当前位置:文档之家› 缓和曲线超高段

缓和曲线超高段

缓和曲线超高段
缓和曲线超高段

缓和曲线超高段计算

超高横坡计算公式:

I=Abs(B-A)*2E/Q-E ① I=[Abs(B-A)-Q](D-E)/(C-Q)+E ②

F=H+LI

T=H-EL

I———缓和曲线内任一横断面超高横坡度(I的正负,抬高边为正,降低边为负);

B———缓和曲线超高段内任一点里程桩号;

A———缓和曲线起点ZH或终点HZ的里程桩号;

E———直线段路拱横坡度,输入时不考虑符号取正值;

C———缓和曲线长度(M);

D———最大超高段设定的最大超高横坡度,取正值;Abs———绝对值符号;

Q———缓和曲线起(终)点至超高变坡临界面距离,Q=2E/(E+D)*C

L———为半幅路宽

程序清单:CGHP(文件名)

Lb1 0:E:D:C:A:L:{BH}:B≤0=> Goto 2⊿Q=2E/(E+D)*C:Abs(B-A)> Q=> Goto 1⊿

I=Abs(B-A)*2E/Q-E◢F=H+LI◢T=H-EL ◢Goto 0⊿(计算ZH 或HZ至Q之间缓和曲线上任一点超高横坡度及左右边桩F、T之高

程,注意须输入与边桩同横断面的中桩高程-中桩高程另算)

Lb1 1:I=(Abs(B-A)-Q)(D-E)/(C-Q)+E◢F=H+LI◢T=H-IL ◢Goto 0⊿(计算Q至HY或YH之间缓和曲线上任意一点超高横坡度及左右边桩之高程,L为半幅路宽,单位为M)

Lb1 2:{EDCAL}:Goto 0 注:输入B≤0重新开始

竖曲线计算

公式:G=H-CP+ZF(T-Abs C)2/2R

程序清单:SHXGC(任意) 内容:Lb1 0:H:B:R:I:J:{L}:T=R?Abs(J-I)/2:

C=B-L:F=1:I>J =>F=-1⊿L≤0=>{HBRIJ}:Goto 0:≠> L< B-T =>Z=0:P=I ≠> L< B+T =>Z=1:

P=J ≠>Z=0:P=J⊿⊿⊿G=H-CP+ZF(T-Abs C)2/2R

注:输入L≤0重新开始

H——为变坡点高程:B——为变坡点桩号:L——为待求点桩号:I、J为坡度:T为切线长=R?α/2=R(i1-i2)/2

公路工程缓和曲线超高段竖曲线程序(FX —4850P)

程序名“18.E2”

LbI

0:E“E(O)”:D“D(O)”:C“C(——)m”:“A(ZH、HZ)K 0 m”:L“L(—·—)m”“—JD—”:{BH}:B“B(Ki)m”:H“H(—H—)I”:“—JH—”:B≤0=>Goto 2:Q=2E÷(E+D)

×C:Abs(B-A)>Q=> Goto 1△

(计算ZH或HZ至Q之间距离)

“I(i)=”:Fix

4:I=Abs(B-A)×2E÷Q-E▲Fix

3:“F(·—H)m=”F=H+LI▲“T(H—·)m=”:T=H-EL▲Goto

0△

(计算ZH或HZ至Q之间缓和曲线上任一点超高横坡度及左、右

边桩F、T高程)

LbI

1:“I(i)=”:Fix

4:I=(Abs(B-A)- Q)(D-E)÷(C-Q)+E▲”Fix

3:“F(·—H)m=”:F=H+LI▲“T(H—·)m=”:T=H-EL▲Goto

(计算Q至HY或YH之间缓和曲线上任一点超高横坡度及左、右边桩之高程,L为半幅路宽,单位为米)

LbI

2:I:{EDCAL}:“— END —”Goto 0△

一、符合说明

E(O)?输入直线段路拱坡度,不考虑符号取正值

D(O)?输入最大超高段设定的最大超高横坡取正值

C(——)m?输入缓和曲线长度

A(ZH、HZ)K 0 m?输入缓和曲线起点ZH或终点HZ的里程(桩

号)

L(—·—)m?输入半幅路宽

B(Ki)m?输入所求点里程(桩号)

