虑各种影响后,实际比能量为170 mAh/g。

实际比能量:170mAh/g,即每安时为0.00588公斤,按每公斤140元计算,

每安时0.823元

3、电解液:电解液的注液量计算比较复杂,首先电解液要与正负极材料匹配,其次它

的浓度、黏度、温度等都会对电池的性能产生影响,而且注液少了,影响电池

性能,注液多了会提升电池阻,所以这里只能根据理论模型进行测试。

2.5g=780.3mAh 即每安时=0.003公斤,按每公斤400元计算,每安时为1.2元。

3.4g=826.5mAh 即每安时=0.004公斤,按每公斤400元计算,每安时为1.6元。

这里取平均值,每安时需电解液1.4元。

4、隔膜:此项也是需要与电池设计等通盘考虑,这里仅选用日本某款电池设计的数据,

每千瓦时17.7平米,每安时(按3v折算)为0.0536平米,每平米按35元计

算,即每安时用隔膜1.876元。

5、综合上述四种主材的成本,即1.8+0.823+1.4+1.876=5.908元。再考虑铜箔、铝箔、

添加剂等的影响,电芯的材料总成本在6.5元左右。

(二)降低成本的讨论

1、提高材料的性能。

以正极材料为例,如果通过材料改性,提高了比能量,势必会降低成本,例如,通过减少添加剂将磷酸铁锂的比能量提升到140mAh,正极材料成本就会降为每安时1.38元,对总成本的贡献就是6%。对于负极材料,利用专家擅长的天然石墨改性,比能量可以提升到365mAh,负极材料成本就会降为每安时0.38元,对总成本的贡献6.7%。

其实材料改性的真实目的不是降低成本,而是在现有价格基础上,提升电池的整体性能,提升性价比。

2、提高设备与工艺的贴合度与自动化程度,进而提高单台产出效率、成品率。

已连续搅拌工艺为例,目前日本中试线规模的连续搅拌可以实现每小时20L的搅拌量,按每天有效搅拌时间20小时计算为400L,但是目前使用的传统搅拌工艺,400L 至少在35小时以上,那么节省的功效为42.85%。

3、扩大产能

电池组的制作特点,pack工序前,变动成本大于固定成本,pack工序后,固定成本大于变动成本,所以适度增加规模,有利于降低单位固定成本。

(三)周边产业环境变化对成本的影响

1、新技术的诞生

客观地说,直至目前锂离子动力电池的制造工艺、材料选型远没有固定下来。就以最新的技术来说,据美国物理学家组织网8月4日(时间)报道,一个日本研究小组开发出一种能像电解液一样产生电流的固态电介质,并用其制造出了固态锂电池,其导电性可达到现有液态锂离子电池的水平。研究人员表示,由于固体更紧密坚固,这种高导电性的固态锂电池能在更宽的温度围下供电,抵抗物理损伤和高温的能力更强。该技术可能摆脱电池对隔膜的依赖。

2、锂电池所需材料相关的材料制备技术

以纳米技术为代表的新材料制备技术的突破,对未来材料的改性奠定了良好的基础,势必增加材料的稳定性,提高了材料的可靠性与安全性。这对降低成本、提高性价比很有帮助。

3、基础材料的日趋紧

锂离子动力电池对特殊金属材料的依赖还是比较重的,随着产量的增加,对特殊金属的需求也会相应增加,势必造成材料成本的上升。其实现在新材料在锂动力电池上的应用比较多,但多因为资源紧而未达到产业化的要求。因此,基础材料价格的不断上涨对于降低电池成本是极大的挑战。

七、随着工作的开展,会根据最新的电池设计情况,随时进行成本预测,为决策提供依据,同时也为制定成本目标提供基础。目前对电池组的材料配方、工艺路线确定,基本可以明确电池组的标准成本。总之,从目前锂离子动力电池的发展来看,在未来的7-8年综合下降57%还是有可能的,将重点在材料改性和工艺设备的提升这两方面入手解决。

新能源汽车动力电池行业分析报告

2009年新能源汽车电池行业分析? [简介]新能源电动汽车最主要的部件是动力电池、电动机和能量转换控制系统,而动力电池要实现快速充电、安全等高性能,是技术门槛最高、也是利润最集中的部分。中投顾问新能源汽车行业研究员李胜茂指出,新能源汽车对电池要求很高,必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低、使用寿尽量长。 概述:全球新能源汽车产业发展路径分析 新能源电动汽车最主要的部件是动力电池、电动机和能量转换控制系统,而动力电池要实现快速充电、安全等高性能,是技术门槛最高、也是利润最集中的部分。中投顾问新能源汽车行业研究员李胜茂指出,新能源汽车对电池要求很高,必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低、使用寿尽量长。 据中投顾问发布的《2009-2012年中国电池行业投资分析及前景预测报告》显示,新能源汽车将朝着“镍氢——锂电——燃料电池”产业化路径发展。短期能够兑现业绩的只有镍氢动力电池,磷酸铁锂电池的不成熟,以及工信部出台的新能源汽车准入新标准也让镍氢电池生产商看到了中短期的希望。不过,3-5年内在锂电池技术成熟后,镍氢电池市场将被锂电池逐渐蚕食。 再者,近年来燃料电池(FC)技术的突飞猛进使得氢能的梦想在21世纪开始变成现实。而以氢为动力的燃料电池汽车(FCV)得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5--10年内FCV将正式进人市场,以加氢站、输氢管道建设为标志的“氢经济”初露端倪。 研究发现,日本的锂电池供应商占有较大的优势地位,并已开始着手制定统一的锂电池规格、安全标准、充电方式。而美国为了不让自己由对进口石油的依赖变成对外国锂电池的依赖,也在扶持电动车和锂电池制造企业,美国能源部也于去年批准了

