当前位置:文档之家› 结构阻尼比心得

结构阻尼比心得

结构阻尼比心得

结构阻尼比心得

结构阻尼试对振动结构所消耗的能量的测量,通常用一次振动的能量耗散率来表示结构阻尼的强弱。其中阻力分为两种:一种是外部介质的阻力,比如空气和液体的阻力、支承的魔刹等;另一种则来源于物体内部的作用,比如材料分子之间的摩擦和黏着性等。

阻尼的理论我们一般用于抗震、桥梁上面。我们直接指定对桥塔。主梁、边墩等重要部位反应起主要作用的一些振型频率的阻尼比,而对其余频率采用线性内插的方法测定,这样就可以形成一个阻尼比矩阵。因此,这样做能够保证计算的正确性,而且并不繁琐,此对,以实测试验数据作为基础,更增加了其准确性。普通规律是阻尼比越小,地震影响系数越大,计算钢结构时一定要修改阻尼比隐含值。(satwe)

阻尼比能显著减小结构的地震反应;抗震设计反应谱曲线体现了结构阻尼比的影响;总之,阻尼比越大,结构震动衰减越快.

阻尼就当阻力去想,结构振动

时,要是没有阻力,内在的和

外在的,就会一直振动下去,

由于有了阻尼,可以是空气摩

擦,材料摩擦等这些难以量化

的因素,就可以逐渐停止下来,

阻尼越小,意味着结构振得越

强烈,加速度越大,结构受到

的水平力越大。阻尼比的大小

反映结构消耗和吸收地震能力

的大小,不同结构或者同一个

结构在不同的受力阶段其阻尼

比有所不同

单自由度系统固有频率和阻尼比的测定

单自由度系统固有频率和阻尼比的测定实验 一、实验内容 1、学习分析系统自由衰减振动的波形; 2、验证固有频率的存在; 3、由衰减振动波形确定系统固有频率和阻尼比; 二、实验设备 振动与控制实验设备、位移传感器、测振仪、计算机与分析软件 三、实验原理 振动与控制实验设备如右上方图所示,单自由度系统的力学模型如右下方图所示。当给质量M 一定初始扰动时,系统作自由衰减振动,其运动微分方程为: 020222 22=++=++x dt dx n dt x d Kx dt dx C dt x d M ω和 或 022 22=++x dt dx dt x d ωξω (1) 式中,为阻尼比。 为阻尼系数,为系统固有频率,ωξω/2//n M C n M K ===

) 3(1-2)sin(,1对于小阻尼情形2 2211001ξωωωω??ωξ-==---+=<-n A t Ae x m 并且有: 衰减振动圆频率。 初相位, 系统初始振幅, 式中) (其方程有解如下: 设t=0 时,系统的位置和速度分别为x 0和v 0 , 则 ) 5()(tan ) 4()(2 002 202 22 002 0nx v n x n nx v x A +-= -++ =ω?ω 其衰减振动有如下特点: 1、振动周期 大于无阻尼时的自由振动周期,即T 1>T 2 ) 7(111) 6(112222 102 2 2 21 1ξξ ξ ωπ ωπ ωπ -= = -= -= -= = T T f T n T 系统固有频率为: 2、振幅按指数函数衰减,设相邻两次振动的振幅分别为A i 和A i+1,则减幅系数为: ω ξπωδηδηηηδηn T n M n C T n nT e A A j nT e A A nT i i j nT i i =+== = ==== ==== ++,)2(,2,j 11j ln 10,) 9(ln )8(212j 1 j j j j j 11 1 1 则: ) ()(则 振幅之比设为个周期的两次振动,其另外,相隔对数减幅系数

ansys提阻尼比

请教,ANSYS模态分析后,如何得到各阶模态的模态阻尼比 *get entity=mode ,item1=damp 请教1楼,命令流*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM 中其他几项分别如何设置,如Par,ENTNUM,等,另外输入命令流如何显示其模态阻尼比,本人初学命令流,谢谢! par是随便一个参数名,其他的默认,,,只有逗号即可, 在后在参数里看 ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍. 一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。因为前者使用节点坐标,而后者使用总体坐标. 1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为: 阻尼矩阵为下面的各阻尼形式之和: α为常值质量阻尼(α阻尼)(ALPHAD命令) β为常值刚度阻尼(β阻尼)(BETA命令) ξ为常值阻尼比,f为当前的频率(DMPRAT命令) βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令) [C]为单元阻尼矩阵(支持该形式阻尼的单元) where: [C] = structure damping matrix α = mass matrix multiplier (input on ALPHAD command) [M] = structure mass matrix β = stiffness matrix multiplier (input on BETAD command) βc = varia ble stiffness matrix multiplier (see Equation 15–23) [K] = structure stiffness matrix Nm = number of materials with DAMP or DMPR input = stiffness matrix multiplier for material j (input as DAMP on MP command) = constant (frequency-independent) stiffness matrix coefficient for material j (input as DMPR on MP command) Ω = circular excitation frequency Kj = portion of structure stiffness matrix based on material j Ne = number of elements with specified damping Ck = element damping matrix Cξ = fre quency-dependent damping matrix (see Equation 15–21) 2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:

