当前位置:文档之家› 第六章 势流理论

第六章 势流理论

第六章 势流理论
第六章 势流理论

第六章势流理论

课堂提问:

为什么上弧旋与下弧旋乒乓球的应对方法不同?

本章容:

1.势流问题求解的思路

2.库塔----儒可夫斯基条件

3. 势流的迭加法

绕圆柱的无环绕流,绕圆柱的有环绕流

4.布拉休斯公式

5.库塔----儒可夫斯基定理

学习这部分容的目的有二:

其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。

其二,明确两点重要结论:

1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。

2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。

本章重点:

1、平面势流问题求解的基本思想。

2、势流迭加法

3、物面条件,无穷远处条件

4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位

置,流线图谱,升力,阻力,环流方向等。

5、四个简单势流的速度势函数,流函数及其流线图谱。

6、麦马格鲁斯效应的概念

7、计算任意形状柱体受流体作用力的卜拉修斯定理

8、附加惯性力,附加质量的概念

本章难点:

1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。

2.任意形状柱体受流体作用力的卜拉修斯定理

3.附加惯性力,附加质量的概念

§6-1 几种简单的平面势流

平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的

分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如:

1)绕一个无穷长机翼的流动,

2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面流动。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。这一近似方法在船舶流体力学领域称为切片理论。 一、均匀流

流体质点沿x轴平行的均匀速度Vo ,

V x=V o , V y =0

平面流动速度势的全微分为

dx V dy V dx V dy y

dx x d y x 0=+=??+??=

???

积分: φ=Vox (6-4)

流函数的全微分为,

dy V dy V dx V dy y

dx x d o x y =+-=??+??=

ψψψ 积分: ψ=Vo y (6-5)

由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线。 等势线:x=const ,一组平行于y轴的直线。 均匀流的速度势还可用来表示平行平壁间的

流动或薄平板的均匀纵向绕流,如图6-4所示。

图6-4

二、源或汇

平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。

设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q

2πrvr=Q

∴vr=Q/2πr (6-6)

在直角坐标中,有

x y V y

x V y x ??-

=??=??=??=

ψ?ψ?

在极坐标中有:

r r s V r s r V s r ??-

=??=??=??=??=??=

ψθ??θψψ?11 (6-7) 极坐标中φ和ψ的全微分:

θ

πψπ?θ

π

θθθψψψπθθθ???2ln 222Q r

Q d Q d rV dr V d dr r d dr r Q d rV dr V d dr r d r s s r ===+-=??+??==+=??+??=

(6-8)

流线:为θ=const ,从原点引出的一组射线;等势线为r=const ,就是和流线正交的一组

同心圆。

由(6-6)式可看出,当Q>0,则vr>0,坐标原点为源点; 如果Q<0,则vr<0,流体向原点汇合,

图6-7 扩大壁面和源的互换性乃是汇点。 源(汇)的速度势,还适用于扩大(收缩), 渠道中理想流体的流动。

图6-7

三、偶极子

偶极流:流量相等的源和汇无限靠近,且随着其间距δx→0,其流量Q→∞,且Qδx→

M(δx→0) (6-9)

则这种流动的极限状态称为偶极子,M称为偶极矩。 用迭加法求φ和ψ。

)ln (ln 22121r r Q

-+

+=π

??? 由图6-8 (a)所示: 121cos θδx r r +≈

因此

)cos 1ln(2cos ln 2ln 2)ln (ln 22

22

2

22

1

2121r x Q

r x r Q r r Q r r Q θδπθδπππ???+=

+==-+

+=

图6-8 (a)

式中z=δxcosθ1r2是个小量,我们利用泰劳展开式

将φ展开并略去δx二阶以上小量得

当δx→0时,Qδx→M,θ1→θ,r2→r。其中r,θ为A点的极坐标,这样便可从 上式得到偶极子的速度势为

(6-10)

直角坐标有

2

22y x x

M +=

π? (6-11)

对于流函数: )(2)(22121δθπ

θθπψψψQ Q =-+

+= 图6-8(a)三角形BCD:r2δθ=δxsinθ1,有

2

1

sin r x θδδθ=

所以 2

sin 2r x M θ

δπψ=

nθr2当δx→0时,Qδx →M,r2→r,θ1→θ,所以

r

M θ

πψsin 2-

= (6-12)

直角坐标有 2

22y x y

M +-

=πψ (6-13)

令ψ=C 即得流线族: c y

x y

M =+-

2

22π 或

12

2c y x y

=+

即 01

2

2=-

+c y

y x 配方后得 21

212

41

)21(c c y x =-+ (6-14) 图6-10(b) ?

???-+-=+3

2)1ln(3

2z z z z r

M θπ?cos 2=

2

1cos 2r x Q θδπ?

图6-8(b )

流线:圆心在y轴上与x 轴相切的一组圆,如图6-10(b)中的实线。流体是沿着上述的圆周,由坐标原点流出,重新又流入原点。

等势线:中心在x轴上与y轴相切的一组圆,并与ψ=const 正交,如图6-8(b)中的虚线。偶极子是有轴线和有方向:源和汇所在的直线就是偶极子的轴线,由汇指向源的方向,就是偶极轴的方向,偶极子的方向是x轴的负向。 四、点涡(环流)

流场中坐标原点处有一根无穷长直涡索,方向垂直于平面xy平面,与xy平面的交点为一个点涡。点涡在平面上的诱导速度沿着以点涡为中心的圆周的切线方向,大小与半径成反比,即

2=Γ=

r s v r

v π (6-15)

极坐标下: θπ

θ?d rd v dr v d s r 2Γ

=+= 积分得:

θπ

?2Γ

=

(6-16) 流函数 dr r

rd v dr v v d r r s πθψ2Γ

-=+-=

积分: r ln 2π

ψΓ

-= (6-17)