H(—H—):?输入所求点中桩高程

I(i)=计算所求点中桩的横坡高

F(·— H)m=计算所求点中桩的左边桩高程

T(H—·)m=计算所求点中桩的右边桩高程

二、计算功能

1、不能计算设定的最大超高段的设定超高横坡段及边桩高程,此段

边桩高程需另行计算。

2、偏角为“+”时则弯道的超高右低左高、线路前进方向右弯,反之

“—”时则弯道左低右高、线路前进方向左弯。

3、超高横坡度采用值按《公路工程技术标准》(JTGB01-2003)规定“当超高横坡度的计算值小于路拱度时,设置等于路拱坡度的超

高”。

4、当前超高缓段I计算至H(缓和园)时,可转入计算后超高缓和

段I,则要重新输入E、D、C、A、L,此时可给B(Ki)m?输入0,即可重新输入,不需重新选择程序文件名。

三、算例

1、输入起算元素

E=0.02(路拱度%),D=0.04(设定的最大超高横坡度%),

C=80(缓和曲线长度),A=735.5(ZH或HZ的里程(桩号)),L=7.75(半幅路宽),B=740(所求点里程(桩号)),

H=182.238(所求点中桩高程)

2、计算结果

(1)I=-0.0166(所求点横坡度),F=182.109(所求点左侧抬高边高程),T=182.083(所求点右侧降低边高程)。

计算一个点:B=780(所求点桩号)、H=181.940(所求点中桩高程)(2)I=0.0134(所求横坡度),F=182.044(所求点左边桩高程),T=181.785(所求点右边桩高程),重复上述操作方法计算至HY桩号815、50,B(Ki)m?输入0即可重新输入起算数据,由HZ计算

至YH。

四、计算公式

I=AbS(B-A)×2E/Q-E

I=[ AbS(B-A)-Q](D-E)/(C-Q)+E

F=H+LI

T=H-EL

式中:

I为缓和曲线内任一横断面超高横坡度

B为缓和曲线超高段内任一点里程桩号

A为缓和曲线起点ZH或终点HZ的里程桩号

E为直线段路拱坡度,输入时不考虑正负符号取正值D为最大超高段设定的最大超高横坡度取正值

C为缓和曲线长度

AbS为绝对值符号

Q为缓和曲线起(终)点至超高坡临界面距离Q=2E/(E+D)×C

超高计算书

超高计算书 一.JDI 超高:由V=60km/h, b=7m ,R=140m ,查表可得b i =6%,查表可得p=1/125,则 c L = p b b i =125 17 ?6%=56.25m ≈60m(c L 去5倍数而大于20m) 1. 绕内边轴旋转 1)在临界断面之前,0≤1L x ≤, 这里 c b L i i L ?=1 1 式中: 1i ——路拱横坡度,2%; b i ——超高横坡度, c L ——超高缓和段长度,m c b L i i L ?= 11=2060% 6%2=?m , 而超高起点K37+79.382, 则桩号K37+80,x=0.618m,在10L x ≤≤内 b c i b a ai h )(0++==%6)75.1(%35.1?++? =0.045+0.51=0.56m cx h =c c h L x ?=m 006.056.060 618 .0=? m i b ai h cx 115.0%22 7 %35.1210'=?+?=+= 10")(i b a ai h jx cx +-==m 015.0%2)015.05.1(%35.1=?+-? 式中:jx b ——缓和段上加宽值,m, jx b = j C B L x ,jx b =j C B L x =60 618 .0?1.5=0.015; j B ——圆曲线上全加宽值,m,按标准取用; x ——缓和段上任一断面至缓和段起点之距离,m; 0i ——土路肩横坡度,%; 2)在临界断面之后,c L x L ≤≤1,则桩号K58+100处,x =20.618m c c cx h L x h ?= =m 192.056.060 618.20=? bx cx i b ai h 20'+==1.5m 169.0124.0045.00353.02 7 %3=+=?+? (021.0%660 618.20=?== b c bx i L x i 临界断面之后,在缓和段上任一断面的超高横坡度;) ?=+-=5.1)(0"jx cx b a ai h 3%-(1.5+0.517)?0.021=-0.0026m 3)HY 点(K58+139.382),K58+140,K58+160,K58+180, K58+200,QZ 点(K58+218.117),K58+220, K58+240 ,K58+260, K58+280, YH (K58+296.852)是全超高断面,则 m i b a ai h b c 56.0%6)75.1(%35.1)(0=?++?=++= m i b ai h cx 255.0%62 7 %35.1210'=?+?=+= 10")(i B a ai h jx cx +-==135.0%5)5.15.1(%35.1-=?+-?m 4)K58+79.382是超高终点 则K58+80处,x=0.168m,在10L x ≤≤内 cx h = c c h L x ?=m 006.056.060 618 .0=? m i b ai h cx 115.0%22 7 %35.1210'=?+?=+= 10")(i b a ai h jx cx +-==m 015.0%2)015.05.1(%35.1=?+-? 5)K58+100处,x=20.618m ,在c L x L ≤≤1内 c c cx h L x h ?= =m 192.056.060 618 .20=? bx cx i b ai h 20'+==1.5m 1185.00735.0045.0021.02 7 %3=+=?+?