锂离子动力电池安全性及解决方法(2021)

Safety issues are often overlooked and replaced by fluke, so you need to learn safety knowledge frequently to remind yourself of safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锂离子动力电池安全性及解决方 法(2021)

锂离子动力电池安全性及解决方法(2021)导语:不安全事件带来的危害,人人都懂,但在日常生活或者工作中却往往被忽视,被麻痹,侥幸心理代替,往往要等到确实发生了事故,造成了损失,才会回过头来警醒,所以需要经常学习安全知识来提醒自己注意安全。 在新能源汽车发展过程中,除价格高、续驶里程短和充换电基础设施不足外,动力安全性是消费者和专业人士关注的重点。这个问题也影响到了动力电池比能量的提升。 “发展防短路、防过充、防热失控、防燃烧及不燃性电解液是应对动力电池安全性的关键。”武汉大学艾新平教授在上海举行的第14届中国国际工业博览会新能源汽车产业发展高峰论坛上强调。 锂离子动力电池不安全行为的发生机制 艾新平分析指出,锂离子动力电池除了正常的充放电反应外,还存在很多潜在的放热副反应。当电池温度或充电电压过高时,很容易引发这些放热副反应。 主要的过热副反应包括:1.SEI膜在温度高于130℃时分解,使电解液在裸露的高活性碳负极表面大量还原分解放热,导致电池温度升高。这是引发电池热失控的根本原因。 2.充电态正极的热分解放热,及进一步由活性氧引发的电解液分

动力电池成本结构拆分(含模型)

新能源车的发展既有赖于政策的推动,也需要动力电池持续降 本的支持,本周专题我们研究了动力电池的成本结构。我们在 动力电池成本模型里将PACK 成本拆分成材料成本和生产 成本,其中材料成本又包括电芯材料、模组材料及PACK 材 料,生产成本包括人力成本、折旧及其他制造费用。我们参 考ANL 的成本测算模型,选取方形电池进行成本拆分。据 我们测算,在仅考虑电芯的情况下,目前三元523 和磷酸 铁锂电芯的度电成本分别为486.96 和374.44 元/kWh, 在考虑模组、PACK 及电池系统的情况下,目前三元523 和磷酸铁锂电池系统的总度电成本分别为724.91 和612.40 元/kWh。(注:本测算以提供模型思路为主,具体 数值与实际情况可能存在偏差) 锂电池根据应用领域的不同分为动力电池、储能电池和消费电子电池,不同类型锂电池的成本构成自然不同,本篇报告主要讲述应用最广泛的动力电池成本结构。动力电池在不同的正负极材料下其成本有一定差别,整体来看材料成本占比较大,人工成本、折旧及其他制造费用占比较小,而材料成本则主要以正负极材料、隔膜、电解液和组件为主。我们在动力电池成本模型里将PACK 成本拆分成材料成本和生产成本,其中材料成本又包括电芯材料、模组材料及PACK 材料,生产成本包括人力成本、折旧及其他制造费用。我们参考ANL 的成本测算模型,选取方形电池进行成本拆分。

我们假设单车带电量60kWh,包括 1 个电池包,20 个模组和240 个电芯,以上假设主要用于测算模组和PACK 组件成本。我们选取三元动力锂电池523 型和磷酸铁锂电池作为研究对象进行分析比较。参考当升科技公告数据,我们假设三元(523)正极材料实际克容量为157mAh/g。参考国轩高科和丰元股份公告数据,目前国内磷酸铁锂正极材料实际克容量基本已经达到150mAh/g,我们取145mAh/g 的平均水平作为磷酸铁锂正极材料实际克容量假设。参考杉杉股份公告数据,我们假设负极活性材料(人造石墨)实际克容量为350 mAh/g。 1 正极材料

目前的锂电池成本主要是隔膜和电解液

目前锂电池成本主要是隔膜和电解液 现在生产的锂离子电池的电芯的关键材料有四种:正极、负极、电解液、隔膜,其中锂离子电池中的正、负极材料中国的生产技术并不落后,不但满足国内生产需要,还向世界各地出口。但是,隔膜、电解液却有部分进口。这个问题正在逐步得到缓解,因为国内生产厂家增多,技术也逐步趋于成熟。 需要进口的原因是,产品的制造尚未达到精益求精的地步,或者是生产装备设计不足夠完美,所采购的原材料不能适应优质产品的需求,制造工艺水平没有及时提高,产品的基础研究没有持续发展有了成功之处就停止不前等等。 总的来说:目前,中国锂离子电池产业发展,是任何国家都拤不了脖子的。 中国需要努力的是更加精益求精,制造出更先进的设备,生产出更加优秀的成品,综合成本始终保持市场竞争力,进一步加强锂离子电池的基础研究和创新。 锂电池电芯的关键材料有四种:正极、负极、电解液、隔膜,在组装成动力电池时,又可以分离出组装配件这一材料大类。对于动力电池而言,使用进口电解液和隔膜推高了和继续推高着动力锂电池的成本,从而导致国内相关行业的止步不前甚至倒退。 目前隔膜、电解液、正极材料、负极材料这四个部分总共占到动力电池成本的85%,分别约为25%、15%、30%、15%,从部分进口的电解液材料来看,六氟磷酸锂是生产电解液的最主要原材料,其占电解液成本的50%左右。目前全球范围内只有中国、日本实现了六氟磷酸锂产业化,国内只有少数企业能生产,但产能相对较少,品质与国外也存在一定的差距。这导致我国的六氟磷酸锂主要使用进口产品,价格制定权为外企所左右。 而另一种技术含量更高的锂电池隔膜材料进口依赖度更高一些,这是因为有些国产隔离膜相比国外优秀隔离膜的主要区别在国产的一致性差,使用某些国产隔离膜会导致电池质量不稳定,特别是动力锂电池领域要求内部每个电芯的参数必须高度统一,而国内一些企业目前还没有完全解决。国内很多企业上马锂离子动力电池时仅仅看市场,还要选择国内企业配套技术水平,甚至选择