流线:ψ=const 就是r=C,即一组以涡点为中 心的同心圆, 如图6-9所示。

注意:Γ>0对应于反时针的转动,

Γ<0对应于顺时针的涡旋。 §6-3 绕圆柱体的无环量流动,达朗贝尔谬理 势流迭加法:

均匀流、源汇、偶极子、点涡这样一些几种简单的势流,具有可迭加性。将它们之中的两个或两个以上迭加起来,在用物面边界条件来控制,会获得有实际意义的结果。

绕圆柱体的无环流流动就是一个典型的实例。 理想流体的边界条件:

1) 无穷远条件(远场条件)

r=∞,

==y x v v v θ

或r=∞,

sin cos r r v v v v θθθθ

=-=

2)物面条件(近场条件):r=r0,vn=vr=0 称为不可穿透条件 零流线: r=r0处ψ=0是一条流线。

圆柱在静止无界流体中作等速直线运动 = 均匀流动+ 偶极子流动

均匀流和偶极子迭加后的速度势和流函数为:

1202MCos v rCos r

θ

???θπ=+=+

( 6-18)

1202MSin v rSin r

θψψψθπ=+=-

(6-19)

观察ψ=0这条流线,由(6-19)式,我们有: 0)2(0=-

r

M

v Sin πθ 若sinθ=0,有θ=0或π,因此ψ=0的流线中有一部分是x轴; 若v0r-M2πr=0,020=-r

M

r v π 即r2=M2πv0,02

2v M r π=

200

2r v M

=π, 就有r=r0, 即r=r0的圆周也是ψ=0的流线的一部分,如图6-10所示。

验证边界条件,将2

002r v M π=代入φ,有

)(cos 2

00r

r r v +=θ? (6-20) 速度

)

1(sin 1)

1(cos 22002200r

r v r v r r v r v r +-=??=-=??=θθ?

θ?

θ (6-21) 图6-10

当r→∞,从上式可得

θ

θθsin cos 00v v v v r -==

当r=r0时,vr=0

这就证明了均匀流和偶极子迭加的速度势,满足绕圆柱体无环流流动的远场和近场的边界条件,当r≥r0的流动与均匀流绕圆柱的流动完全一样。

设想把均匀流加偶极子的流动图案中r<r0的那一部分去掉(不感兴趣),而在其中充实以一个r=r0的圆柱体,对流场流动不会有任何影响。 圆柱表面上速度分布:

r=r0时:

θ

θsin 200v v v r -== (6-22)

负号表示其方向与s 坐标轴方向相反, 如图6-10

驻点位置:

A,C两点θ=π或0,vs=0称为驻点或分流点。

对B,D两点: 022

v v μ=±

=θπ

θ (6-23)

B,D两点:速度达到最大值,等于来流速度v0之两倍,与圆柱体半径无关,

B,D两点:速度增至2v0,达最大值。然后又逐渐减小,在C点汇合时,速度又降至零。离开C点后,又逐渐加速,流向后方的无限远处时,再恢复为v0。

圆柱表面上压力分布:

运动是定常,设无穷远均匀流中的压力为p0,忽略了质量力,拉格朗日方程

2

2

2

002

v p v p ρρ+

=+

将园柱表面上速度分布代入,即得圆柱表面上压力分布 )sin 41(2

22

00θρ-=

-v p p (6-24)

物面上的压力分布定义: 200

2

1v p p C p ρ-=

(6-25)

由(6-24)式可得 θ4

sin

41-=p C (6-26)

压力分布既对称于x轴也对称于y轴,见图6-11(a)。 A,C两点压力最大cp=1

B,D两点压力最小cp=-3 (6-27) 沿ψ=0这条流线压力变化为:

左方无限远处,cp=0,流到A点时压力为极大值cp=1。由A点分为两支分别流向B,D点,压力逐渐减小为极小值cp=-3。流向C点时压力逐渐增大,C点达极大值cp=1。由C点流向右方无限远处,压力又再次减小,最后压力重新降至p0,cp=0。

(a)理想流体;(b)真实流体

图6-11

因为其压力分布对称于x轴,显然合力在y轴上的分力L(升力)为零;同样,因其

数据库原理与应用》期末试题及其答案

一.单项选择题(每小题1分,共10分) 1.要保证数据库逻辑数据独立性,需要修改的是 A.模式 B.模式与内模式的映射 C.模式与外模式的映射 D.内模式 2.下列四项中,不属于数据库特点的是( ) A.数据共享 B.数据完整性 C.数据冗余很高 D.数据独立性高 3.学生社团可以接纳多名学生参加,但每个学生只能参加一个社团,从社团到学生之间的联系类型是( ) A.多对多 B.一对一 C.多对一 D.一对多 4.反映现实世界中实体及实体间联系的信息模型( ) A.关系模型 B.层次模型 C.网状模型 D. E-R模型 5.对数据库并发操作有可能带来的问题包括( ) A.读出“脏数据” B.带来数据的冗余 C.未被授权的用户非法存取数据 D.破坏数据独立性 6.关系数据模型的三个组成部分中,不包括( ) A.完整性规则 B.数据结构 C.数据操作 D.并发控制 7.SQL语言的REVOKE语句实现下列哪一种数据控制能 A.可靠性控制 B.并发性控制C安全性控制D完整性控制 8.事务有多个性质,其中不包括( ) A.一致性 B.唯一性 C.原子性 D.隔离性 9.SQL语言通常称为( ) A.结构化查询语言 B.结构化控制语言 C.结构化定义语言 D.结构化操纵语言 10.如何构造出一个合适的数据逻辑结构是( )主要解 决的问题。A.关系数据库优化 B.数据字典C.关系数据库规范化理论 D.关系数据库查询 1.在数据管理技术的发展过程中,经历了人工管理阶段、文件系统阶段和数据库系统阶段。在这几个阶段中,数据独立性最高的是____阶段。A.数据库系统 B.文件系统 C.人工管理 D.数据项管理 2.对关系模型叙述错误的是____。 A.建立在严格的数学理论、集合论和谓词演算公式的基础之上B.微机DBMS绝大部分采取关系数据模型C.用二维表表示关系模型是其一大特点D.不具有连接操作的DBMS也可以是关系数据库系统 3.关系运算中花费时间可能最长的运算是____。A.投影 B.选择 C.笛卡尔积 D.除 4.假定学生关系是S(S#,SNAME,SEX,AGE),课程关系是C(C#,CNAME,TEACHER),学生选课关系是SC(S#,C#,GRADE)。要查找选修“COMPUTER”课程的“女”学生姓名,将涉及到关系____。 A.S B.SC,C C.S,SC D.S,C,SC

