当前位置:文档之家› 电网无功补偿技术研究现状分析

电网无功补偿技术研究现状分析

电网无功补偿技术研究现状分析
电网无功补偿技术研究现状分析

电网无功补偿技术研究现状分析

发表时间:2019-07-15T15:42:48.123Z 来源:《当代电力文化》2019年第05期作者:周明[导读] 本文从设备耗用无功功率、供电电压超出规定范围以及电网频率出现波动三个方面入手,

华能吉林发电有限公司新能源分公司吉林省 130012 摘要:本文从设备耗用无功功率、供电电压超出规定范围以及电网频率出现波动三个方面入手,对低压电网功率因数的影响因素展开分析,并针对无功补偿技术在低压电网中的应用策略提出具体建议。

关键词:无功功率;无功补偿;供电质量引言

随着人们日常生产生活质量的提高和工业的飞速发展,电力系统中非线性设备日益增多,降低了电力系统的可靠性、稳定性以及负载和电网的功率因数。系统中传送的能量有一大部分不会被负载消耗,而是在输电线路中来回输送,使输电线路起始端形成了较大的电压降,导致负载端电压不足而影响供电质量。因此,提高功率因数,对电网进行及时、动态的无功补偿,是当前电力行业面临的重大研究课题。目前,无功补偿装置主要是同步调相机、机械投切的并联电容器组和大容量SVC。同步调相机运行时损耗和噪声较大,维护较为繁琐,响应速度较慢,不能满足目前电网快速动态补偿需求。并联电容器组虽然较为灵活且可以直接用在高压电网中,但是其阻抗值是固定的,不能对电网进行动态的无功补偿。SVC本身是一项谐波源,虽然补偿了系统中的无功功率,但是本身也产生了谐波污染,还要启用滤波器,增加了投入。

1无功补偿技术在配电网中的应用特点无功补偿技术在配电网的应用中,需要注意的是,要控制好安装设备空间、设备安装环境、设备维护工作、施工成本和保护装置等对周围环境的影响。因此,在进行无功补偿施工安装时,要根据工程情况做好设置。无功补偿装置在配电网安装中的注意事项是:(1)确定好无功补偿在配电网中的容量。配网在进行无功补偿时,要做好容量的控制,避免无功补偿电容器由于设置过多和密度大影响散热和安全性,因此针对配电网要选择符合设计要求的电容器组。无功补偿装置在配电线路上设置容量的时候,设置的原则是最大化的减少线路损耗。通常来说,无功补偿装置需要的容量应该是线路无功负荷的2/3,所以在无功补偿装置安装前,需要全面调查好安装线路的实际负荷,从而明确无功补偿装置的合理容量。(2)明确好补偿装置具体的安装位置。在对无功补偿装置进行安装时,需要遵守的原则是无功就地均衡,并且进行安装时,最主要的是减少主干线路上的无功电流。研究证实,配电网每条线路上,安装1台无功补偿装置是合适的,安装的位置应该是负荷2/3的地方。如果合理规划好电容器的安装位置和无功补偿的容量,能够显著降低电网运行中的线路损耗和电压质量,从而满足生产和生活需要。(3)制定好无功补偿装置合理的接线方式。无功补偿装置接线的时候,要依据设计和配电网的要求选择合适的接线方式,每一相接1台电容器为最佳,这样才能使补偿装置运行中的故障率大大降低。 2无功补偿技术在低压电网中的应用 2.1无功补偿技术在低压电网中的配置

随着电力行业发展规模的不断扩大和社会用电量的持续增加,低压电网中往往会配置各种具有抗性以及中容性的电力设备,这些电力设备在低压电网中的运行,会进一步提升低压电网中的无功功率,在降低低压电网功率因数的同时,会导致低压电网中电力资源出现不必要的损耗。为了最大程度上保障电力系统运行的安全性与稳定性,需要灵活利用无功补偿技术,借助相应的补偿装置控制电力能源的损耗,在提升低压电网功率因数等方面发挥着积极的作用。通常情况下,无功补偿技术在低压电网中的应用需要遵循以下三个基本原则,即分级补偿原则、就地补偿原则和方便调整原则。在低压电网中配置无功补偿装置时,不仅需要考虑到低压电网中全部因数的调整方式,还要根据电力系统实际的运行情况,对局部因数进行合理的调整,从而使整体与局部两者的功率因数可以达到相互协调的状态,有效预防总功率因数低但是局部功率因数过高的问题,对此需要对集中补偿技术以及分散补偿技术进行科学的把控与应用。