2020年动力电池行业市场分析报告【调研】

2020年动力电池行业市场分析报告【调研】 2020年2月

目录 1. 动力电池行业概况及市场分析 (6) 1.1 动力电池行业市场规模分析 (6) 1.2 动力电池行业结构分析 (6) 1.3 中国动力电池行业市场驱动因素分析 (7) 1.4 动力电池行业特征分析 (7) 1.5 动力电池行业PEST分析 (8) 2. 动力电池行业政策环境 (10) 2.1 行业政策体系趋于完善 (10) 2.2 一级市场火热,国内专利不断攀升 (11) 2.3 宏观环境下动力电池行业的定位 (12) 2.4 “十三五”期间动力电池建设取得显著业绩 (12) 3. 动力电池产业发展前景 (14) 3.1 中国动力电池行业市场规模前景预测 (14) 3.2 中国动力电池行业市场增长点 (14) 3.3 动力电池进入大面积推广应用阶段 (15) 3.4 政策将会持续利好行业发展 (15) 3.5 细分化产品将会最具优势 (15) 3.6 动力电池产业与互联网等产业融合发展机遇 (16) 3.7 动力电池人才培养市场大、国际合作前景广阔 (17) 3.8 巨头合纵连横,行业集中趋势将更加显著 (18) 3.9 建设上升空间较大,需不断注入活力 (18)

3.10 行业发展需突破创新瓶颈 (19) 4. 动力电池行业竞争分析 (20) 4.1 动力电池行业国内外对比分析 (20) 4.2 中国动力电池行业品牌竞争格局分析 (22) 4.3 中国动力电池行业竞争强度分析 (22) 4.4 初创公司大独角兽领衔 (23) 4.5 上市公司双雄深耕多年 (24) 4.6 互联网巨头综合优势明显 (25) 5. 动力电池行业存在的问题分析 (26) 5.1 政策体系不健全 (26) 5.2 基础工作薄弱 (26) 5.3 地方认识不足,激励作用有限 (26) 5.4 产业结构调整进展缓慢 (26) 5.5 技术相对落后 (27) 5.6 隐私安全问题 (27) 5.7 与用户的互动需不断增强 (28) 5.8 管理效率低 (29) 5.9 盈利点单一 (29) 5.10 过于依赖政府,缺乏主观能动性 (30) 5.11 法律风险 (30) 5.12 供给不足,产业化程度较低 (30) 5.13 人才问题 (31)

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

锂离子动力电池的安全性问题分析Word版

锂离子动力电池的安全性问题分析 () 摘要:本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。 关键词:锂离子电池;安全性能;热稳定性;影响因素 Power type lithium ion battery safety problem analysis (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract:This article from the lithium ion battery materials and production process analysis of two aspects of influence of lithium ion battery safety performance factors, and further analysis of lithium ion battery safety problems. Key words:Lithium ion battery; Safety performance; Thermal stability; Influence factors. 0 引言 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池是最晚研究而商品化进程最快的一种高性能电池。锂离子电池以其独特的优势目前以成为各个领域广泛应用的新能源。锂离子电池具有电压高、比能量高、循环性能好等特点,越来越广泛应用发的3C市场领域、电动车(EV)和混合型电动车(HEV)市场领域、军事用途及空间技术领域。虽然,锂离子二次电池的安全性相对于金属锂二次电池有了很大的提高,但仍存在着许多隐患,比如:由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。根据Ph.Biensan等的研究证明:锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。因此对锂离子电池的研制和生产来说,电池的安全性不仅是指在各种测试条件下不出现冒烟、着火、爆炸等现象,最为重要的确保人员在电池滥用的条件下不受伤害。 1 锂离子电池的几代变革 第一代锂离子电池:负极:锂金属,工作电压高达3.7。由于直接以极其活跃的金属锂作为负极,安全隐患太大已经被淘汰。

新能源汽车动力电池成本拆解深度报告

新能源汽车动力电池成本拆解深度报告 投资要点 ◆模型框架: 动力电池的成本是市场关注的重点。新能源汽车行业仍在拐点之前,传统燃油车与电动汽车的成本差是新能源汽车渗透率增长的重要因素。为了定量研究动力电池成本,我们将电池成本和性能结合起来,建立了一个自下而上的模型。利用该模型可以静态地计算材料成本、硬件成本以及各工序的生产制造成本,并且可以动态地区分材料价格变化、技术进步、工艺改进等因素导致的成本下降。 ◆车辆及电池设计: (1)车辆设计:从用户需求出发,设计单车带电量/续驶里程及Pack内电芯/模组的数量和组合方式。 (2)材料层面:材料属性决定电池的电化学性能及物理参数。 (3)电芯设计:核心是确定正负极材料涂层的厚度,进而设计电芯的外形尺寸。 (4)模组及Pack设计:由电芯参数外推得出。 ◆物料成本: (1)物料用量:由电芯容量、活性材料克容量等参数计算出正/负极材料、电解液、隔膜、铜箔、铝箔及其他组件的理论用量,并根据良品率、材料利用率等进行调整。 (2)物料价格:根据市场价格做出假设,包括主/辅材及硬件。 (3)物料成本汇总:由物料用量和价格计算得出。 ◆生产成本: (1)工厂设计:对动力电池年产能、良品率、人员工资、设备折旧率、间接费用假设等做出假设。 (2)生产工序:主要是各工序的设备投资额及人员配置。 (3)直接人工/制造费用计算:根据设备折旧、人员工资费用及间接费用计算出结果。 ◆成本汇总及验证: 将物料成本和生产成本汇总到一起,得到动力电池Pack的成本。根据计算结果,LFP/NCM622/NCM523Pack的成本分别为0.66/0.76/0.80元/Wh,宁德时代2018年动力电池综合成本约0.76元/Wh;动力电池Pack成本中,直接材料占比约84%-89%,直接人工占比约2.8%-3.8%,制造费用占比约8.6%-11.8%,基本符合现实。 ◆投资建议 根据模型,降低动力电池成本的路径包括:更具性价比的材料体系;更精简的电池设计;更低的物料价格;工艺改进;设备改进。根据以上结论,建议关注:(1)宁德时