数据库基本概念

数据库基本概念 引言 本章的目标是讲解数据库研究人员常常要使用到的一些理论和术语。我所在的工作组集中了一批以开发性能优异的数据库系统为谋生手段的精英,数据库理论乍看起来与我们的具体工作相距甚远。 是否很有必要学习有关数据库理论方面的知识可能是留给你思考的一个问题。我们说,理解一种技术的基本原理是非常重要的。这就好比把你的汽车交给一个不懂火花塞工作原理的机械师,或是坐在一架由不懂飞行理论的驾驶员的飞机上。如果你不懂数据库设计的相关理论,又怎能指望用户登陆门请你设计系统呢? 研究人员所用的某些术语和概念令我们感到困惑,部分原因是数学基础的问题。有一些术语,大多数程序员理解为一种含义,而实际上是完全不同的另一种含义。为了能设计合理的系统,了解关系数据库理论是十分重要的。 为了搞清楚研究人员的专业术语,我们需要学习一些关系数据库理论中较浅显的内容,并且同我们所熟知的SQL概念进行比较。许多书中都讲解了这些内容,所以并不打算过于深入地探讨理论。我们只提供一些基本且实用的数据库概念。 本章将主要从面向SQL的角度介绍关系理论。我们将常常涉及相关理论的具体实现,尽管这超出了本书的范围,但却是难以避免的。然而我们不会陷入实现的细节,仅仅给出一个概述。更进一步的内容,参看第一章提到的参考书目。 在本章中,我们将会看到下列内容: ?关系模型——考察相关的技术术语:我们将在后面的章节中构造它们 ?其他数据库概念的定义 关系模型 正像第1章中提到的,E.F.Codd早在1970年就提出了关系模型的概念。在这一节中,我们将从SQL Server 的角度出发,考察一些在关系模型中比较重要的内容。 正像我们所看到的那样,SQL Server 与关系模型有很多共性的东西,但

流体力学第五章

一、名词解释 1.边界层:黏性流体流经固体壁面时,在固体壁面法线方向上存在一速度急剧变化的薄层,称为边界层。 2.管道进口段:边界层相交以前的管段称为管道进口段(或称起始段),其长度以L*表示。 3、粘性底层:紧贴壁面有一因壁面限制而脉动消失的层流薄层,其粘滞力使流速使流速急剧下降,速度梯度较大,这一薄层称为粘性底层。 二、简答题 1:何谓普朗特混合长理论?根据这一理论紊流中的切应力应如何计算? 答:沿流动方向和垂直于流动方向上的脉动速度都与时均速度的梯度有关。 2:什么是水力光滑管与水力粗糙管?与哪些因素有关? 答:当粘性底层厚度大于管壁的粗糙突出部分时,粘性底层完全淹没了管壁的粗糙突出部分。这时紊流完全感受不到管壁粗糙度的影响,流体好像在完全光滑的管子中流动一样。这种情况的管内流动称作“水力光滑”,或简称“光滑管”。 当粘性底层厚度小于管壁的粗糙突出部分时,管壁的粗糙突出部

分有一部分或大部分暴露在紊流区中,当流体流过突出部分时,将产生漩涡,造成新的能量损失,管壁粗糙度将对紊流产生影响。这种情况的管内紊流称作“水力粗糙”,或简称“粗糙管”。 对于同样的管子,其流动处于水力光滑或水力粗糙取要看雷诺数的大小。 3、黏性流体总体的伯努利方程及适用条件? 黏性流体总体的伯努利方程:g g g g v p z v p z a a 222 222221111ααρρ++=++ 适用条件:⑴流动为定常流动; ⑵流体为黏性不可压缩的重力流体; ⑶列方程的两过流断面必须是缓变流截面,而不必顾及两 截面间是否有急变流。 4、黏性流体在管内流动时产生的损失有哪几种?分别怎么计算? 答:沿程损失是发生在缓变流整个流程中的能量损失,是由流体的粘滞力造成的损失。单位重力作用下流体的沿程损失可用达西—魏斯巴赫公式计算。g d l v h f 22λ=。 局部损失发生在流动状态急剧变化的急变流中,单位重力作用下流体流过某个局部件时,产生的能量损失:g v h j 22ζ =。 总能量损失:∑∑+=h h h j f w 5、试从流动特征、速度分布、切应分布以及水头损失等方面来比较圆管中的层流和紊流特性。