(完整word版)缓和曲线计算原理

1.2道路线形的基本介绍 道路运输在整个国民经济生活中起着重要作用。道路的新建和改建,测量工作必须先行,所以公路施工测量所承担的任务也是非常大的,为了更好的进行道路施工工作,下面就道路线形进行一下简单的介绍。 一般所说的路线,是指道路中线的空间位置。中线在水平面上的投影称作路线的平面;沿中线竖直剖切再行展开则是路线的纵断面;中线上任一点法向切面是道路在该点的横断面。 无论是铁路、公路还是地铁隧道和轻轨,由于受到地形、地物、地质及其他因素的限制,经常要改变线路前进的方向。当线路方向改变时,在转向处需用曲线将两直线连接起来。因此,线路工程总是由直线和曲线所组成。曲线按其线形可分为:圆曲线、缓和曲线、复曲线和竖曲线等。 公路中线应满足的几何条件是:线形连续平滑;线形曲率连续(中线上任一点不出现两个曲率值);线形曲率变化率连续(中线上任一点不出现两个曲率变化值)。考虑上述几何条件,顾及计算与敷设方便,现代公路平面线形要素由直线、圆曲线和缓和曲线构成,称之为平面线形三要素。其中缓和曲线的曲率半径是从∞逐渐变到圆曲线半径R 的变量。在与直线连接处半径为∞,与圆曲线连接处半径为R ,曲线上任一点的曲率半径与该点至起点的曲线长成反比。 目前公路线形设计已开始使用非对称线形(成为非对称平曲线)设计,特别是在互通立交匝道和山区高速高速公路线形设计中,这种线形设计使用得较多。非对称线形分为完全非对称线形和非对称非完整线形两种,所谓“完全非对称曲线”的含义就是第一缓和曲线和第二缓和曲线起点处(ZH 或HZ )的半径为∞,圆半径为R ,第一缓和曲线长1s l ,第二缓和曲线长为2s l ,12s s l l ≠。所谓“非完整”的含义是第一缓和曲线和第二缓和曲线的半径不是∞,而是1 R 、2 R 。而坐标法成为高速公路放样的主要方法,坐标法放样 线路中线的这个操作过程中,最重要的一部就是计算线路放样点的坐标。 2 路线中桩坐标计算原理 在实际工程中,线路的设计由专门的设计方完成,在线路完成设计得到审批后设计方便把所设计线路的线路要素(或者称为曲线要素)提供给施工方。所提供的曲线要素一般包括:线路中各曲线段的起点坐标、起点里程、起点半径、终点坐标、终点里程、终点半径、交点坐标、曲线参数、转角(包括用一定的符号表示左右转)、两条切线长(起点与终点各所对应的两条切线)、曲线长。当然不同的工程项目所提供的曲线要素也不一样,以上所述的要素是大多数设计方会提供的,有的设计方在提供上述要素的前提下,还提供曲线段的外距、中点坐标、弦长或者走向方位角等要素,供施工方在计算

缓和曲线计算公式

缓和曲线计算公式 缓和曲线计算公式: 缓和曲线参数: 0=A L R ? 缓和曲线长度R A L ÷=20 缓和曲线半径÷=2A R 0L 所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A 及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

缓和曲线计算公式

高速公路的线路(缓和曲线)计算公式 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角: α ⑥点ZH 的坐标:x Z ,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ的坐标 ? 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l

②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: 当只知道HZ 点的坐标时,则:

l为到点HZ的长度 α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反 x Z ,y Z 为点HZ的坐标 ? 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)——第一缓和曲线长度 l 1 ——第二缓和曲线长度 l 2 l ——对应的缓和曲线长度 R——圆曲线半径

R ——曲线起点处的半径 1 ——曲线终点处的半径 R 2 P ——曲线起点处的曲率 1 P ——曲线终点处的曲率 2 α——曲线转角值 四、竖曲线上高程计算 (上坡为“+”,下坡为“-”)已知:①第一坡度:i 1 (上坡为“+”,下坡为“-”) ②第二坡度:i 2 ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S

超高计算示例

超高值的计算 路拱横坡度为2%,土路肩横坡度为3%。根据设计规范,由于圆曲线横坡为4%,故圆曲线路段内、外侧硬路肩的超高横坡度为4%;圆曲线路段内侧土路肩的超高横坡度为4%,外侧土路肩作成3%的反坡。 计算各桩号处超高值: b j1 j2 b B 1 b b 1 B b j2 j1 b 图5.1 超高计算点位置图 图中: B —行车道宽度; 1b —内侧路缘带; 2b —外侧路缘带; —硬路肩宽度; 2j b —土路肩宽度; g i —路拱横坡度; j i —土路肩横坡度; c i —超高横坡度。 3、计算示例 计算全超高段(从HY -QZ -YH )的全超高值 JD2处: (1)内侧行车道的土路肩外侧(A 点)的超高值为: m i b i b B b j j j 63.0)04.0(75.0)04.0()325.1175.0()(2c 11-=-?+-?++=?+?++】(2)内侧行车道的硬路肩外侧(C 点)的超高值为: m i b B b j 60.0)04.0()0.325.1175.0()(c 11-=-?++=?++ (3)内侧行车道外侧边缘的超高值为: m i B b 48.0)04.0()25.1175.0()(c 1-=-?+=?+ (4)外侧行车道外侧边缘的超高值为: m i B b 48.004.0)25.1175.0()(c 1=?+=?+ 1 j b