动力电池行业品牌企业宁德时代调研分析报告

动力电池行业品牌企业宁德时代调研分析报告

目录 宁德时代该用PE还是EV/EBITDA? (5) 经营性现金流亮眼,现金周期如何演绎? (8) 自我造血伊始,不可低估的利息收入 (13) 远期空间广阔,冉冉升起的锂电巨头 (16) 图表目录 图1:以PE衡量锂电产业链标的估值,宁德时代位于中枢偏上 (5) 图2:以EV/EBITDA衡量锂电产业链标的估值,宁德时代位于中枢偏下 (5) 图3:宁德时代有息负债较少,2019年中有息负债率约15%(亿元) (5) 图4:宁德时代货币资金持续增长,2019年中达到326亿元(亿元) (5) 图5:宁德时代机器设备平均折旧年限不到5年,远低于行业水平 (6) 图6:宁德时代历年归属净利润与当期折旧金额对比(亿元) (6) 图7:2018Q2以来宁德时代经营性现金流净额远大于净利润(亿元) (8) 图8:宁德时代营运资金自2018年以来净减少(亿元) (8) 图9:2018H2以来EV乘用车快速向高级别、长续航升级 (8) 图10:宁德时代、比亚迪几乎垄断高级别车型供应链(2018年数据) (8) 图11:产品差异化逐步凸显,龙头与行业其他企业产能利用率分化 (9) 图12:宁德时代存货中发出商品占比明显提升,库存商品占比相对下降 (9) 图13:宁德时代季度末预收账款持续增长(亿元) (9) 图14:宁德时代季度末应收账款及票据平稳增长(亿元) (9) 图15:宁德时代市场份额持续提升 (9)

图16:宁德时代季度末应付账款及票据逐步抬升(亿元) (9) 图17:宁德时代动力电池产能加速扩张,产能紧缺或将缓解 (10) 图18:美的集团营运资金净变动情况(亿元) (10) 图19:华域汽车营运资金净变动情况(亿元) (10) 图20:宁德时代应收款项周转天数低于其他动力电池公司 (11) 图21:宁德时代应付款项周转天数同样低于其他动力电池公司 (11) 图22:宁德时代存货周转天数明显低于其他动力电池公司 (11) 图23:产业链各环节集中度情况(根据2019Q2产销数据计算) (12) 图24:宁德时代逐步打造自身供应链的产业集群(未完全列示) (12) 图25:2018、2019H1宁德时代经营性现金流净额已经能够覆盖资本开支(亿元) (13) 图26:宁德时代未来几年资本开支估算(亿元) (14) 图27:宁德时代未来几年净利润与折旧估算(亿元) (14) 图28:根据现金流推算的宁德时代货币现金变动(亿元) (15) 图29:宁德时代历年利息收入及测算年化收益率水平 (15) 图30:宁德时代未来几年财务费用预测(亿元) (15) 图31:宁德时代快速实现国内客户的深度绑定以及海外客户突破 (16) 图32:动力电池行业龙头中期盈利、市占率及行业要素分析 (18) 图33:CATL中期毛利率及净利率趋势预测 (18) 表1:宁德时代各类固定资产折旧年限 (6) 表2:公司部分设备折旧年限变更前后对税前利润的边际影响(亿元) (7) 表3:宁德时代已规划及在建项目明细表(亿元) (13)

关于-锂离子动力电池组的成本分析

关于锂离子动力电池的成本分析 一、锂离子动力电池的目标市场 锂离子电池由于工作电压高、储能较大、无记忆性和质量轻等优势发展迅速,一直在移动通讯、笔记本电脑等电器上大量使用;近年来随着新能源汽车的推广,锂离子电池被认为是最有效的能量工艺装置;同时新能源(太阳能、风能)并网发电站项目建设步伐加快,锂电池组为代表的储能技术成为核心发展的对象。 针对电动汽车使用的电池以功率型电池为主,其特点是:电池的放电倍率很大,那么在设计过程中就要注意减小电池的内阻;在极片的选取上,高功率型的电池极片要厚些,在涂敷的厚度上,高功率型的电池极片要涂得薄些,这样锂离子和电子在电阻相对较大的电极活性物质上迁移的距离小,总内阻减小,可以支持大电流,以达到高功率的要求; 针对储能电池以能量型电池为主,其特点与功率电池相反。对于高能量型电池,放电的倍率较小,那么在综合考虑内阻和容量的时候可以把容量排在前面,当然在增大容量的过程中也要尽可能地减小内阻。 二、锂离子动力电池组的产业链状况