第五章漩涡理论基础

第五章不可压缩流体的二维流动 引言:在前面几章主要讨论了理想流体和黏性流体一维流动,为解决工程 实际中存在的一维流动问题打下了良好的基础。本章讨论理想不可压流体的二维有势流动以及二维黏性流体绕物体流动的基本概念。 第一节有旋流动和无旋流动 刚体的运动可分解为移动和转动两种运动形式, 流体具有移动和转动两种运动形式。另外,由于流体具有流动性,它还具有与刚体不同的另外一种运动形式,即变形运动(deformationmotion)。本节只介绍流体旋转运动即有旋流动(rotation—alflow)和无旋流动(irrotational flow)。 一、有旋流动和无旋流动的定义 流体的流动是有旋还是无旋,是由流体微团本身是否旋转来决定的。流体在流动中,如果流场中有若干处流体微团具有绕通过其自身轴线的旋转运动,则称为有旋流动,如果在整个流场中各处的流体微团均不绕自身轴线的旋转运动,则称为无旋流动。 强调“判断流体流动是有旋流动还是无旋流动,仅仅由流体微团本身是否 绕自身轴线的旋转运动来决定,而与流体微团的运动轨迹无关。” 举例虽然流体微团运动轨迹是圆形,但由于微团本身不旋转,故它是无旋流动;在图5—1(b)中,虽然流体微团运动轨迹是直线,但微团绕自身轴线旋转,故它是有旋流动。在日常生活中也有类似的例子,例如儿童玩的活动转椅,当转轮绕水平轴旋转时,每个儿童坐的椅子都绕水平轴作圆周运动,但是每个儿童始终是头向上,脸朝着一个方向,即儿童对地来说没有旋转。 二、旋转角速度(rotationalangularvelocity) 为了简化讨论,先分析流体微团的平面运动。如图5—2所示有一矩形流体微团ABCD在XOY平面内,经丛时间后沿一条流线运动到另一位置,微团变形成A,B,C,D。

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

第六章 势流理论

第六章势流理论 课堂提问: 为什么上弧旋与下弧旋乒乓球的应对方法不同? 本章内容: 1.势流问题求解的思路 2.库塔----儒可夫斯基条件 3. 势流的迭加法 绕圆柱的无环绕流,绕圆柱的有环绕流 4.布拉休斯公式 5.库塔----儒可夫斯基定理 学习这部分内容的目的有二: 其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。 其二,明确两点重要结论: 1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。 2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。 本章重点: 1、平面势流问题求解的基本思想。 2、势流迭加法 3、物面条件,无穷远处条件 4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位 置,流线图谱,升力,阻力,环流方向等。 5、四个简单势流的速度势函数,流函数及其流线图谱。 6、麦马格鲁斯效应的概念 7、计算任意形状柱体受流体作用力的卜拉修斯定理 8、附加惯性力,附加质量的概念 本章难点: 1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。 2.任意形状柱体受流体作用力的卜拉修斯定理 3.附加惯性力,附加质量的概念

§6-1 几种简单的平面势流 平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的 分量;与该平面相平行的所有其它平面上的流动情况完全一样。 例如: 1)绕一个无穷长机翼的流动, 2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。这一近似方法在船舶流体力学领域内称为切片理论。 一、均匀流 流体质点沿x轴平行的均匀速度Vo , V x=V o , V y =0 平面流动速度势的全微分为 dx V dy V dx V dy y dx x d y x 0=+=??+??= ??? 积分: φ=Vox (6-4) 流函数的全微分为, dy V dy V dx V dy y dx x d o x y =+-=??+??= ψψψ 积分: ψ=Vo y (6-5) 由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线。 等势线:x=const ,一组平行于y轴的直线。 均匀流的速度势还可用来表示平行平壁间的 流动或薄平板的均匀纵向绕流,如图6-4所示。 图6-4 二、源或汇 平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。 设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q 2πrvr=Q ∴vr=Q/2πr (6-6) 在直角坐标中,有 x y V y x V y x ??- =??=??=??= ψ?ψ?

流体力学教案第5章流体漩涡运动基础

第五章 流体旋涡运动基础 §5-1 旋涡运动的几个基本概念 一、涡量场 对有旋流动,0≠ω ,而),,,(t z y x f =ω ,所以对有旋流动的流场中同时存在一个旋涡场,或称涡量场或角速度场。 k Ωj Ωi ΩΩz y x ++= (1) z y w Ωx ??-??= υ x w z u Ωy ??- ??= (2) y u x Ωz ??-??= υ 满足涡量连续性方程: 0=??+??+??z Ωy Ωx Ωz y x (3) 二、涡线 同速度场中引进流线、流管和流量的定义一样。下面我们定义涡线、涡管、涡束以及旋涡强度(涡通量)。 涡线――涡线是旋涡场中的一条曲线,在某一瞬时,曲线上各点的切线方 向与该点流体微团的角速度ω 方向重合。(Ω 方向的判别,根据右手螺旋法则)对非定常流动涡线的形状随时间而变,对定常流动,涡线形状不随时间而变。与流线一样,涡线本身也不会相交。 取k z j y i x s d d d d ++=为涡线上一微元线段。 类似于流线微分方程,或由0d d d d ==?z y x ΩΩΩk j i s Ωz y x 可得到涡线微分方程为: ) ,,,(d ),,,(d ),,,(d t z y x Ωz t z y x Ωy t z y x Ωx z y x == (4)

三、涡管和涡束 涡管-在涡量场中任取一不是涡线的封闭曲线,通过封闭曲线上每点的涡线,这些涡线形成一管状表面,称为涡管。 涡束-涡管中充满作旋转运动的流体,称为涡束。 四、涡通量 涡通量-通过任一开口曲面的涡量的总和。 通过开口曲面A 涡通量为: A n ΩJ A d ???= n 为d A 的外法线单位向量 对于封闭曲面: A n ΩJ A d ???= 由于: 0=??+??+??z Ωy Ωx Ωz y x 所以:0d =?=??A n ΩJ A 五、速度环量 定义如下:在流场中任取一通曲线AB 。AB 曲线上任一点的速度为V ,在 该点B 附近的曲线上任取一微元线段s d ,V 与s d 的夹角为α。 则速度环量: ???++==?=B A B A B A AB z w y x u s V s V Γd d d d cos d υα 其中:k w j i u V ++=υ,k z j y i x s d d d d ++= 若A 与B 重合,便成了封闭曲线,则: ???++==?z w y x u s V s V Γk k d d d d cos d k υα = 环量的正向为:沿封闭周线前进时,周线所包围的面积在速度方向的左侧, 即逆时针方向速度环量为“+” B