结构阻尼比对单管塔风荷载计算的影响分析

结构阻尼比对单管塔风荷载计算的影响分析 结构阻尼比对单管塔风荷载计算的影响分析结构阻尼比对单管塔风荷载计算的影响分析屠海明1张帆2 (1.同济大学建筑设计研究院(集团)有限公司上海200092;2.中国铁塔股份有限公司北京100142)摘要:为了分析结构阻尼比对单管塔风荷载计算的影响,本文进行了阻尼比不同取值时风振系数的计算对比。结果表明风振系数随着结构阻尼比的增加而显著下降。然后根据上海某单管塔实测得到的阻尼比与规范规定的阻尼比取值,分别对该单管塔风荷载进行了计算对比。实测的阻尼比大于规范规定的取值,相应计算得到的风荷载也明显降低。这给单管塔的优化设计提供了参考依据。关键词:阻尼比单管塔风荷载引言近年来随着通信基站建设的发展,对通信塔的专业化、标准化提出了更高的要求。对于单管塔的设计和制作而言,起控制作用的荷载是风荷载,得到相对准确的风荷载设计值,对于每年数万座标准化生产的单管塔而言,具有很重要的经济意义。本文作者[1]根据2012年调整前后的荷载规范,对高耸结构的风荷载进行了分析与对比,并提出了《高耸结构设计规范》(GB 50135-2006)中风荷载部分条文的修改意见。但是以上分析没有专门涉及结构阻尼比对于风荷载计算的影响分析。同济大学何敏娟[2]等采用激振法对336m黑龙江电

视塔进行了模态参数的实测和分析,实测结构一阶阻尼比为0.028,大于规范规定值0.02。同济大学闫祥梅等[3]对位于河北的辛安-衡水500kV线路工程的几座直线输电塔转角塔进行了环境脉动下的动力测试。同济大学设计院梁峰[4]对上海新国际博览中心展馆两侧的30m高钢结构灯杆进行 了微风振动下的动力测试,得到了灯杆的自振频率和阻尼比。本文作者对上海移动两座单管塔进行了微风振动下的动力测试,并根据实测结果,与规范规定值对比,探讨结构阻尼比对单管塔风荷载计算的影响。 1 阻尼比对风荷载计算的影响结构阻尼比用于表达结构阻尼的大小,是描述结构在振动过程中能量耗散的术语。引起结构能量耗散的因素很多,主要有:材料阻尼,周围介质对振动的阻尼,节点、支座连接处的阻尼等。结构阻尼对结构效应的影响体现在结构的风致振动中,对于高耸结构的风振分析,比较准确的是采用频率域和时间域的动力分析方法。实际工程中,为了方便应用,按照荷载规范计算等效风荷载,用静力分析方法计算结构风效应。因此,结构阻尼比对风荷载计算的影响,主要体现在风振系数的计算上。《建筑结构荷载规范》(GB 50009-2012)中风振系数的表达式为:其中:g为峰值因子;I10为10m高名义湍流强度;Bz为背景分量因子;共振分量因子R表示与频率有关的积分项,可按下列公式计算:其中:ζ1为结构阻尼比;f1为结构第1阶自振频率;kw为

基于应变能的各振型阻尼比的计算方法

基于应变能的各振型阻尼比的计算方法 当结构中使用不同的材料或者设置了阻尼器时,各单元的阻尼特性可能会不一样,并且阻尼矩阵为非古典阻尼矩阵,不能按常规方法分离各模态。而这时在时程分析中要使用振型叠加法,需要使用基于应变能的阻尼比计算方法。 具有粘性阻尼特性的单自由度振动体系的阻尼比,可以定义为谐振动(harmonic motion)中的消散能(dissipated energy)和结构中储藏的应变能(strain energy)的比值。 4D S E E ξπ= 在此 E D : 消散能 E S : 应变能 在多自由度体系中,计算某单元的消散能和应变能时使用两个假定。 首先假定结构的变形与振型形状成比例。第i 个振型的单元节点的位移和速度向量如下。 () (),,,,sin cos i n i n i i i n i i n i i t t ωθωωθ=+=+u φu φ 在此, ,i n u : 第i 振型中第n 个单元的位移 ,i n u : 第i 振型中第n 个单元的速度 ?i ,n : 第n 个单元的相应自由度的第i 振型形状 ωi : 第i 振型的固有圆频率 θi : 第i 振型的位相角(phase angle) 其次,假定单元的阻尼与单元的刚度成比例。 2n n n i h ω= C K 在此, C n : 第n 个单元的阻尼矩阵 K n : 第n 个单元的刚度矩阵 h n : 第n 个单元的阻尼比 基于上述假定,单元的消散能和应变能的计算如下: ()(),,,,,,,,,211,22T T D i n n i n n i n n i n T T S i n n i n i n n i n E i n h E i n ππ====u C u φK φu K u φK φ 在此, E D (i , n ) : 第i 振型的第n 个单元的消散能 E S (i , n ) : 第i 振型的第n 个单元的应变能 全体结构的第i 振型的阻尼比可以使用所有单元的第i 振型的能量的和来计算。