结合项目目前的状况,这里重点讨论电芯的成本情况,因为作为一个电池组(电池包),电芯是基础,多个电芯串并联组成电池组,多电池组串并联组成电池包,然后装在电动车上使用或做储能电源。而且其成本特性属于变动成本,后期电池组装过程中更多的与设备、软件等固定成本相关。电芯的关键是:正极(阴极)、负极(阳极)、电解液和隔膜。 三、锂离子电池的成本分析 1、正极(阴极)材料:锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因此正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前锂离子动力电池场上主要使用以下五种材料:

锂离子动力电池安全性问题影响因素

锂离子动力电池安全性问题影响因素... 影响动力电池安全性能的因素贯穿了一个动力电池从电芯选材到使用终结的生命周期的始终,因此原因复杂多样层次丰富。电芯材料本身,电芯的制造过程,电池集成中关于BMS(电池管理系统)和安全性方面的设计和使用工况都是锂离子电池安全性表现的影响因素。 在这些环节中,出现制造误差和滥用工况是无论如何也难以避免的,所以在这个现实条件下,对电池发生热失控的预案设计就显得尤其重要。本文通过对锂离子动力电池安全性能影响因素的梳理总结,以期为其在高能量/高功率领域的应用和研究提供可靠的依据。 1前言 锂离子电池因为其具备高能量密度,高功率密度和长使用寿命的特点,在化学储能器件中脱颖而出,现在在便携式电子产品领域已经技术成熟广泛应用了,如今在国家的政策支持下,在电动车领域和大规模储能领域的需求量也呈爆发式的增长。 锂离子电池在通常情况下是安全的,但是,时有安全性事故的报道呈现在公众面前。比较著名的有近几年的波音公司737 和B787飞机电池着火,比亚迪电动车起火,特斯拉MODEL S起火…这些锂离子电池安全性事故进入公众视野的最早时间可以追溯到4、5年以前。发展到现在,安全性仍然是制约锂离子电池在高能量/高功率领域应用的关键性因素。热失控不仅是发生安全性问题的本质原因,也是制约锂离子电池性能表现的短板之一。

锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期待BMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生, 但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面临的所有安全状况,所以,对其引发原因的分析和研究对一个安全可靠的锂离子电池来说仍然是必要的。 2电芯材料的选择 锂离子电池的内部组成主要为正极|电解质|隔膜|电解质|负极,在此基础上再进行极耳的焊接,外包装的包裹等步骤最终形成一只完整的电芯。电芯再经过初始的充放电,化成分容排气等步骤以后,就可以出厂使用了。这个过程的第一步,是材料的选择。影响材料的安全性因素主要是其本征的轨道能量、晶体结构和材料的性状。 正极材料 正极活性材料在电池中的主要作用是贡献比容量和比能量,其本征电极电势对安全性有一定的影响。例如,近年来,中国已经将低电压材料LiFePO4(磷酸铁锂)作为动力电池的正极材料广泛应用于交通工具(例如混合式动力车HEV,电动车EV)和储能设备(例如不间断电源UPS)中,但是LiFePO4在众多材料中所展现出来的安全性优势实际是以牺牲能量密度为代价的,也就是说会制约其使用者(如EV,UPS)的续航能力。而像NMC (LiNixMnyCo1-x-yO2)等三元材料虽然在能量密度上表现优异,但是作为动力电池的理想正极材料,安全性问题一直得不到完善