(5)外侧行车道的硬路肩外侧(C 点)的超高值为: m i b B b j 60.004.0)0.325.1175.0()(c 11=?++=?++ (6)外侧行车道的土路肩外侧(A 点)的超高值为: m i b i b B b j j j 58.0)03.0(75.004.0)325.1175.0()(2c 11=-?+?++=?+?++ 计算超高缓和段(K2+211.433-HY 及YH-K3+044.593)内各桩不同位置的超高值 对JD2: m 000.12018002 .004.002 .02i i 2i x c g c g 0=?+?= += L 计算超高缓和段起点K2+211.433和终点K3+026.593的超高 m 000.120x 0x 0=<= (1)外侧行车道土路肩外侧(A 点)的超高值为: m 32.0-180 02.004.00325.1175.0)03.0(75.0)02.0()325.1175.0(i i x ) b b ()(g c j11211=+??+++-?+-?++=+++++++) ()() (C j j g j L B i b i b B b (2)外侧行车道硬路肩外侧(C 点)的超高值: m 30.0-180 02.004.00325.1175.0)02.0()325.1175.0(i i x ) b b ()(g c j1111=+??+++-?++=++++++) ()() (C g j L B i b B b (3)外侧行车道外侧的超高值: m 24.0-180 02.004.0025.1175.0)02.0()25.1175.0(i i x ) b ()(g c 11=+??++-?+=++++) ()() (C g L B i B b 计算K2+340处断面各点的超高 m 000.120x 128.567m 211.433)(K2-340)K2(x 0=>=++= (1)计算外侧行车道土路肩外侧(A 点)的超高值:

轨道曲线拨道计算(修正版)

绳正法曲线拨道计算 一、基本原则 1. 为了保证曲线两端的直线在拨道后方向不变,既使曲线的转角不变,在整个曲线上的实量正矢之和应该与计划正矢总和相等。既: ① 实量正矢和=计划正矢和。 ② 实量正矢-计划正矢=正矢差,正矢差的总和应该等于0,由此得到的拨道最后的一点正矢差累计也应该等于0。 2. 保证曲线两端的直线位置不变,即:使曲线或拨道控制点的头尾半拨量和拨量通过修正等于0。使正矢实量总和与计划正矢总和相等是调整以及安排计划正矢的唯一依据;使曲线的首尾拨道量等于0是计算拨道量时的基本要求。 二、整正曲线时的两个基本要求 1. 拨量要小 在整正计算的过程中,要考虑现场以及劳力的实际情况尽量减少拨道量和拨道点数量,一般情况下两者成反比,既调整点数越少拨量越大,调整点数越多拨量越小。在桥梁护轨、路堤、路堑、缺碴地段、信号墩台处所应事先调查好可以的拨道量和点号作为调整和计算的依据。在困难条件下一般不得大于40毫米,电气化铁路不得大于30毫米,超过该标准的应根据《安规》要求设置防护和慢行计划。 2. 拨后的曲线要圆顺 拨后的正矢应该符合《维规》中对缓和曲线正矢差、圆曲线连续差和最大最小差的要求,即拨后缓和曲线正矢要尽量的递增递减一致,圆曲线正矢尽量均匀一致。 三、曲线整正计算 ⑴曲线中央点位置(QZ ): ? ? ?? ? ? ? ? ?= +==∑∑∑∑=-i n i i i i f f i f f f QZ 1 1)(现场正矢合计现场正矢到累计合计,i 为测点号,n 为总测点数

⑵圆曲线平均正矢(p f ): 已知曲线半径,R f p 50000= (20米弦)或R f p 12500 =(10米弦) 不知曲线半径,n f f i p ∑= = 测量正矢的测点数 现场正矢合计 式中,n 为相对应的正矢测点数。 ⑶圆曲线分段数M : p i f f M ∑= =圆曲线平均正矢 现场正矢合计 ⑷圆曲线长度(y L ):m M L y 10?= ⑸圆曲线头尾位置(ZY ,YZ ): 2M QZ ZY - = 2M QZ YZ += ⑹缓和曲线的分段数(m ): 10 10h L m == 缓和曲线长度 如不知缓和曲线的长度,可根据公式max 9Hv L h =先求缓和曲线长度。 式中 h L -------缓和曲线长度 H -------曲线超高值 m ax v ------线路容许速度 ⑺缓和曲线始终点位置(ZH ,HY ,YH ,HZ ) 2m ZY ZH - =,2m ZY HY += 2m YZ YH -=,2m YZ HZ += 说明:在圆曲线上设缓和曲线,是将缓和曲线长度的一半放在圆曲线上,另一半放在直线上。所以,圆曲线的直圆点和圆直点分别是两个缓和曲线的中央点。 ⑻无缓和曲线时,整桩上圆曲线始终点正矢:

曲线超高计算

曲线超高计算公式为:h=11.8*V⒉/R h——外轨超高量. V——通过曲线时的列车速度(km/h); R——曲线半径(m)。 实际设置超高时,取其整数到5毫米,最大超高为150毫米.单线上下行速度悬殊时,不超过125毫米. 计算公式适用于改建铁路。 新建铁路推荐使用以下公式: h=7.6Vmax⒉/R 问题来了,原来的11.8为什么变成7.6了,那么这个新建铁路推荐公式是否可用? 还有个问题,缓和曲线内怎么顺完超高,例如现在有R=600,l=100(缓和曲线长),L=947. 02(曲线长),设计速度大概是60km/h吧,那么超高应该是多少,缓和曲线超高分段应该多少米? 我正矢是这么做的,(圆曲线正矢)Fc=50000/R=50000/600=83mm (缓和曲线正矢递减率)fs=Fc/n=83/10=8mm(缓和曲线长l=100m,所以我n=10m),求出fzh=fhz=fs/6=1mm,中间点正矢=对应点*fs。

我现对你提出2个的问题分别作答,不对之处请斧正: 1、实际上列车通过曲线的各次列车不尽相同,故准确表达式应为h=11.8V2/R 为了反映不同行驶速度和不同牵引力重量的列车对外轨超高值的不同要求,均衡内外轨的垂直磨耗,平均速度V=√(∑NGV2/∑NG) 其中N-每昼夜通过列车的相同速度和牵引重量的列车次数; G-列车总重。 在新建线设计和施工中,采用的平均速度V′由下式确定 V=0.8V(Max) 故有: h=7.6V(Max)∧2/R (mm) 其中V(Max)-预计该地段最大行车速度,以Km/h计。 2、不知道其他地方是怎么处理的,沪宁线的缓和曲线段内的超高设置相对比较简单,因为公式中R在缓和曲线段一直是变化的且R均比较大,所以设计院为了简化这个问题,一般采用从直线段0超高到圆曲线段超高(即超高最大),直线渐变的形式处理,即缓和曲线上i点的超高hi=h′*Li/L 其中Li-i点所在位置的曲线长 L-缓和曲线长 h′-圆曲线段超高值 希望能对你有所帮助!

铁路的水平曲线

19.6 铁路的水平曲线 这些包括单曲线、复合曲线和反曲线,用于这些曲线的超高,以及作为在渐进均匀的基础引进超高的一种方法的螺旋曲线。 19.6.1 单曲线 单曲线各处具有恒定的半径。曲度通常由100ft的弦对应的圆心角测量。半径R (ft) 与弯曲角度D通过式 (19.1) 相关联 (19.1) 对于达7°的曲线,沿着曲线测量的长度几乎与用100ft的弦测量的相同。因此,曲线的半径R由式 (19.2) 近似给出 (19.2) 对于大于7°的曲线,半径误差随着弯曲度增大而增大。 在单曲线的中心线位置或其立桩标定线上,如果可能的话,切线(朝其端部) 应当延长到一个交叉点PI,并测量交叉角Δ(图19-4)。从曲线起点TC到PI以及从曲线终点 CT到PI的切线长度T,可以由式 (19.3) 确定 (19.3) 从TC到CT的曲线长度 (ft),由式 (19.4) 近似给出 (19.4) 其中Δ和D以度计。 应当打桩并用大头钉钉住以标记TC和CT。这可以通过在PI处安置一个经纬仪并沿着每条切线目测。然后应当将经纬仪移到TC,瞄准PI,并旋转Δ/2以查对CT。下一步,对于平直曲线每50ft打一根桩。这种测量法应当与100ft的弦一起用于超过7°的曲线。在曲线周围标记测点 (间距100ft) 并在每个测点及加上50ft处打桩是良好的习惯做法。