悬臂梁一阶固有频率及阻尼系数测试

说明:在下面的数据处理中,如1 A,11d T,1δ,1ξ,1n T,1nω:表示第一次实 1 验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。第二 次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平 方,三次方会引起误会,请老师见谅!! Ap0308104 陈2006-7-1 实验题目:悬臂梁一阶固有频率及阻尼系数测试 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 4、阻尼比的测定 自由衰减法: 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。一阶固有频率和阻尼比的理论计算如下:

11 3 3 44 4 2 3.515(1) 2=210 ;70;4;285;7800 ; ,12 12 ,, Ix = 11.43 c m Iy= 0.04 c m 0.004 2.810,,1x y y f k g E p a b m m h m m L m m m a b a b I I I m m E L π ρρ-----------?===== = ?=?固x y = 式惯性矩:把数据代入I 后求得 载面积:S =b h =0.07m 把S 和I 及等数据代入()式, 求得本41.65() H Z 固理悬臂梁理论固有频率f = 阻尼比计算如下: 2 2 2 1 111 220, 2,........ln , ,22;n d n n n d n d n T i i i j j i i i i j i i i j i n d i j n d n d d d d x d x c k x d t d t c e A A A A A T A T T ξωξωωξωωωξωωηη δξωωωωωπδπξ++ -++ +++ + ++=++===≈== ? ?? ==≈2 二阶系统的特征方程为S 微分方程:m 当很少时,可以把。A 减幅系数=而A A A A A 1则:= j 又因为所以==,所以=即可知δξπ = 2 在这个实验中,我们使用的是自由衰减法,以下是实验应该得到的曲线样本及物理模型。

建筑结构阻尼比

建筑结构阻尼比 一、阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有:(1)材料阻尼、这是能量耗散的主要原因。 (2)周围介质对振动的阻尼。 (3)节点、支座联接处的阻尼 (4)通过支座基础散失一部分能量。 结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。在等效秥滞模态阻尼中,混凝土结构刚性较大,而且破坏过程(钢筋屈服和混凝土破碎)中也能够吸收大量能量;钢结构较为柔软主要通过弹塑性变形吸收能量,较混凝土而言脆断的可能性低得多,变形量也较大,一般认为10层以下的钢结构建筑物基本不会发生倒塌事故。综上可以看出,钢结构体系变形大,破环程度小是其优势,钢结构抗震方面的优势更多是从材料较轻,承载力高,地震过程中弹塑性变形较大,基本不会发生断裂,构造措施(如柱间支撑)等方面表现出来的。 二、现行设计规范关于结构阻尼比的取值内容: GB50011-2010建筑抗震设计规范规定: 第5.1.5条:建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和形状参数应符合下列要求: 1 除有专门规定外,建筑结构的阻尼比应取0.05,……。 其中专门规定有: 8 多层和高层钢结构房屋中8.2 计算要点中第8.2.2条钢结构抗震计算的阻尼比宜符合下列规定: 1 多遇地震下的计算,高度不大于50m时可取0.04;高度大于50m且小于200m时,可取0.03;高度不小于200m时,宜取0.02。 2 当偏心支撑框架部分承担的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其阻尼比可比本条1款相应增加0.005。 3 在罕遇地震下的弹塑性分析,阻尼比可取0.05。 9 单层工业厂房中9.2 单层钢结构厂房中第9.2.5条····单层厂房的阻尼比,可依据屋盖和围护墙的类型,取0.045~0.05。 其中条文说明:9.2.5 通常设计时,单层钢结构厂房的阻尼比与混凝土柱厂房相同。本次修订,考虑到轻型围护的单层钢结构厂房,在弹性状态工作的阻尼比较小,根据单层、多层到高层钢结构房屋的阻尼比由大到小变化的规律,建议阻尼比按屋盖和围护墙的类型区别对待。 10 空旷房屋和大跨屋盖建筑中第10.2.8 屋盖钢结构和下部支承结构协同分析时,阻尼比应符合下列规定: 1 当下部支承结构为钢结构或屋盖直接支承在地面时,阻尼比可取0.02。 2 当下部支承结构为混凝土结构时,阻尼比可取0.025~0.035。 其中条文说明:本条规定了整体、协同计算时的阻尼比取值。 屋盖钢结构和下部混凝土支承结构的阻尼比不伺,协同分析时阻尼比取值方面的研究较少。