锂离子动力电池成组技术及其连接方法

锂离子动力电池成组技术及其连接方法 发表时间:2016-08-26T11:16:09.417Z 来源:《电力设备》2016年第12期作者:杨明[导读] 在混合动力汽车领域,动力电池技术将发展成我国乃至全世界的发展中心。 杨明 (上汽万向新能源客车有限公司)摘要:本文笔者结合工作经验分析了锂离子动力电池成组技术和连接方法进行分析,可供参考。关键词:锂离子;动力电池;连接工艺在未来几年时间内,新能源汽车领域的发展中心和发展方向为:在纯电动汽车领域,我国和世界的技术发展步伐将差不多保持同步,电池材料问题将成为以后发展过程中务必要解决的重点问题;在混合动力汽车领域,动力电池技术将发展成我国乃至全世界的发展中心。大家都知道,锂离子动力电池是以电池包的形式被广泛地运用到新能源电动车内,动力电池模组是依靠多种单体电芯串联并联组装构成的,单体电芯间的加固和连接要求连接电池和片的极柱的接触电阻小、稳固、能成功抵御振动。实际上,锂离子动力电池的质量比能量密度、体积功率密度以及体积能量密度都和动力电池系统内部单体电池间的连接工艺和结构存在着巨大关联性,本文将简单地介绍锂离子动力电池的连接方法和成组方法。 一、不同极柱类型电池的连接工艺动力电池系统在成组的过程中,单体电芯间连接片的连接通常需借助电阻焊、激光焊、螺栓机械紧固。每一颗电芯间连接的紧实性与统一性都会对整车安全以及整体电池模组能量的发挥起到重大的影响。 1.外螺纹极柱型电池 外螺纹极柱型电池一般选取螺栓螺母进行机械紧固,单体电池间一般运用机械锁紧的连接技术。如此,能增加组装的灵便性,但也会导致外螺纹极柱的组装空间远远超过其他极柱,从某种意义上讲其会影响到体积能量密度。螺母或者螺栓机械锁紧是指依靠螺母把带螺纹极柱和连接片拧紧固定,以免出现松动。在连接防松设计方面,其涵盖了机械防松、摩擦防松以及永久防松三种。 通常而言,机械防松可选取销子防松、槽形螺母防松以及止动垫片防松等;摩擦防松可选取自锁螺母防松以及弹簧垫片防松等;永久防松可采取螺纹紧固胶防松等。在实践过程中,若想便于后期更换或者拆卸电池,则应运用机械防松方式。在验证其抗震动性等性能后,确认符合标准才可投用。对于外螺纹极柱型电池,新型结构的大容量圆柱型电池,其极柱留有用于激光焊接的平台的同时,平台上方又有外螺纹极柱,用激光焊接连接片的同时,又用螺母通过螺纹极柱对连接片拧紧固定,再用特别设计的保护支架对电池固定。其组装工艺如下:一种圆柱动力锂离子电池的成组组装工装,包括设置在多个排列在一起的单个电池极柱之间的保护支架。保护支架整体为上表面为方形平面,且四周均匀设置有4根支柱,该保护支架的方形平面正中间设置有长方形固定卡槽,任意对称的2边设置有卡座且个数相同,剩余对称的另外2边设置有卡扣个数也相等。该工艺具有结构简单、稳定耐用、生产能力强、原料易于加工的优点,有效克服了市场上电池组连接容易松动、结构不稳定、连接易脱落、制作成本高、生产效率低的缺点。以上这种利用圆柱锂离子电池成组组装的方法。3个排列在一起的单个电池组装成电池组后,将保护支架正中间设置的长方形固定卡槽分别直接卡入电池的正、负极柱上,保护支架卡槽和电池极柱嵌合在一起,保护支架之间通过卡座与“工”型拼装卡扣连接;最后可以将多个排列在一起的单个电池组装成电池组。锂离子电池的成组组装的方法,连接简单,而且连接后能一直保持电池固定状态,连接片与极柱的接触紧配,能保证电路一直处于低内阻状态。 2.平头型极柱电池 平头型极柱的电池一般选取电阻焊焊接的方式,电阻焊是借助工件组合的方式,以电级施加压力,运用接头的接触面与附近范围形成的热,加热焊接接触点,直至其达到熔化或者塑性状态,再把工件组合焊接至一块的焊接工艺。电阻焊的优势在于其在组装动力电池模组的过程中,以连接片并联或者串联单体电池,再借助电阻焊使连接片被焊接至电池极端上面,组装工序较为便捷。在焊接过程无需加入辅助性焊接材料,通过批量生产的方式促使机械自动化的目的得以实现,其设备本成本要少于激光焊机。动力电池模组的电芯间选取电阻焊焊接加固的方式,待该项工作完成后,会大大提高电池模组的体积能量密度以及质量能量密度。其缺陷在于电池间的连接片材料需受限,铝焊接作用达不到预期效果、后期更换拆卸单个电池难度大等。平头型极柱的电池也可采用激光焊接连接。激光焊是利用高能量的激光脉冲对工件需要加工区域进行局部加热。激光辐射的能量通过热传导向材料内部扩散,将材料熔化后形成特定熔池来完成焊接的目的。该工艺主要具有以下一些优点:①在组装动力电池模组时,激光焊接的焊接精度高、强度高、焊接效率高;②在大批量组装生产时,更易于实现自动化生产,保证产品的一致性和质量;③凭借激光焊焊接的优势,电芯之间串联或并联的连接片都可用铝材质代替铜连接片,如此可以提高焊接效率,焊接强度,减少生产材料成本,减轻电芯模组质量,进一步提高整车电芯模组的能量密度。而缺点主要为:①连接片与电池焊接处的平整度要求高,焊接夹具需高精度满足焊接精度要求;②设备比较昂贵。 3.条型极耳的聚合物电池(电芯)目前聚合物电芯的连接工艺,主要有焊接与不焊接(机械压紧接触式)的2种方式。 (1)悍接 焊接涵盖了锡焊与激光焊两类。因动力电池组面积大,超声波焊头位置不易碰触,因此很少运用超声波焊接,相较而言,激光焊接更为妥当。锡焊的高温工艺的运用在某种程度上会使聚合物电芯极耳处的密封增加风险,因锡的比重大导致电池组的质量的进一步提升。总之,不管是采取锡焊还是激光焊成组工艺,均对单体电池的更换不利。 (2)不焊接(机械压紧接触式)

锂离子动力电池安全性及解决方法通用范本

内部编号:AN-QP-HT391 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 锂离子动力电池安全性及解决方法通 用范本

锂离子动力电池安全性及解决方法通用 范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 在新能源汽车发展过程中,除价格高、续驶里程短和充换电基础设施不足外,动力安全性是消费者和专业人士关注的重点。这个问题也影响到了动力电池比能量的提升。 “发展防短路、防过充、防热失控、防燃烧及不燃性电解液是应对动力电池安全性的关键。”武汉大学艾新平教授在上海举行的第14届中国国际工业博览会新能源汽车产业发展高峰论坛上强调。 锂离子动力电池不安全行为的发生机制 艾新平分析指出,锂离子动力电池除了正