图2无功补偿装置

2.2并联电容器补偿

并联电容器在早期电网中十分常见,因为其经济实用、结构简单、维护方便且没有转子,如图4所示。它的工作原理是在负载两端发出容性无功来补偿两侧的感性无功,提高回路的功率因数,降低网损,如图5所示。通过对补偿对象的测量,确定所需要的电容器容量,再来确定要投入的电容器组数。由于控制电容器投入、切除的是机械开关,所以很难准确判断投切电容器的时刻。并联电容器一般设有投切延时功能,所以当电网无功不足时,最好在高峰负荷到来前将电容器并联到负载两端,才能有效避免负载端电压不足,因此不能满足快速、准确地对电网进行无功补偿需求。并联电容器的机械开关不宜频繁切换,因为其合闸涌流很大,有时甚至能达到补偿电容器额定电流的几十倍甚至上百倍。在开关断开时,它还会产生弧光,且运行时的噪音较大,因此频繁投切会缩短并联电容器的寿命。所以,并联电容器仅适用于负载较稳定的系统。

电网的无功补偿—

摘要 电压是电能质量的重要指标之一,网损是电力企业的一项重要综合性技术经济指标。长期以来电力系统网络损耗问题比较突出,而无功补偿是降低线损的有效手段。随着电力系统负荷的增加,对无功功率的需求也日益增加。在电网中的适当位置装设无功补偿装置成为满足电网无功需求的必要手段。 本文从无功补偿的现实意义出发,分析了无功补偿的必要性和经济效益。简单介绍了目前无功补偿研究的现状,探讨无功补偿的原理并对主要的几种无功补偿方式进行了简要的分析,给出本文设计用于并联电容器组补偿方式的智能低压无功补偿装置的研究任务。装置采用ATT7022A检测电网运行参数,减少了CPU运算量,提高电网参数辨识的精度,并可以简化系统软件设计。系统以Atlmega64处理器为控制核心,采用功率因数控制和电压限制相结合的方式工作,并给出采用永磁真空开关在特定电压相角投切电容器的方法,有效解决了电容器投切过程中在线路上产生涌流的缺点,并设有多种保护措施,保护系统可靠、稳定运行。装置还设计了友好的人机接口和通讯接口,使用方便。 关键词:无功补偿、并连电容器、ATT7022A、Atlnega64

ABSTRACT V oltage is one of important quality index of electric power system. Power loss is an important synthesis technical and economic index of power companies. In the past several years, the problem of power loss is very serious. However, reactive compensation is an effective method to save power loss .Due to increasing loads of electric power system, demand of reactive power was also increasing. It became necessary means that reactive power compensation devices were installed in proper position of electric network. This thesis considers the significance of reactive Power compensation and analyses the indispensability and economic benefits of reactive Power compensation. The development status of reactive power compensation is briefly introduced. Principles of reactive power compensation are explained. Several primary reactive power compensation solutions are discussed. This thesis proposed an intelligent low voltage reactive compensation control scheme and implemented device for shunt capacitor compensation. An ATT7022A is adopted to detect the power grid operation information to reduce the calculation volume of CPU and enhance the precision of power grid parameter identification. This also simplifies design work of the software. ATMEGA64 is utilized as the main process unit and method combining power factor control and voltage limitation is used as the system working mode. Specific voltage phase is determined to switching shunt capacitor via permanent magnetic vacuum synchronous switch. Thus the surge produced during the traditional capacitor switching method is greatly diminished. It provides diverse protect measures to ensure the stability and reliability. It bears friendly human machine