《流体力学》教学大纲

《流体力学》教学大纲 一、课程基本信息 二、课程概述 中文: 本课程是工程力学专业的学类核心课程,以高等数学、理论力学、材料力学为前导课程,着重培养学生分析解决实际工程中流体力学问题的能力。 本课程主要包括流体的平衡、流体力学的基本方程、不可压缩无粘流动、涡旋运动、平面势流等,强调应用这些基本概念及定律分析与流体力学相关的工程问题,学生需了解流体力学的发展现状和趋势,理解流体力学中的基本概念、基本理论及基本定律,掌握流体力学的实验、分析与数值计算的基本技能与基本方法,并能灵活运用这些基本概念及定律分析与流体力学相关的工程问题。通过学习本课程,让学生学会流体力学基本理论,获得解决流体工程问题的基本技能,锻炼和提升对复杂的流体工程问题进行简化,从而建立数学模型并进行求解的能力。 英文: This is a bas ic course for majors of engineering mechanics, aiming at students’ physical concepts and basic principles commonly used to analyze engineering problems related to fluid mechanics, thus laying a solid foundation for their research and design in aerospace, mechanical, civil, chemical, environmental and ocean. The

applications of the dimensional and order analysis method in engineering are emphasized in this course. The study of this course develops the students’ ability to simplify the complex problems, prese nt and solve the mathematic model of related engineering problems. The main contents of this course are the basic equations of fluid mechanics, incompressible in-viscid flow, the motion of vortex, dimensional analysis, incompressible viscid flow. Prerequisites: Advanced Mathematics, Mathematics Physics Equation, Field Theory,Theoretical Mechanics,Mechanics of Materials. 三、课程内容 (一)课程教学目标 设置本课程是为了让工程力学专业的学生对工程力学专业知识体系的重要组成板块之一的流体力学进行较为系统的学习,并深度掌握与理解,具备应用流体力学的基本知识和基本理论分析解决生产实际工程问题的能力。本课程对学生达到毕业要求有如下贡献: 1.知晓流体力学的发展现状和趋势,应用流体力学及其软件在机械、土木、航空航天和材料 等工程领域解决与流体相关的技术问题; 2.具备对复杂的流体工程问题进行简化、建立数学模型并进行求解的能力; 3.具有针对复杂工程问题中的流体系统进行流体力学计算和技术设计的能力; 4.具有针对复杂流体工程问题开展实验研究的能力; 5.了解和初步掌握流体力学现代计算技术,进行流体力学问题的仿真计算。 (二)基本教学内容 绪论 教学目的与要求:掌握流体力学的研究方法、流体力学中常用的数学基础知识。 教学重点:流体的三大研究方法:实验方法、分析方法、数值计算;数学基础知识。 教学难点:三大研究方法之间的关系、数学基础知识。 教学内容:三大研究方法的主要特点、流体力学的研究对象、特点及学习方法、流体力学常用的数学知识。学时分配:2课时。 第一章、流体的物理性质和物理运动物理量的描述

势流理论

势流理论 思考题及练习题 1.简述无旋流动速度势满足拉普拉斯方程的必要条件。 2.势流迭加法求解速度势的关键是什么? 3.简述采用势流理论求解流体力学问题的前提。 4.简述采用势流理论求解流体力学问题时,边界条件的提法。 5.对于不可压缩流体的平面无旋流动,流函数满足拉普拉斯方程的必要条件是( )。 a) 流动定常 b) 流动无旋 c) 流体正压 d) 不计流体粘性 6.对于无旋流动,速度势满足拉普拉斯方程的必要条件是( )。 a) 流体不可压缩 b) 流动定常 c) 二维不可压缩流体 d) 不计流体粘性 7.无穷远均匀来流绕一确定形状的圆柱体有环量流动,升力的大小与( )有关。 a) 圆柱体的旋转角速度 b) 圆柱体的旋转角速度方向 c) 圆柱体长度 d) 圆柱体的直径 8. 理想流体流体绕任意物体的平面无旋流动,物体受到流体的作用力可能有( )。 a) 升力 b) 升力和阻力 c) 升力和附加惯性力 d) 附加惯性力 9.简述绕圆柱无环流流动的运动学边界条件如何。 10.简述机翼产生升力的原因。 11.绕圆柱的有环统流流动,简述驻点位置与哪些参数的关系。 12. 简述库塔—儒可夫斯基定理的前提和结论。 13. 当机翼从静止起飞后,简述绕机翼剖面产生环量的原理。 14. 简述升力与浮力的概念,升力与浮力属于哪一类力? 15. 以船舶为例说明相对运动与绝对运动的概念。 16. 简述附加惯性力,附加质量的概念。 17. 附加质量的大小取决于哪些量? 18. 船舶不同运动状态下的附加质量与哪些量有关? 19. 一无限大平壁法向距离1 没处有一强度为10m 3/s 的点源,试证该流场的流函数和速度势函数由如下形式: {}22225ln [(1)][(1)]2x y x y ?π =+-++