几种阻尼比识别的方法1

几种参数识别的方法 A 基于时域的参数识别方法推导 A1 Ibrahim 时域方法 Irrahim 时域识别方法是需要测量自由响应信号或者脉冲信号。系统为二阶线性系统,被测自由响应信号为x(t),二阶线性系统为复指数之和。 )()(~)(t n t p t x +?ψ= (A-1) []***ψψψψψψ=ψN N ,,,,,,,2121 (A-2) {} t t t t t t N N e e e e e e t p ***=λλλλλλ,,,,,,,)(~2121 (A-3) 其中n(t)为输出噪音信号,N 是振动模态数,它由被测的二阶系统和通过模拟低通滤波截断频率所共同决定,Ψi 和λi 为二阶系统的本征矢量和特征值,m 为测量点数,其中m=1。 通常认为m 等于N ,N 为振动模态数量,为求出)(~ t p ,它为2N*1矩阵,必须在时域上扩展响应信号矢量,例如,在t+T3时刻,响应信号可表示为: )()(~),()(333131t n t p e e diag T t x T T +??ψ=+??*λλ (A-4) 其中n3(t )为在t+T3时刻的噪音矢量,联合公式1和4可得出: )()(~~)(t N t p t u +?ψ= (A-5) 其中: ???? ??+=)()()(3T t x t x t u (A-6) ?? ?????ψψ=ψ??*),(~3131T T e e diag λλ (A-7) 或者, [] ***ψψψψψψ=ψN N ~,,~,~,~,,~,~~2121 ? ?????=)()()(3t n t n t N (A-8) 同样的,可以很容易地得出以下公式: )()(~),(~)(113131t N t p e e diag T t u T T +??ψ=+λλ (A-9) 看公式5,假设复指数是线性独立的,我们可以得到: )(~)(~)(~11t N t u t p ?ψ-?ψ=-- (A-10) 将公式10代到9中,我么和可以得到: )()(~),(~)(~),(~)(111131313131t N t N e e diag t u e e diag T t u T T T T +?ψ??ψ-?ψ??ψ=+-??-??**λλλλ

【免费下载】单自由度系统自由衰减振动及固有频率阻尼比的测定

图1 衰减振动波形、对经过半周期为基准的阻尼计算每经过半周期的振幅的比值为一常量,2121)2(1D D TD TD t t K K e e Ae Ae A A -+--+====πεεε?这个比例系数 表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数 常用来表示 ??振幅的减小速率。如果用衰减系数的自然对数来表示振幅的衰减则更加方便。?、管通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含、电气课件中对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试、电气设备调试高中资料电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒

砝码为3kg 的图像 砝码为 3.5kg的图像、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

几种阻尼比识别的方法

几种参数识别的方法 B .基于多输出时域识别方法 B1 随机衰减 随机衰减方法是一种非常典型的当输入未知识别模态参数方法。由于识别结果,这种方法实际上是一种无参数识别方法,即随机衰减符号差,是对特定的初始条件的自由衰减响应。得到的随机衰减图形可以用来识别系统模态参数。去相关是这一方法的基本理论,一个简单的导数如下: 对于一个单输入单输出的线性系统,任何力输入的系统响应可以这么解释 ??-+?+?=t d f t h t V x t D x t x 0 )()()()0()()0()(τττ (B-1) 其中D(t)是对单位初始位移的响应,V (t )是对单位初始电压的响应,h (t )是脉冲响 应,f (t )是外部输入的力,假设外部输入力f (t )是一个定常的零均值的随机过程,可以证实x (t )也是一个定常的零均值过程,也证明了x (t )的初始条件为0,考虑到系统响应x(t-t i )中的x(t i )要满足以下条件: +-≤≤A t x A i )( (B-2) 由于系统假设是线性的,整个系统的响应包含了3部分: 1. x(t i )的系统响应 2. )(i t x 的系统响应 3.f (t )的系统响应,其中f (t )假设是随机的并且是定常的,即: ??-+-?+-?=-t t i i i i i i d f t h t t V t x t t D t x t t x τττ)()()()()()()( (B-3) 假设X 是x(t-t i )的随机过程,F 是f(t-t i )的随机过程, x (t )的平均值为: [][] τ ττd F E t h A x A x E A x A x E t X E t ??-+≤≤+≤≤=?+-+-0)]([)()0(|)0()0(|)0()]([ (B-4) 由于x (t )是一个平均值为0的定常随机过程,)(i t x 也是一个平均值为0的定常随机系统并且与x (t )是独立的,因此: 0]|)0([)]0([=≤≤=+-A x A x E x E (B-5) 假设 -+-≥≤≤=A A t x A x E A ])(|)0([ (B-6) 且 τττd F E t h t b t ??-=?0 )]([)()( (B-7) X (t )的期望值为: )()()]([t b t D A t x E +?= (B-8) 如果f (t )是零均值、定常、白噪声随机过程,它与x (t )是相互独立的,因此输入的