电力系统无功补偿的意义及补偿方案

电力系统无功补偿的意义及补偿方案 电力系统的无功功率平衡是系统电压质量的根本保证。在电力系统中,整个系统的自然无功负荷总大于原有的无功电源,因此必须进行无功补偿。合理的无功补偿和有效的电压控制,不仅可保证电压质量,而且将提高电力系统运行的稳定性、安全性和经济性。 ·8.1 提高功率因数的意义 在用电设备中按功率因数划分,可以有以下三类:电阻性负荷、电感性负荷、电容性负荷。在用电设备中绝大部分为感性负荷。使用电单位功率因数小于1。功率因数降低以后,将带来以下不良后果: 1)使电力系统内电气设备的容量不能充分利用,因发电机和变压器电流是一定的,在正常情况下是不允许超过的,功率因数降低,则有功出力将降低,使设备容量不能得到充分利用。 2)由于功率因数降低,如若传输同样的有功功率,就要增大电流,而输电线路和变压器的功率损耗和电能损耗也随之增加。 3)功率因数过低,线路上电流增大,电压损耗也将增大,使用电设备的电压也要下降,影响异步电动机和其他用电设备的正常运行。 为了保证供电质量和节能,充分利用电力系统中发变电设备的容量,减小供电线路的截面,节省有色金属,减小电网的功率损耗、电能损耗,减小线路的电压损失,必须提高用电单位的功率因数。改善功率因素是充分发挥设备潜力,提高设备利用率的有效方法。 ·8.2 补偿装置的确定: 无功补偿装置包括系统中的并联电容器、串联电容器、并联电抗器、同步调相机和静止型动态无功补偿装置等。 1)同步调相机:同步调相机在额定电压±5%的范围内,可发额定容量,在过励磁运行时,它向系统供给感性的无功功率起无功电源作用,能提高系统电压;在欠励磁运行时,它从系统吸收感性的无功功率起无功负荷作用,可降低系统电压。 装有自动励磁调节装置的同步调相机,能根据装设地点电压的数值平滑改变输出(或吸收)无功功率,进行电压调节,但是调相机的造价高,损耗大,维修麻烦,施工期长。 2)串联电容补偿装置:在长距离超高压输电线路中,电容器组串入输电线路,利用电容器的容抗抵消输电线的一部分感抗,可以缩短输电线的电气距离,提高静稳定和

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

无功补偿的意义

第1章绪论 1.1 无功补偿的意义 国民经济的高速发展和人民生活水平的不断提高带来了电力负荷的高速增长。尤其是近两、三年来,由于电力负荷增长迅猛,而发电装机容量和输配电能力不足,造成全国近20个省市电力供应紧张,部分省市出现限电拉闸[1]。与此同时,随着电力市场的开放,电力用户对电能质量的要求也在提高;电力生产与供应企业也比以往任何时候都重视电力系统运行的经济性。 电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。 无功功率从何而来?显然,发电机提供的无功功率相对负荷和网络对无功功率的需求来说只是“杯水车薪”,仅仅依靠发电机提供无功功率也是极不经济的。无功功率最主要的来源是利用各种无功功率补偿(以下简称无功补偿)设备在电力系统的各个环节进行无功补偿。因此,无功补偿是电力系统的重要组成部分,它是保证电能质量和实现电力系统经济运行的基本手段。 低压电力用户量大面广,其负荷的功率因数又大都比较低,因此在低压电网中进行无功功率的就地补偿是整个电力系统无功补偿的重要环节。 低压电网的无功补偿主要采用并联电容器进行,它包括固定电容器(FC)补偿和自动投切电容器的动态补偿以及两者混合补偿等方式。 电力负荷是随时变化的,所需要的无功功率也是随时变化的,为了维持无功平衡,要求无功补偿设备实行动态补偿,即要根据无功负荷的变化及时投切电容器。以往的低压动态无功补偿设备以机械开关(接触器)作为电容器的投切开关,机械开关不仅动作速度慢,而且会产生诸如涌流冲击、过电压、电弧重燃等现象,开关本身和电容器都容易损坏。据调查,我国过去使用的自动投切电容器无功补偿装置在使用3年后损坏率达75%[2]。 随着电力电子技术和微机控制技术的迅速发展和广泛应用,出现了智能型的动态无功补偿装置。这种以电力电子器件作为无功器件(电容器、电抗器)的控制或开关器件的动态无功补偿装置被称为静止无功补偿装置(SVC:Static V ar Compensator)。 SVC是动态无功补偿技术的发展方向,它正成为传统无功补偿装置的更新换代产