流体力学势流理论

第六章势流理论 本章内容: 1.势流问题求解的思路 2.库塔----儒可夫斯基条件 3. 势流的迭加法 绕圆柱的无环绕流,绕圆柱的有环绕流 4.布拉休斯公式 5.库塔----儒可夫斯基定理 学习这部分内容的目的有二: 其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。 其二,明确两点重要结论: 1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。 2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。 本章重点: 1、平面势流问题求解的基本思想。 2、势流迭加法 3、物面条件,无穷远处条件 4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位 置,流线图谱,升力,阻力,环流方向等。 5、四个简单势流的速度势函数,流函数及其流线图谱。 6、麦马格鲁斯效应的概念 7、计算任意形状柱体受流体作用力的卜拉修斯定理 8、附加惯性力,附加质量的概念 本章难点: 1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。 2.任意形状柱体受流体作用力的卜拉修斯定理 3.附加惯性力,附加质量的概念 §6-1 几种简单的平面势流 平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如: 1)绕一个无穷长机翼的流动, 2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话, 则这一问题就可以按 一、均匀流 流体质点沿x轴平行的均匀速度Vo ,如图6-5所示, V x=V o , V y =0 dx V dy V dx V dy y dx x d y x 0=+=??+??= ?? ? 积分:φ=V ox (6-4) 如图6-3 流函数的全微分为, dy V dy V dx V dy y dx x d o x y =+-=??+??= ψψψ 积分:ψ=V o y (6 -5 如图6-4 由(6-4)和(6 -5 流线:y=const ,一组平行于x轴的直线,如图6 -3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。 均匀流的速度势还可用来表示平行平壁间的流动或薄平板的均匀纵向绕流,如图6-4所示。 平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。 设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q πrvr=Q ∴vr=Q/2πr (6-6) 在直角坐标中,有 x y V y x V y x ??- =??=??=??= ψ?ψ? 在极坐标中有: r r s V r s r V s r ??- =??=??=??=??=??= ψθ??θψψ?11 (6-7) 图6-6 点源和点汇 极坐标中φ和ψ 的全微分:

第六章 实际流体的绕流运动

第六章 实际流体的绕流运动 Chapter Six Cross-flow Movement of Real Fluid 一、研究内容 1.实际流体绕流物型时所产生的问题,如速度和压强分布;边界层分离现象;绕流阻力与升力等等。 2.实际流体绕流物型时,不能忽略流体黏性的影响,并且流体与物体间存在相互作用力。工程中绕流问题很常见,如锅炉中烟气横向流过受热面管束;汽轮机、轴流式泵或风机等设备中流体绕流叶栅;飞机在空中飞行、船只在海中航行等等。 二、研究方法 以N-S 方程及速度边界层理论为基础研究实际流体的绕流问题。 第一节 纳维-斯托克斯方程(N-S 方程) Section One The Navier-Stokes Equation(N-S Equation) 一、不可压缩流体的N-S 方程的形式 其中,方程等号左侧为全加速度,可以展开为 因此,不可压缩流体的N-S 方程三个方程式,每个方程含有 9项内容,方程较复杂。 二、不可压缩流体N-S 方程的说明 1.方程等号左侧为全加速度,即是惯性力项;等号右侧第一项是质量力项,第二项为压力项,第三项为黏性力项。其实质可以理解为实际流体的牛顿第二定律(也即是机械能转换与守恒定律的应用)。 2.若运动黏度0=ν,则N-S 方程转变为欧拉运动微分方程;若运动黏度0=ν,且全加速度0/=dx du 、0/=dy dv 及0/=dz dw ,则N-S 方程转变为欧拉平衡微分方程。 3. N-S 方程结合不可压缩流体的连续性方程0=??+??+??z w y v x u ,若其余量已知,理论上 可求得速度一压强分布u 、v 、w 及p 。但N-S 方程在数学上求解相当困难,通常采用近似解。 第二节 边界层理论 Section Two Velocity Boundary Layer Theory 一、理论的提出 针对工程中出现的大雷诺数Re 下实际流体绕流物型时所产生的若干问题,如速度和压强分布;边界层分离现象;绕流阻力与升力等,并成功解决了达朗贝尔(D ’Alembert)疑题,即势流理论所得到的绕流物型时可能只有升力而无阻力的结论与实际情况截然相反的现象。 二、边界层的基本概念 1.速度边界层含义: z w w y w v x w u t w dt dw z v w y v v x v u t v dt dv z u w y u v x u u t u dt du ??+??+??+??=??+??+??+??=??+??+??+??=

燃烧学复习重点2014

第一章燃烧化学反应动力学基础 1、什么叫燃烧? 2、浓度和化学反应速度正确的表达方法?化学反应速度如何计量? 3、什么是单相反应、多相反应、简单反应、复杂反应、总包反应? 4、质量作用定律的适用范围?如何从微观的分子运动论的观点来理解质量作用定律?试用质量作用定律讨论物质浓度对反应速度的影响。 5、什么是反应级数?反应级数与反应物浓度(半衰期)之间的关系如何? 6、常用的固体、液体和气体燃料的反应级数值的范围是多少? 7、试用反应级数的概念,讨论燃尽时间与压力之间的关系。 8、惰性组分如何影响化学反应速率? 9、Arrhenius定律的内容是什么?适用范围?如何从微观的分子运动论的观点来理解Arrhenius定律? 10、什么是活化能?什么是活化分子?它们在燃烧过程中的作用? 11、图解吸热反应和放热反应的活化能与反应放热(吸热)之间的关系。 12、什么叫链式反应?它是怎样分类的?链反应一般可以分为几个阶段? 13、描述氢原子燃烧的链式反应过程。 14、试用活化中心繁殖速率和销毁速率的数学模型,结合编程技术,绘制氢原子浓度随时间变化的图线,解释氢燃烧的几种反应的情况。并讨论:分支链反应为什么能极大地增加化学反应的速度? 15、烃类燃烧的基本过程是什么,什么情况下会发生析碳反应?如何进行解释?什么样的烃类燃烧时更容易发生析碳反应?如何防止烃类燃烧析碳? 16、图解催化剂对化学反应的作用。 17、什么叫化学平衡?平衡常数的计算方法?吕·查德里反抗规则的内容是什么? 18、什么是燃料的低位发热量和高位发热量? 19、试用本章的知识解释,从燃烧学的角度来看,涡轮增压装置对汽车发动机的作用是什么? 20、过量空气系数(a)与当量比(b)的概念?