实验指导书及实验报告-自由衰减法测量单自由度系统的固有频率和阻尼比

实验报告1:自由衰减法测量单自由度系统的固有频率和阻尼比 姓名:刘博恒学号:1252227专业:车辆工程(汽车) 班级:12级 日期:2014年12月25日组内成员张天河、刘嘉锐、刘博恒、马力、孙贤超、唐鑫 一、实验目的 1.了解单自由度自由衰减振动的有关概念。 2.学会用数据采集仪记录单自由度系统自由衰减振动的波形。 3.学会根据自由衰减振动波形确定系统的固有频率和阻尼比。 二、实验原理 由振动理论可知,一个单自由度质量-弹簧-阻尼系统,其质量为m(kg),弹簧刚度为K(N m ?),粘性阻尼系数为r(N?m s?)。当质量上承受初始条件(t=0时,位移x=x0,速度x?=x?0)激扰时,将作自由衰减振动。 在弱阻尼条件下其位移响应为: x=Ae?nt sin(√p2?n2t+φ) 式中: n=r 2m 为衰减系数(rad/s) p=√K m 为固有圆频率(rad/s) A=√x?02+2nx?0x0+p2x02 p2?n2 为响应幅值(m) φ=tan?1x0√p2?n2 x?0+nx0 为响应的相位角(rad) 引入: 阻尼比ξ=n p 对数衰减比δ=ln A1 A3 则有:n=δ T d 而T d=1 f d = √p2?n2 f d=p d 2π =√p2?n2 2π 为衰减振动的频率,p d= √p2?n2为衰减振动的圆频率。 在计算对数衰减比时,考虑到传感器的误差及系统本身迟滞,振动的平衡点位置可能不为0,因此可以使用相邻周期的峰峰值来代替振幅值计算,即δ=ln A1+A2 A3+A4 。 从衰减振动的响应曲线上可直接测量出δ、T d,然后根据n=δ T d 可计算出n;T d=1 f d = √p22计算出p;ξ=n p 可计算出ξ;n=r 2m 计算出r;f0=p 2π =1 2π √K m 计算出无阻尼时系统的 固有频率f0;T0=1 f =2π?√m K 计算出无阻尼时系统的固有周期T0。 三、实验方法 1)将系统安装成单自由度无阻尼系统,在质量块的侧臂有一个“测量平面”,用于电涡流传感器拾振。将电涡流传感器对准该平面,调节其初始位置,使得位移测量仪在ORIG 位置时限制值在1.00mm至1.5mm范围内。 2)在软件中选中“单自由度系统-用自由衰减法测量系统参数”项目,软件左侧的采集设置默认即可。打开一个时间波形观察图,设置均为默认无需修改。设置完毕后开始采集。 3)用手轻推质量块,或者用力锤轻敲质量块,采集一段信号进行分析。让质量块自由衰减时所给的力应对准质量块中心位置,否则波形可能畸变。 4)利用光标读出多个周期的时间、振幅坐标并记录,计算其对数衰减比和周期的平均值,进而计算出固有频率、阻尼比。 5)将系统安装成单自由度有阻尼系统,重复上述步骤。

阻尼比的概念

阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。 阻尼比在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间. ζ <1的单自由度系统自由振动下的位移 u(t) = exp(-ζwn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定. 阻尼比的来源及阻尼比影响因素 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有[1](1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。 阻尼比的计算 对于小阻尼情况[2]: 1) 阻尼比可以用定义来计算,及ksai=C/C0; 2) ksai=C/(2*m*w) % w为结构圆频率 3) ksai=ita/2 % ita 为材料损耗系数 4) ksai=1/2/Qmax % Qmax 为共振点放大比,无量纲 5) ksai=delta/2/pi % delta是对数衰减率,无量纲 6) ksai=Ed/W/2/pi % 损耗能与机械能之比再除以2pi 阻尼比的取值 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(虾肝蚁胆:单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶振型的阻尼比的值。