2018年动力电池行业分析报告

2018年动力电池行业 分析报告 2018年1月

目录 一、动力电池行业属性:产品有差异性,马太效应明显 (5) 二、需求:导入期向成长期切换,政策是核心影响因素 (6) 1、需求总量:导入期向成长期切换,短期看政策,中长期看“平价” (6) 2、需求结构:2017年完成动能切换,乘用车成需求主力 (9) 3、品质需求:高能量密度低成本是产品的必然要求 (11) 三、供给:产能过剩局面无损长期发展前景 (12) 1、2014-2016年电池产能快速扩张,产能过剩局面已成 (12) 2、阶段性过剩:扩产周期与需求增长错配,当前供给大于需求,但小于远景 需求 (13) 3、结构性过剩:磷酸铁锂过剩,高端三元不足 (15) 四、产业链格局:份额加速集中,多寡头格局已具雏形 (16) 1、自配套模式难以复制,整车厂商将走合资或外购道路 (16) 2、份额日趋集中,话语权向龙头电池厂转移 (18) 3、电池企业争份额,整车企业拓渠道,寡头格局最稳定 (19) 五、盈利能力:成本价格双向挤压,毛利率下行压力大 (21) 1、价格:价格下降是长期趋势,下降速度由短期供需决定 (21) 2、成本:制造成本下降,原材料成本短期坚挺 (22) 3、毛利率:行业毛利率总体下滑,优势企业彰显竞争力 (23) 六、2018年展望:电池环节竞争激烈,龙头扩产仍将持续 (23) 1、量价均有压力,电池企业分化加剧 (23) 2、整合与扩产并进,抓住绑定电池龙头的产业链上游 (24) 七、行业重点企业简析 (25) 1、CATL-宁德时代 (25) 2、比亚迪 (26) 3、国轩高科 (29)

锂离子动力电池使用与维护保养手册.pdf

锂离子动力电池使用与维护保养手册 —电动汽车用锂离子电池 编制审核批准生效日期 华晨鑫源重庆汽车有限公司新能源事业部 目录 1.重要安全说明 (1) 2.相关介绍 (2) 2.1术语和定义 (2) 2.2锂离子电池工作原理 (3) 2.3锂离子电池为什么需要保护电路 (4) 3.充电 (6) 4.放电 (7) 5.存储 (8) 6.运输 (9) 7.常见问题及处理方法 (10) 8.维护 (11)

11.1日常维护......................................................... - 9 - 11.2定期保养 (11) 11.3维护与保养记录 (12)

1、重要安全说明 1.保证电池或电池组远离危险物品或危险材料,如具有腐蚀性的化学品、危险的机械设 备、高温环境等; 2.不合理的使用该系列产品可能导致冒烟,如外部短路、过充电、过高的环境温度等。 若发生冒烟的情况,请及时切断电源,使用二氧化碳或干粉灭火器进行处理,并用沙土或泥土掩埋。整个过程中必须及时疏散人群并及时报警(若必要时); 3.不合理的使用该系列产品可能导致单体电池鼓胀,严重时可能导致塑料外壳破裂或产 生裂纹,此时应立即停止使用该电池,请及时联系我公司相关技术部门或售后服务部门以获得处理方法; 4.禁止拆卸、挤压、穿刺、高温搁置或烘烤电池,避免电池受到过高幅度的震动、外力 冲击、高处跌落等,此操作可能导致人身伤害或财产损失; 5.禁止直接把电池的正负极短路,避免有电池极柱压紧螺栓和导电带之外的任何金属或 其他导电物体接触电池的正极和负极,此操作可能导致人身伤害或财产损失; 6.禁止将电池暴露或长期搁置在60℃以上的环境中,禁止试图加热或将电池投入火中, 此操作可能导致人身伤害或财产损失; 7.禁止在没有安装合理的充电保护装置(锂离子电池保护线路板、电池管理系统等)或 使用非环宇认可的充电设备(充电器、直流电源等)的情况下对电池进行充电,此操作可能导致人身伤害或财产损失; 8.禁止将电池浸入到水或其他导电的液体中,此操作可能导致人身伤害或财产损失; 9.禁止儿童和其他缺乏锂离子电池安全使用知识的人使用本系列产品,此操作可能导致 人身伤害或财产损失;

储能电站成本与效益比较分析哪种电池更为经济

储能电站成本与效益比较分析哪种电池更为经济? 2017-02-07 09:25:44 关键词:储能电站电池技术储能市场 现以三种不同电池,按照500kW-8h(4000kWh)储能电站,分别比较储能电站成本与效益。见下表1~表2。

表1 三种不同电池储能电站参数表 对表1的参数说明如下: 铅碳电池使用放电深度为60%DOD,所以4000kWh储能电站电池容量需要按照4000kWh/0.6=6667kWh配置; 锂电池使用放电深度为90%DOD,电池容量按照4000kWh/0.9=4445kWh 配置; 动力电容电池使用放电深度为90%DOD,但电池容量有约11.6%裕度,故电池容量按照4000kWh配置。 需要更换电池次数,是按照储能系统每天充放电1次,电池循环次数10000次计算,累计折合运行27年;锂电池和铅碳电池循环次数3000次,需要更换电池3次。

表2 储能电站投资成本与效益比较表 上表2用以下参数计算储能电站投资成本与效益: 商业峰谷电价差,按照以北京1.01元/KWh计算; 储能系统每年电价差收益按照365天计算; 储能系统累计收益年份按照电池使用循环次数10000次计算,为27年。从上表2看,以全寿命使用周期27年计算,有如下结论: 动力电容电池每度电储能成本最低,其次是铅碳电池和锂电池; 动力电容电池储能系统累计总收益高于铅碳电池储能系统; 动力电容电池系统设备累计投资最低,其次是铅碳电池和锂电池。