基于势流理论和粘性流理论的螺旋桨水动力性能分析

基于势流理论和粘性流理论的螺旋桨水动力性能分析 螺旋桨水动力性能预报经历了升力线、升力面、面元法以及基于求解RANS方程的CFD方法几个阶段。升力线方法过于简化导致求解精度不够,升力面在升力线的基础上有所进步但由于其是建立在薄翼理论基础上的,不能精确地描述螺旋桨的几何外形以至于不能正确的预报桨叶压力分布和空泡性能,其计算精度也不能令人满意。面元法能很好地处理桨毂、导边及桨叶上的空泡影响,更精确地描述复杂的螺旋桨几何外形,克服升力线和升力面的不足,对复杂的翼身结构作了更为精确的离散化处理,同时消除升力面理论中薄翼假设带来的导边奇性,更精确地预估导边附近和剖面较厚处的压力分布并能计及桨毂的存在及桨毂对螺旋桨性能和桨叶压力分布的影响。升力面理论的应用日趋完善,面元法和N-S方程的方法已逐渐成为螺旋桨设计与水动力预报的主流,特别是能提供桨叶表面流动精细描述的CFD方法。虽然升力面和面元法能成功的预报螺旋桨在稳定流和非稳定流中的水动力性能,但是这些理论方法都是建立在势流的基础上,计算过程中忽略了粘性影响,因此在工程应用中需要对设计和计算结果进行粘性修正。由于势流理论忽略粘性力导致我们在研究尺度效应对实船的影响、空泡与黏性流的非线性相互作用、螺旋桨桨叶表面边界层和尾流涡的结构与力学机理等问题时都无法给出定量的计算结果,特别是势流计算方法无法捕捉桨叶附近的细节流动如桨叶随边涡的结构,严重影响了螺旋桨性能的预报精度。基于RANS方程的计算流体力学方法为上述问题的解决提供了有效地解决方案。 求解RANS方程的商业软件相继出现并不断完善,很明显在螺旋桨水动力性能数值预报方面CFD方法已成为主流研究方向。对湍流模式、网格生成、近壁面模型等CFD关键问题不断改进后,CFD代码分析复杂流动的能力大幅提高。尽管如此,涉及物理模型的逼真度、数学理论以及如何选择基准检验试验验证方案等复杂问题时,CFD方法还存在一定的不确定性,成为CFD研究领域中极具挑战性的前沿课题。CFD发展至今,虽然RANS,LES和DES等粘流方法在流场预报方面开始起主导作用,但势流理论的方法仍是螺旋桨设计和计算中最常用的工具。应该指出,紧急倒车工况下推进器的性能预报最具挑战性,RANS方法不能模拟此时出现的强非定常瞬态分离流,新近发展的LES方法已能实现对紧急倒车敞水螺旋桨的模拟,目前正在向船后桨模拟发展。 RANS粘流方法在螺旋桨水动力预报上有以下几方面的应用: 1)尺度效应 螺旋桨敞水试验必须满足的相似准则是进速系数J、雷诺数Re、弗氏数Fr和相对潜深Hs都属于限制参数,由于不能同时满足全部相似准则只能根据试验特点满足主要的相似准则,造成模型试验与实际流动情况的差异,这就产生了粘性尺度效应,实践中有很多根据经验得出的方法可用来修正实验结果,但一般都不具有代表性。估计尺度效应的大小,寻求减小或修正尺度效应的方法成为螺旋桨水动力研究的一个重要课题。 2)空泡与诱导脉动压力 螺旋桨空泡特性与其激振力、辐射噪声、桨叶剥蚀及诱导脉动压力等有直接联系,在螺旋桨性能预报中非定常螺旋桨的空泡特性显得尤为重要。各类空泡现象,如局部片空泡、片状超空泡、泡空泡、云空泡和梢涡空泡等,所采用的数值计算方法主要有经验方法、升力面方法面元法和欧拉方程组等势流方法,以及带单相和多相模型的RANS方程组和各种方法的耦合。此外,LES方法和DES方法对改善空泡起始和非定常空泡模拟精度的作用开始凸显。但总体上讲,除片空泡图形外,其他空泡类型和空泡性能的模拟,目前的计算方法都存在不足之处目前,螺旋桨空泡与脉动压力试验技术进展不大,空泡现象和效应的量化测试和结果仍然很不理想。CFD的应用有望解决这个问题,在空泡计算方面,带单相和多相模型的CFD方法以及气泡动力学与粘流理论组合的空泡起始预报方法颇具发展潜力,而空泡诱导脉动压力的预报仍无合适的数值方法,一种基于无粘可压缩波动方程的预报方法正处于发展起步阶段,或许有助于问题的解决。