单自由度系统自由衰减振动及固有频率、阻尼比.doc

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η= d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξ πξ - δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面,选择单通道按钮。 进入单通道示波状态进行波形和频谱同时示波,见图2。 3、在采样参数中设置好采样频率400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

建筑结构论文

课程名称:建筑结构概论任课教师:黄俐 建筑结构中隔震减震加固技术的应用 —在特大地震后的应用姓名王嘉荣 学号 班级 13级房产4班 专业土管系房地产专业 论文提交时间:2016 年7 月1日 摘要 随着近些年来地震灾害的多发,造成了巨大的人民生命财产损失人们对于建筑结构设计中的抗震的设计,隔震减震措施越来越重视。本文就结合当前的地震灾害的情况,论述建筑结构设计中的隔震减震措施,以及灾后减震加固技术的应用。 关键词隔震消能减震特大地震 1.引言 在过去近十年里,四川汶川地震、青海玉树地震以及世界各地接连不断的地震都给社会造成了巨大的损失,为此在建筑结构中是否充分考虑抗震问题,是否合理运用了相关的减震隔震加固技术对灾后房屋加固也成为事关人民生命财产安全和国家安全的重要问题。建筑结构中的抗震设计尤为重要。隔震和消能减震是建筑结构减轻地震受损的有效技术。又为了适应我国经济发展的需要,有条件的在隔震和消能减震加固技术方面加大投入力度,尽快得到一个能有效降低地震损失的抗震体系,保障人民人身和财产安全。 本文以地震作为一个切入点,以特大地震后国家采取的消能减震加固技术作为实例,来探讨消能减震加固技术在未来建筑结构中隔震减震设计的运用。

2. 消能减震体系和隔震体系概述 一般建筑减震是通过巧妙应用建筑的阻尼与地震能量之间的关系来实施的。建筑的阻尼的增加能够对地震能量起到较大的消耗作用,减震措施止是通过增加建筑的阻尼来实现消耗地震能量的目的,使建筑的主体结构受到地震的破坏得到避免和减轻。关于对消能部件个数的设置、具体位置设置等布置问题,一般需要经过仔细分析和计算。通常在结构的两个主轴方向设置消能构件,能够达到附加两个方向的阻尼及刚度的目的。少数情况在结构变形较大的位置设置消能结构,使整个建筑的阻尼得到均衡,使地震能量被分散,从而提高整个建筑物抗震性能,达到保证建筑物安全的目的。 2.1. 消能减震体系 消能减震设计指在房屋结构中设置特别的机构或效能元件,通过其局部变形提供附加阻尼,以消耗输入上部结构的地震能量,以确保主体结构的安全,进而使主体结构构件在罕见地震中不发生严重破坏。消能减震的目的是提高结构的抗震能力,使建筑在大震下破坏较轻,震后能很快恢复正常使用,遭遇强震时建筑不倒塌。从能量守恒的角度,消能减震的基本原理可以阐述如下,及结构在地震中任意时刻的能量方程: [1] 消能减震方程:Ea Es Ed Er Ein +++= 式中: Ein —地震过程中输入结构体系的地震能量; Er —结构体系地震反应的能量,即结构体系震动的动能和势能; Ed —结构体系自身阻尼消耗的能量(一般不超过5%); Es —主体结构或承重构件的非弹性变形(或损坏)所消耗的能量; Ea —消能(阻尼)装置或耗能元件耗散或吸收的能量。 消能减震结构中附加的消能减震原件或装置一般统称为消能器。根据消能器耗能机理的不同,可分为位移相关型消能器、速度相关型消能器和其他消能器;位移相关型消能器通常用塑性变形性能好的材料制成,在地震往复作用下通过其良好的塑性滞回消能能力来耗散地震能量,消能器耗散的地震能量与消能器变形量相关;速度相关型消能器通常由粘滞或粘弹性材料制成,在地震往复作用下利用粘滞和粘弹性材料的

题目3:阻尼比确定

题目3:阻尼比确定 1. 阻尼 阻尼是指任何振动系统在振动中,由于外界作用和系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性阻尼模型,是工程中应用最广泛的阻尼模型。粘性阻尼模型能较好地模拟空气、水等流体对振动的阻碍作用。 粘性阻尼可表示为以下式子: 式中 为阻尼力( ), 表示振子的运动速度( ), 是表征阻尼大小的常数,称为阻尼系数( )。 理想的弹簧阻尼器振子系统如下图所示。 分析其受力分别有: 弹性力(k 为弹簧的劲度系数,x 为振子偏离平衡位置的位移): F s = ? kx 阻尼力(c 为阻尼系数,v 为振子速度): 2. 阻尼比 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程: 其中a 为加速度。 上面得到的系统振动方程可写成如下形式,问题归结为求解位移x 关于时间t 函数的二阶常微分方程: 将方程改写成下面的形式: 然后为求解以上的方程,定义两个新参量: 上面定义的第一个参量n ω,称为系统的(无阻尼状态下的)固有频率。第二个参量ζ,称 cv F -=m N ?m/s s/m N ?F v c