动力电容电池系统设备初始投资最高,其次是锂电池和铅碳电池。 4000kWh不同电池所建成的储能电站主要存在一下几点差异: 1.由于动力电容电池的充放电效率高, 所以在相同的功率下动力电容电池的配置容量是最小的,起到了节约资源的作用。 2.铅碳电池的每千瓦时电池价格最低,其次是锂电池;动力电容电池每千瓦价格最高。动力电容电池比铅碳电池高5倍多。 3.动力电容电池的循环次数是铅碳电池和锂电池的3倍多。所以在储能电站的27年的使用时间内动力电容电池不需要更换电池,而铅碳电池和锂电池需要更换至少3次以上的电池。 4.动力电容电池的全寿命周期每度电储能成本比铅碳电池、锂电池低很多。 基于以上优势,动力电容电池一定会在储能领域得到广泛应用。 现在常用的化学储能电站主要以锂电池储能电站和铅碳电池储能电站为主。近几年由于国家对与化学储能电站的重视虽然取得了一些进展,但是也暴露出了一系列问题,其中主要阻碍化学储能电站的推广的原因则是没有一种符合人们要求的电池。于是在社会的热切期盼之下动力电容电池应运而生。 西安德源纳米储能技术有限公司是电力储能电站、储能电源、后备电源、纯电动汽车与混合动力汽车动力电容电池集成设备、不间断电源、应急电源、充电设备、动力电容电池集成设备、电池管理系统的研究开发、生产、销售为一体的高新技术企业。其推出的动力电容电池具有:安全性好、寿命超长、适温性宽、优化设计、充电快速、环保高效、电池回收等七大优势。 安全性好优势:动力电容电池通过了挤压、针刺、短路、加热、震动等安全测试,电池不燃烧、不爆炸。

锂电池行业分析研究报告

锂电池行业分析 目录 一、锂电池概述 (2) 1、锂电池构成 (2) 2、锂电池产业链 (2) 二、锂电池行业生命周期 (3) 三、锂电池行业市场现状 (4) 1、3C 类产品锂电池市场 (4) 2、新能源汽车锂电池市场 (4) 四、锂电池主要材料行业市场现状 (5) 1、正极材料 (6) 2、负极材料 (8) 3、隔膜材料 (10) 4、电解液 (10) 五、锂电池材料技术特点及技术趋势 (11) 六、动力电池市场前景 (12) 1、国家对汽车动力电池的产能门槛要求 (12) 2、动力电池技术发展路线 (13) 3、纯电动汽车发展 (13) 4、锂电池的竞争格局 (14)

一、锂电池概述 1、锂电池构成 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充 电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 2、锂电池产业链 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。

波特五力模型分析动力锂电池行业及其战略群组概要

动力锂电池,是以锂离子电池为材料的一种高能量密度电池。磷酸铁锂具有很好的安全性能,因而是目前最理想的动力汽车用锂电正极材料。我国车企推出的纯电动车车型中,动力电池均为锂电池,奇瑞、比亚迪使用的均是磷酸铁锂。磷酸铁锂是引发锂电革命行业的一种新兴材料,是锂电池行业发展的最前沿。 下面将用波特五力模型分析动力锂电池行业: (一新进入者的威胁 新进入者在给行业带来新生产能力、新资源的同时,将希望在已被现有企业瓜分完毕的市场中赢得一席之地,这就有可能会与现有企业发生原材料与市场份额的竞争,最终导致行业中现有企业盈利水平降低,严重的话还有可能危及这些企业的生存。 磷酸铁锂行业有一定的门槛,不是谁来做就会做成功的,尤其是材料领域,技术壁垒很高,可以避免太多的竞争。作为新进入这个产业的企业,选择做材料可能要比做电池更为明智,因为现有的一些锂电池厂商很多,尤其是大厂的地位很难撼动,他们切入到磷酸铁锂电池更具优势。 由于制造动力电池涉及到电芯的组合,必须保证电芯的一致性,这样对电池的生产设备提出了更高更专业的要求,所以设备资金投入很大,一般来说,建设一条磷酸铁锂电芯生产线至少需要5000万元的启动资金。创业企业在进入这一领域有一定的 难度,传统的电池生产企业将具有较大的优势。 (二供应商的议价能力 供方主要通过其提高投入要素价格与降低单位价值质量的能力,来影响行业中现有企业的盈利能力与产品竞争力。 锂离子电池的性能主要取决于正负极材料,其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。磷酸铁锂正极材料做出大

容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点。 目前磷酸铁锂材料全球可查的产能是1500吨,如果按照未来5年内年产100万辆电动汽车的需求,每年就需要6万吨磷酸铁锂,潜在的供需缺口非常大,锂电池原材料之一是电解液,电解液约占锂电池成本12%,毛利率约40%,是锂电 产业链中盈利能力较强的环节之一。目前全国产能约 1.8万吨,供需基本平衡。 我国磷酸铁锂原材料丰富,价格低廉,这对于磷酸铁锂产业是一个极大的利好。 (三购买商的议价能力 购买者主要通过其压价与要求提供较高的产品或服务质量的能力,来影响行业中现有企业的盈利能力。 (1目前中国大陆锂电池产业正处于优胜劣汰的发展过程,唯具有技术和品牌优势的厂家,才有机会获得更大的市场空间。 (2电芯生产由于生产工艺和技术相对成熟,在有稳定的正极材料货源情况下,国内大部分锂离子电池厂商均能生产出磷酸铁锂电芯。 (四替代品的威胁 两个处于不同行业中的企业,可能会由于所生产的产品是互为替代品,从而在它们之间产生相互竞争行为,这种源自于替代品的竞争会以各种形式影响行业中现有企业的竞争战略 随着补贴和充电便利性的解决,新能源汽车市场将出现爆发式增长,而随着新能源汽车规模的迅速扩大,对动力电池、电机、电控等的需求也将显著增加,这有望成为未来10年行业增长的核心驱动因素。这其中,动力电池的性能对新能源汽车的发展

相关主题
文本预览
相关文档 最新文档