图19-5 复合曲线 图19-6 反曲线 反曲线 (图19-6) 是两条圆心在共同切线的两侧的单曲线的一个组合。在低速错车和车场轨道中,反曲线是需要的,但是从不应用于干线。应当在主线上的两条反向曲线之间放置一条至少100ft长的短切线,不过更长是更可取的。 19.6.3 曲线的超高 曲线外相对于内轨的超高在干线上是理想的。超高量取决于弯曲的度数和曲线周围的预定运行速度。不过,超高量通常限于7in,以防止列车停在曲线上时过于倾斜。对于锐角曲线,限制车速可能是必要的,使其不至于超过抬高曲线相应的速度太多。 在曲线上将要提供的超高量最大值达7in,是一个判断力的问题,以运行经验的变化为依据。大部分货运铁路有其自己的标准,综合了速度、曲率、失衡量以及螺旋线的长度来决定容许的超高。然而,在货运线路上的客运列车服务影响超高的要求。通常,特别是在单轨线路上,不是所有的列车以相同的速度运行在给定的曲线周围。如果为占优势的交通和速度提供了过小的超高,外轨轨距侧面将出现受到车轮轮缘的过度磨损。如果提供过多的超高,内轨在轨头朝向轨距和电场侧的顶部将出现过度的变形,有时表面起皱。 平衡速度是在弯曲产生的向外离心力恰好被由曲线升高产生的车辆重量向内的分量所平衡时的速度。对于一个给定的弯曲度数和标高,其平衡速度 计算式如下: (19.6) 式中 V——平衡速度 (mi/h); E——外轨的超高 (in); D——弯曲的度数; g——轨距 (ft)。 稍微超过平衡速度在容许速度范围内不会引起旅客的不适或其他不合需要的影响。这个容许速度可以通过对曲线的实际超高增加3in而容易地从式 (19.6) 得到。例如,对于一条带有5in超高和4.708ft轨距的3°曲线,平衡速度是49mi/h。不过,容许速度是62mi/h (对于8in超高的平衡速度)。因而,容许速度有3in的超高欠量。这对于美国普遍使用中的设备类型是可以接受的。这些要求可能随着高速客运列车和“倾斜列车” 的开始使用而变化。对于抗侧倾的客车,稍微更高的欠量是容许的 (美国铁道工程协会论文集,第56卷,P125)。对于一些重心非常高的货运车厢类型 (在钢轨顶部上方超过 96in),一个稍微更小的欠量可能对于预防脱轨是理想的。 19.6.4螺旋线

铁路轨道曲线正矢计算(修正)

第一讲:曲线正矢计算 一、曲线的分类: 目前我段主要曲线类型有: 1、由两端缓和曲线和圆曲线组成的曲线,如正线曲线。容许行车速度高。 2、由圆曲线构成的曲线。如道岔导曲线、附带曲线。 二、圆曲线正矢的计算 1、曲线头尾正好位于起终点桩上 F C=L2/8R L=20M时,F C=50000/R F ZY=F YZ= F C/2 2、曲线头尾不在起终点桩上 ZY前点:Fμ=(FC/2)*(δ/10)2 ZY后点:Fη=FC-{(FC/2)*(τ/10)2} FC:圆曲线正矢δ:ZY点到后点的距离τ:ZY点到前点的距离 三、缓和曲线上整点正矢的计算(起始点正好是测点) (1)缓和曲线头尾的计算: F0=F1/6(缓和曲线起点)F终= F C-F0(缓和曲线终点)(2)缓和曲线中间点正矢的计算: F1=F S= F C/N (N=L0/B:缓和曲线分段数) F2=2 F1 F3=3F1 F I=IF1(I为中间任意点) 四、半点(5米桩)正矢的计算: a)ZH点后半点正矢的计算: F后=25/48*F1 因为ZH点正矢f0=f1/6,很小一般为1~2MM,其前半点很小(小于1MM)因此不作计算。 b)HY(YH)点前半点计划正矢的计算 F前=1/2{[L03+(L0-15)3]/6R L0+[5L0+25]/2R}-(L0-5)3/6R L0 c)HY(YH)点后半点计划正矢的计算 F后=1/2{[ (L0-5)3 -L03]/6R L0+[5L0+175]/2R} d)中间点(5米桩)正矢的计算

F中=(F前+F后)/2 五、测点不在曲线始终点时缓和曲线计划正矢的计算 a)缓和曲线始点(ZH点)处相邻测点的计划正矢 Fμ=αυF S(直缓点外点) αυ=1/6(δ/B)3 Fη=αηF S(直缓点内点) αη=1/6[(1+δ/B)3-(δ/B)3] (2) 缓圆点处相邻测点的计划正矢 Fφ=F C-αυF S (缓圆点外点,缓和曲线之外) Fθ= F C-αηF S (缓圆点内点,缓和曲线之内) (αυ、αη查纵距率表《曲线设备与曲线整正》附表二) (3)缓和曲线中间点各点计划正矢的计算 F I=(F C/L0)L I(I为中间任意点) 说明:B:半弦长δ:缓和曲线内点到ZH、HY(YH)距离 L0:缓和曲线长F C:圆曲线正矢 第二讲:曲线拨道 一、绳正法基本原理 1、基本假定: (1)假定拨道前后两端切线方向不变,或起始点位置不变,即曲线终点拨量为零。 (2)假定曲线上某点拨动时,其相邻点不随之发生移动,拨后钢轨总长不变。 2、由以上假定得出以下基本原理: (1)用等长的弦测量圆曲线正矢,正矢必相等; (2)拨动曲线时,某点的正矢增(减)X,其前后两点的正矢各减少(增加)X/2。 (3)只要铺设时曲线圆顺,养护维修中无论拨成任何不规则曲线,其正矢总和不变,即拨道前后量得的正矢总和相等。