流体力学主要理论模型

流体力学主要理论模型 在连续介质假设的基础上,建立流体运动的基本方程组,具有广泛的适应性。严格来说这个方程组通常并不封闭,即方程中的未知数多于方程数。为了求出理论解,必须根据情次再提出一些符合或接近实际的假设,从而在某些条件下使方程组封闭。但是,即使方程组已封闭,求方程的解仍然不是轻而易举的。由于方程的非线性特征及方程中变量的互相祸合,使得求解这种一般的方程组几乎成为不可能,因此还必须根据具体问题的特点,抓住问题的主要方面,忽略次要方面,必要时作进一步的假设、简化和近似,设计出一个合理的理论模型。 以下例出流体力学主要的几种理论模型供读者参考。 一、黏性流体与理想流体模型 1.黏性流体模型 流体的黏性是流体的一种物理特性,它表示流体各部分之间动量传递的难易程度,反映了流体抵抗剪切变形的能力。黏性流体是一切真实流体的模型,它具有普遍的意义。 牛顿通过实验首先提出黏性流体的剪切应力公式,为黏性流体力学的发展创造了条件。1823年L.纳维尔和G. G.斯托克斯分别建立了不可压与可压黏性流体运动方程组。此后,边界层、紊流理论的研究普遍开展起来。 虽然流体的黏性是用动力黏度μ来衡量,但是μ大的流体未必当作黏性流体流动来处理。依牛顿内摩擦定律,剪切应力与动力黏度μ及速度梯度有关。因此,虽然流体的动力 黏度较大,但如果流场的速度梯度很小,剪切应力仍然不大,就可以把它当作无黏性流动来处理。相反,如果流体的黏性较小,但流场的速度梯度很大,则仍有必要把它当作黏性流动来处理。 1904年,普朗特提出了边界层理论,将流动划分为两个区域,在远离边界以外的区域中(势流区),黏性效应可予忽略,用无黏性流体理论求解。而在靠近边界的一薄层区域中,黏性效应不可忽略,应利用黏性流动理论求解。这样,边界层理论不仅给出了正确的数学提法,而且也用黏性流动理论解释了在这种情况下阻力的存在。 紊流是黏性流体流动中的一个重要方面。实验表明,流体流动有两种流态,层流和紊流。自然界很多层流运动,常常是不稳定的,稍有扰动,层流立即转变为紊流,紊流运动与层流的重大差别是在它的不规则性和输运能力的剧烈增大。但是由于紊流运动的复杂性,其发生机理至今仍不清楚。目前,对紊流的研究主要通过紊流的平均运动和涨落运动求解黏性流体运动基本方程。 2.理想流体模型 如前所述,实际流体都是具有黏性的,都是黏性流体。不具有黏性的流体称为理想流体,这是客观世界上并不存在的一种假想的流体。在流体力学中引人理想流体的假设是因为在实际流体的黏性作用表现不出来的场合(像在静止流体中或匀速直线流动的流体中),完全可以把实际流体当理想流体来处理。 在许多场合,想求得黏性流体流动的精确解是很困难的。对某些黏性不起主要作用的问题先不计黏性的影响,使问题的分析大为简化,从而有利于掌握流体流动的基本规律。如水波在河中传播时,在较长的距离上,仍不消衰.大气在高空中运动时.长驱直人,常常跨越数千公里,这表明在这类流动中,黏'rt并不起主要作用,因此将其黏性略去.以便可以分析简便且能得到其主要的运动规律。至于黏性的影响,则可根据试验引进必要的修正系数.讨由理想流体得出的流动规律加以修正。此外.即使是对于黏性为主要影响因素的实际流动问题,先研究不计黏性影响的理想流体的流动.而后引人黏性影响,再研究黏性流体流动的更为复杂的情况,也是符合认识事物由简到繁的规律的。基于以匕诸点,在流体力学中.总支先研究理想流体的流动,而后再研究黏性流体的流动。

《流体力学及流体机械》复习讲诉

《流体力学与流体机械》复习 《流体力学》部分 第一章 流体及其物理性质 1、流体是一种很容易发生剪切变形的物质,流动性是其主要特征。连续介质假定是为以及流体的宏观机械运动而提出的一种流体模型。质点是构成宏观流体的最小单元,质点本身的物理量可以进行观测。 2、单位体积流体所包含的质量称为密度ρ;重度γ是单位体积流体具有的重量,g γρ=。 3、流体受压体积减小的性质称为压缩性;流体受热体积增大的性质称为膨胀性。液体的可压缩性和膨胀性都比较小,气体的可压缩性和膨胀性都比较大,所以,通常可将其视为不可压缩流体( 0D Dt ρ =,0??=u ) ,而将气体视为可压缩流体。 4、粘性是流体反抗发生剪切变形的特性,粘性只有在流体质点之间具有相对运动时才表现出来(0τ=,能否说明是理想流体?)。牛顿流体作一维层流流动时,其粘性内摩擦切应力符合牛顿内摩擦定律(牛顿剪切公式):d d u y τμ=。μ是表征流体动力特性的粘度,称为动力粘度。ν是表征流体运动特性的粘度(νμρ=),称为运动粘度。当温度升高时,液体的粘性降低,而气体的粘性增大。 应用牛顿内摩擦定律做相关计算:平行和旋转缝隙内的剪切流动 第二章 流体静力学 1、作用于流体上的力按其性质可以分为:表面力和质量力。 2、流体静压强:指当流体处于静止或相对静止状态时,作用于流体上的内法向应力。 流体静压强的两个重要特性: (1)流体静压强的作用方向总是沿其作用面的内法线方向; (2)在静止流体中任意一点压力的大小与其作用的方位无关,沿各个方向的值均相等。 3、流体的平衡微分方程

101010p X x p Y y p z z ρρρ??- =??? ??-=??? ??-=??? 或 ()d d d d d d d p p p p x y z X x Y y Z z x y z ρ???=++=++??? 4、等压面:在平衡流体中,压力相等的各点所组成的面。 等压面的两个重要特性: (1)在平衡的流体中,通过任意一点的等压面,必与该点所受的质量力互相垂直; (2)当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 5、流体静力学基本方程式:p z c γ + = 或 0p p gh ρ=+ 适用条件:(1)质量力只有重力;(2)不可压缩流体。 6、液体的相对平衡 (1) 等加速直线运动容器中液体的相对平衡(与坐标系选取有关) 流体静压力分布规律:0(cos sin )p p ay gz az ραα=-++ 等压面方程:cos sin ay gz a c αα++= 自由液面方程:cos sin 0ay gz az αα++= (2) 等角速度旋转容器中液体的平衡(与坐标系选取有关) 流体静压力分布规律:222200122r p p r gz p z g ωρωγ???? =+-=+- ? ????? 等压面方程:22 2 r gz c ω-= 自由液面方程:02 2 2=-gz r ω

相关主题
文本预览
相关文档 最新文档