关于配电网无功补偿若干问题的探讨

关于配电网无功补偿若干问题的探讨 摘要:电网无功补偿是一项建设性的技术措施,对电网安全、优质、经济运行有重要作用。因此,本文作者结合目前人们所关注的电网无功补偿问题进行了分析和建议。 关键词:配网,无功补偿,分析 1配电网无功补偿方案比较 配电网无功补偿方案有变电所集中补偿(方式1)、配电变压器低压补偿(方式2)、配电线路固定补偿(方式3)和用电设备随机分散补偿(方式4)。 1.1变电所集中补偿 变电所集中补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是平衡输电网的无功功率,改善输电网的功率因数,提高系统终端变电所的母线电压,补偿变电所主变压器和高压输电线路的无功损耗。这些补偿装置一般集中接在变电所10kV母线上,因此具有易管理、方便维护等优点,但这种补偿方案对10kV配电网的降损不起作用。 为实现变电所的电压/无功综合控制,通常采用并联电容器组和变压器有载调压抽头协调调节。但大量的实际应用表明,投切过于频繁会影响电容器开关和变压器分接头的使用寿命,增大运行维护工作量,通常要限制变压器抽头调节和电容器组操作次数。采用电力电子开关控制成本比较高、开关自身功率损耗也很大,因此变电所高压电压/无功综合控制技术仍有待进一步改善。

鉴于变电所集中无功补偿对提高高压电网功率因数、维持变电所母线电压和平衡系统无功有重要作用,因此应根据负荷的增长需要、设计好变电所的无功补偿容量,运行中在保证电压合格和无功补偿效果最好的情况下,尽可能使电容器组投切开关的操作次数为最少。 1.2配电变压器低压补偿 配电变压器低压补偿是目前应用最普遍的补偿方法。由于用户的日负荷变化大,通常采用微机控制、跟踪负荷波动分组投切电容器补偿,总补偿容量在几十至几百千乏不等。目的是提高专用变压器用户功率因数,实现无功的就地平衡,降低配电网损耗和改善用户电压质量。 配电变压器低压无功补偿的优点是补偿后功率因数高、降损节能效果好。但由于配电变压器的数量多、安装地点分散,因此补偿工作的投资较大,运行维护工作量大,因此要求厂家要尽可能降低装置的成本,提高装置的可靠性。 采用接触器投切电容器的冲击电流大,影响电容器和接触器的使用寿命;用晶闸管投切电容器能解决接触器投切电容器存在的问题,但明显的缺点是装置存在晶闸管功率损耗,需要安装风扇和散热器来通风与散热,而散热器会增大装置的体积,风扇则影响装置的可靠性。 为解决这些问题,开发、研制了机电一体开关无功补偿装置。该装置采用固定补偿与分组补偿结合,以降低装置的生产成本;装置能实现分相补偿,以满足三相不平衡系统的需要。 机电开关控制使装置既有晶闸管开关的优点,又具有接触器无功率损耗的优点。几千台装置的现场运行、试验表明,机电开关补偿装置体积

电网建设中的无功补偿

X 10 电网建设中的无功补偿 1功率因数和无功功率补偿的基本概念 1.1功率因数:电网中的电气设备如电动机变压器等属于既有电感又有电阻的电 感性负载,电感性负载的电压和电流的相量间存在着一个相位差, 相位角的余弦 cos ?即是功率因数,它是有功功率与视在功率之比即 cos ? = P/S 。功率因数是 反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要 指标。 1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性 装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置却在吸 收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功 功率中得到补偿。 2无功补偿的目的与效果 2.1补偿无功功率,提高功率因数 2.2提高设备的供电能力 由P = S ? cos ?可看出,当设备的视在功率 S 一定时,如果功率因数cos ? 提高,上式中的P 也随之增大,电气设备的有功出力也就提高了。 2.3降低电网中的功率损耗和电能损失 由公式I = P/( ? U ? cos ? )可知当有功功率P 为定值时,负荷电流I 与 cos ?成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从 而使功率损耗降低:△ P =I 2R,降低电网中的功率损耗是安装无功补偿设备的主 要目的。 2.4改善电压质量 在线路中电压损失4U 的计算公式如下: A U= 式中 A U ——线路中的电压损失kV P ——有功功率MW