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

公路缓和曲线原理及缓和曲线计算公式

一、缓和曲线 缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。 1.缓和曲线的作用 1)便于驾驶员操纵方向盘 2)乘客的舒适与稳定,减小离心力变化 3)满足超高、加宽缓和段的过渡,利于平稳行车 4)与圆曲线配合得当,增加线形美观 2.缓和曲线的性质 为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。 S=A2/ρ(A:与汽车有关的参数) ρ=C/s C=A2 由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。 3.回旋线基本方程 即用回旋线作为缓和曲线的数学模型。 令:ρ=R,l h=s 则 l h=A2/R

4.缓和曲线最小长度 缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。a1=0,a2=v2/ρ,a s=Δa/t≤0.6 2)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s) 3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度 超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。 发布日期:2012-01-31 作者:李秋生浏览次数:149 4)从视觉上应有平顺感的要求计算缓和曲线最小长度 缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。 《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。 5.直角坐标及要素计算

铁路轨道曲线正矢计算修正

第一讲:曲线正矢计算 一、曲线的分类: 目前我段主要曲线类型有: 1、由两端缓和曲线和圆曲线组成的曲线,如正线曲线.容许行车速度高。 2、由圆曲线构成的曲线。如道岔导曲线、附带曲线. 二、圆曲线正矢的计算 1、曲线头尾正好位于起终点桩上 F C=L2/8R L=20M时,F C=50000/R FZY=FYZ= F C/2 2、曲线头尾不在起终点桩上 ZY前点:Fμ=(FC/2) *(δ/10)2 ZY后点:Fη=FC—{(FC/2)*(τ/10)2} FC:圆曲线正矢δ:ZY点到后点的距离τ:ZY点到前点的距离 三、缓和曲线上整点正矢的计算(起始点正好是测点) (1)缓和曲线头尾的计算: F0=F1/6(缓和曲线起点) F终= FC—F0(缓和曲线终点)(2)缓和曲线中间点正矢的计算: F1=F S=FC/N (N=L0/B:缓和曲线分段数) F2=2 F1 F3=3F1FI=IF1(I为中间任意点) 四、半点(5米桩)正矢的计算: a)ZH点后半点正矢的计算: F后=25/48*F1 因为ZH点正矢f0=f1/6,很小一般为1~2MM,其前半点很小(小于1MM)因此不作计算。 b)HY(YH)点前半点计划正矢的计算 F前=1/2{[L03+(L0-15)3]/6R L0+[5L0+25]/2R}-(L0-5)3/6R L0 c)HY(YH)点后半点计划正矢的计算 F后=1/2{[ (L0-5)3 -L03]/6R L0+[5L0+175]/2R}

d)中间点(5米桩)正矢的计算 F中=(F前+F后)/2 五、测点不在曲线始终点时缓和曲线计划正矢的计算 a)缓和曲线始点(ZH点)处相邻测点的计划正矢 Fμ=αυF S (直缓点外点)αυ=1/6(δ/B)3 Fη=αηF S (直缓点内点)αη=1/6[(1+δ/B)3—(δ/B)3](2)缓圆点处相邻测点的计划正矢 Fφ=F C—αυF S (缓圆点外点,缓和曲线之外) Fθ= F C-αηF S (缓圆点内点,缓和曲线之内) (αυ、αη查纵距率表《曲线设备与曲线整正》附表二) (3)缓和曲线中间点各点计划正矢的计算 FI=(FC/L0)L I(I为中间任意点) 说明:B:半弦长δ:缓和曲线内点到ZH、HY(YH)距离 L0:缓和曲线长FC:圆曲线正矢 第二讲:曲线拨道 一、绳正法基本原理 1、基本假定: (1)假定拨道前后两端切线方向不变,或起始点位置不变,即曲线终点拨量为零。 (2)假定曲线上某点拨动时,其相邻点不随之发生移动,拨后钢轨总长不变。 2、由以上假定得出以下基本原理: (1)用等长的弦测量圆曲线正矢,正矢必相等; (2)拨动曲线时,某点的正矢增(减)X,其前后两点的正矢各减少(增加)X/2。 (3)只要铺设时曲线圆顺,养护维修中无论拨成任何不规则曲线,其正矢总