为阻尼比。根据定义,固有频率具有角速度的量纲,而阻尼比为无量纲参量。阻尼比也定义为实际的粘性阻尼系数c 与临界阻尼系数r c 之比。ζ= 1时,此时的阻尼系数称为临界阻尼系数r c 。 3. 阻尼比计算公式 由上述分析可知,微分方程化为: 根据经验,假设方程解的形式为 其中参数γ一般为复数。 将假设解的形式代入振动微分方程,得到关于γ的特征方程: 解得γ为: 当0 <ζ< 1时,运动方程的解可写成: 其中 D D D T ωπ ξωω212 = -=, 经过一个周期D T 后,相邻两个振幅1+i i A A 和的比值为 D D i i T T t t i i e Ae Ae A A ξωξωξω==+--+) (1 由此可得 D i i T A A ωπ ξωξω2ln 1==+ 如果2.0<ξ,则 1≈ω ωD ,而 1 ln 21 +≈ i i A A πξ 同样,用n i i A A +和表是两个相隔n 个周期的振幅,可得

关于结构阻尼的认识

关于结构阻尼的认识 阻尼是反映结构体系振动过程中能量耗散特征的参数。实际结构振动时耗能是多方面的,具体型式相当复杂。而且耗能不象构件尺寸、结构质量、刚度等有明确的、直接的测量手段和相应的分析方法,使得阻尼问题难以采用精细的理论分析方法,而主要是采用宏观总体表达的方法。结构振动时耗能因素较多,但影响程度有所不同。一般认为振动过程中耗能因素有如下几方面:(1)结构材料内摩擦;(2)连接处干摩擦;(3)空气阻尼;4)地基土内摩擦;(5)地基中波的辐射耗能。当结构体系进入弹塑性状态时,构件的塑性耗能将远大于上述各项耗能,一般分析中不将塑性耗能纳入阻尼耗能,而是单独加以表达,地基土产生塑性变形时亦将耗散较多的机械能,是否作为阻尼考虑则视情况不同而定。对于大多数建筑结构而言,阻尼以考虑上部阻尼为主(偏于保守)。 目前公认的结沦是,以上部结构为主的结构体系具有在相当宽的频率范围内振型阻尼比不变的特征。而地下结构以及动力机器的大块式基础等的阻尼比则随频率的增加而增加,符合粘滞阻尼规律。根据这一结论,目前一般考虑的上部结构阻尼耗能因素中遗漏了一个重要方面,那就是填充墙围护部分内部耗能及其与主体间的摩擦耗能。笔者认为,上部结构阻尼耗能中,干摩擦耗既是最主要的部分,因为空气阻尼耗能只占总阻尼耗能的很小部分,一般为总阻尼的1%左右,显然可不考虑。如果以材料内摩擦为主,由材料科学研究可知,材料内摩擦耗能源于振动过程中原子

换位所引起的能量损耗,这一过程常称为弛豫,与振动频率是密切相关的。频率太高,原子换位来不及发生,无损耗;而频率太低,弛豫完全能完成,亦无损耗。只有与弛豫过程有适当配合的应力频率,才会发生最大的内耗。内摩擦耗能的特性说明,上部结构中材料内摩擦耗能不是阻尼耗能的主要部分。上部结构中阻尼耗能以于摩擦耗能为主,因此必然得出振动一周耗能与频率无关但与最大位移有关的结论.而这正是公认的上部结构阻尼实验和实测的结论。即使是考虑钢筋混凝土构件开裂后裂缝面相互运动导致阻尼提高,其实质显然也是于摩擦,而非材料内摩擦。材料内摩擦是微观意义上的摩擦,而裂缝后混凝土构件内的摩擦是宏观意义上的摩擦,应届于干摩擦。 根据上述分析,目前一般采用的动力分析模型是不可能细致表达阻尼特征的。因为一般结构分析总是着限于主要的结构构件,而将填充围护等附属部分作为质量、荷载考虑,但实际振动过程中,阻尼耗能恰恰主要发生于这些附属部分内部及其与主体构件间的摩擦,一般的阻尼研究和实验往往也忽略了附属部分的影响,因而结论不尽合理。 上部结构阻尼的实质是以连接及附属部分内部及其与主体结构间于摩擦耗能为主的耗能机制.阻尼耗能显然应与质量(反映附属部分大小)和刚度(反映位移大小)有关(于摩擦的摩擦系数则应与质量和刚度均有关)。 明确了阻尼的实质,还需要寻求合理的表达方法。经过近百年的