缓和曲线的计算步骤

缓和曲线的计算步骤 在缓和曲线的计算中,首先要判断缓和曲线的完整性。判断公式为 L 0=C/R 上式中,L 0为缓和曲线的计算长度,C 为缓和曲线参数,C =A 2,A 也是缓和曲线的一个参数,R 为设计给的缓和曲线起、终点半径中的最小值。若计算出来的L 0与设计给的缓和曲线长度l 一样,那么该曲线即是完整的,若L 0比设计给的缓和曲线长度要大,那么设计给的缓和曲线就不是完整的。 下面就完整缓和曲线与不完整缓和曲线的计算方法作一个说明。 一、完整缓和曲线的计算方法: 完整缓和曲线有一个特征,就是它的起点或终点半径中有一个是无穷大(该点不是ZH 点就一定是HZ 点),我们称的“缓和曲线起点”就从这个半径为无穷大的点开始的。 计算过程如下: 1、根据交点(JD )的桩号推求直缓点、缓圆点、曲中点、圆缓点、缓直点的桩号。有时设计已经给出这些数据。 2、 建立切线坐标系,求曲线中线点的切线坐标。 切线坐标系,即以ZH 点(或HZ )为原点、以该点切线方向为X1轴的坐标系。为了使第一缓和曲线和第二缓和曲线具有通式,我们在ZH 点和HZ 点采用同样的左手坐标系(图1)。 在缓和曲线段,中线点切线坐标 X 1=l -l 5/40C 2+l 9/3456C 4+… Y 1=l 3/6C- l 7/336C 3+l 11/42240C 5+… (1) 式中 l 为ZH 或HZ 至所求点的曲线长。 (1)式是第一缓和曲线和第二缓和曲线的计算通式,仅注意在计算第二缓和曲线时计算的方向相反,C 的符号也相反。 在通常情况下,(1)式取前两项即可满足精度要求;但是当曲线半径过小时,必须顾及第三项,例如匝道或试车场以及山区公路可能有这种情况。

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

铁路弯道中的力学知识

铁路弯道中的力学知识 在修筑铁路时,常常因地理环境和工程造价等因素的影响,在线路中设置铁路弯道,但弯道设置中,需要应用力学知识对弯道的几何参数进行分析,如果设计不当,会对形车安全产生影响,甚至带来严重的后果。 一、车辆通过弯道时车辆自身的离心力 机车车辆在曲线上行驶时,由于惯性离心力作用,将机车车辆推向外股钢轨,加大了外轨钢轨的压力,使旅客产生不适,货物移位等。 列车以速度v沿半径R的圆曲线运行时,产生离心力F: F=mv2/R=Gv2/gR (公式1)式中G—车辆重力(KN); v—行车速度(m/s); R—曲线半径(m); g—重力加速度,g=9.8m/s2; 由公式1可知,列车通过曲线时,离心力的大小由三大因素影响: ①车辆自重;②车辆行车速度;③铁路曲线半径。 二、对曲线行驶中的离心力应对措施 1、铁路曲线半径 为了保证列车的行驶安全,在铁路的设计和建造时,国家《修规》对不同速度等级的铁路规定了车辆可以安全通过的圆曲线的最小半径,高速铁路和平原地区干线铁路一般比较平直,用较大的曲线半径;山区铁路、工厂支线、车辆段道岔的咽喉区、编组站、城市地铁等受地形的制约较大的地段,只能使用较小的曲线半径,列车必须限速通过。

2、曲线超高与限速结合 为了平衡列车曲线行驶中所产生的离心力,需要把曲线外轨适当抬高,使机车车辆的自身重力产生一个向心的水平分力,以抵消离心惯性力,达到内外两股钢轨受力均匀和垂直磨耗均匀等,满足旅客舒适感,提高线路的稳定性和安全性。 外轨超高是指曲线外轨顶面与内轨顶面水平高度之差。在设置外轨超高时,主要有外轨提高法和线路中心高度不变法两种方法。外轨提高法是保持内轨标高不变而只抬高外轨的方法。线路中心高度不变法是内外轨分别各降低和抬高超高值一半而保证线路中心标高不变的方法。 曲线超高的大小由列车通过时离心力的大小确定。由于离心力与行车速度的平方成正比,与曲线半径大小成反比,因此曲线半径越小,行车速度越高,则离心力越大,所需设置的超高就越大。在曲线半径R(m)和行车速度υ(km/h)都为已知的情况下,根据列车横向受力平衡条件,可推导出铁路曲线超高h(mm)的计算公式为: h=11.8v2/R (公式2)

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

相关主题
文本预览
相关文档 最新文档