汽车悬挂系统的固有频率和阻尼比测量

汽车悬挂系统的固有频率和阻尼比测量汽车悬挂系统的固有频率和阻尼比测量一、测量仪器 DH5902坚固型动态数据采集系统,DH105E加速度传感器,DHDAS基本控制分析软件,阻尼比计算软件。 二、测量方法 、试验在汽车满载时进行。根据需要可补充空载时的试验。试验前称量汽1 车总质量及前、后轴的质量。 2、DH105E加速度传感器装在前、后轴和其上方车身或车架相应的位置上。 3、可用以下三种方法使汽车悬挂系统产生自由衰减振动。

3.1 滚下法:将汽车测试端的车轮,沿斜坡驶上凸块(凸块断面如图所示,其高度根据汽车类型与悬挂结构可选取60、90、120mm,横向宽度要保证 1 车轮全部置于凸块上),在停车挂空档发动机熄火后,再将汽车车轮从凸块上推下、滚下时应尽量保证左、右轮同时落地。 3.2 抛下法:用跌落机构将汽车测试端车轴中部由平衡位置支起60或90mm,然后跌落机构释放,汽车测试端突然抛下。 3.3 拉下法:用绳索和滑轮装置将汽车测试端车轴附近的车身或车架中部由平衡位置拉下60或90mm,然后用松脱器使绳索突然松脱。 注:用上述三种方法试验时,拉下位移量、支起高度或凸块高度的选择要保证悬架在压缩行程时不碰撞限位块,又要保证振动幅值足够大与实际使用情况比较接近。对于特殊的汽车类型与悬架结构可以选取60、90、120mm以外的值。 4、数据处理 4.1 用DH5902采集仪记录车身和车轴上自由衰减振动的加速度信号; 4.2 在DHDAS软件中对车身与车轴上的加速度信号进行自谱分析,截止频率使用20Hz低通滤波,采样频率选择50Hz,频率分辨率选择0.05Hz; 4.3 加速度自谱的峰值频率即为固有频率;

15大工《高层建筑结构》作业答案

大连理工大学《高层建筑结构》大作业 学习中心: 姓 名: 学 号: 题目二:底部剪力法。 钢筋混凝土8层框架结构各层高均为3m ,经质量集中后,各楼层的重力荷载代表值分别为:11000kN G =,234567800kN G G G G G G ======, 8700kN G =。结构阻尼比0.05ξ=,自振周期为10.80s T =,Ⅱ类场地类别,设计地震分组为第二组,抗震设防烈度为7度。按底部剪力法计算结构在多遇地震时的水平地震作用及地震剪力。 解:

Ⅱ类场地,地震分组为第二组,查表得Tg<T1<5Tg α1=(Tg/T1) rζαmax=(Tg/T1)0.9×0.08=(0.40/0.80) 0.9×0.08= 0.536 Fβk=α1Geq=0.536×0.85×∑Gi=0.536×0.85×(G1+G2+G+G4+G5+G6+G7+G8) =0.4556×6500=2961.4KN 顶部附加水平地震作用T1>1.4×0.4=0.56s Rn=0.08 T1 0.01=0.08×0.80 0.01=0.074 △Fn= RnFEK=0.074×2961.4=219.1436 KN 题目五:竖向荷载作用下,剪力墙结构的内力是如何考虑的? 解: 竖向荷载作用下一般取平面结构简图进行内力分析,不考虑结构单元内各片剪力墙之间的协同工作。每片剪力墙承受的竖向荷载为该片墙负荷范围内的永久荷载和可变荷载。当为装配式楼盖时,各层楼面传给剪力墙的为均布荷载,当为现浇楼盖时,各层楼面传给剪力墙的可能为三角形或梯形分布荷载以及集中荷载。剪力墙自重按均布荷载计算。竖向荷载作用下剪力墙内力的计算,不考虑结构的连续性,可近似地认为各片剪力墙只承受轴向力,其弯矩和剪力等于零。各片剪力墙承受的轴力由墙体自重和楼板传来的荷载两部分组成,其中楼板传来的荷载可近似地按其受荷面积进行分配。各墙肢承受的轴力以洞口中线作为荷载分界线,计算墙自重重力荷载时应扣除门洞部分。

相关主题
文本预览
相关文档 最新文档