]=300 X( 1. 33— 0. 48) =255 (kvar ) Q= Q -- 无功功率Mvar U -- 额定电压kV R ――线路总电阻Q X L ――线路感抗Q 由上式可见,当线路中的无功功率 Q 减少以后,电压损失4U 也就减少了 2.5减少用户电费开支,降低生产成本。 2.6减小设备容量,节省投资。 3无功补偿容量的选择 3.1按提高功率因数值确定补偿容量 Q c 式中P ——最大负荷月的平均有功功率 kW cos ? i cos ? 2 - 补偿前后功率因数值 例如:某加工厂最大负荷月的平均有功功率为 300kW 功率因数cos ?二0.6, 拟将 功率因数提高到0.9,则所选的电容器容量为: 3.2按提高电压值确定补偿容量Q (kvar ) 式中 △ U 需要提高的电压值 V (kvar ) Q=300X[

无功补偿的作用与必要性

无功补偿的作用与必要性 ①无功电流的产生与损耗 大家知道,我们的工厂低压配电是通过厂用变将10KV变成400V,然后通过低压配电系统,给用电设备提供电源,驱动动力设备工作的,动力设备多为感性负载。如电动机、电焊机、空调机等。当它投入运行以后,将产生很大的感性电流,这种电流它不做工,是无功电流。由于它的存在,使得在配电网络中及变压器中,流过的电流就是电感电流与电阻电流之和,即I=I R+I L。而变压器的容量是电流乘电压,即S= 3 UI(KVA)。当电压一定时,要使变压器的容量得到充分利用,就必须减小电流,而减小电流的唯一办法,就只能使I L电感电流尽量减少。同时由于I L电感电流的存在使得损耗大量增加,它的损耗大小与I L电感电流的平方成正比,这些损耗在变压器及线路中转变成热量散发,使得变压器及配电设备温度升高。不仅影响设备的利用率,还由于温度过高,破坏设备的绝缘,缩短设备的使用寿命,甚至损坏设备。所以怎样减少电感电流,就成了企业减少能源损耗,设备挖潜增加经济效益与社会效益的必经之路。下面我们以调查东莞某外资企业的情况加以说明: 该企业安装630KVA变压器两台,根据监测结果。补偿前平均功率因数COS=0.71(还不算太低)总输出电流385.5A,总无功功率186KVAR,补偿后平均功率因数COS=0.985,总输出电流只有284A,总无功功率只有34KVAR,从而使:

a) 无功功率下降率为Q=(1-Q2/Q1) ×100%=(1-34/186)×100%=81.72% b) 减少线损率为▲P=[1-( I2/I1) 2]×100%=[1-( 284/385.5) 2]×100%=45.73% 由此可见,投入补偿后明显减少了无功功率提高了功率因数,减少了电流和线损率。 ②优化电能质量 a) 抑制波动负荷和冲击负荷造成的电压波动和电压闪变,滤除高次谐波。 大家知道,投入、切除感性负载时,根据电磁原理,一定会产生操作过电压,这种过电压是由于感性负载电流突变产生的高次谐波形成的,而高次谐波对于电容来说相当于短路状态,所以电容是高次谐波的吸收器。 b) 稳定电网电压 仍以上面提到的企业为例,在投入电容前低压侧系统电压与投入电容后低压侧系统电压对比,投入电容后电压有明显提高: ▲NU=( I1-I2)/ I1×100%= (385.5 -284)/ 385.5×100%=26.33% 由此可见投入电容补偿以后不仅明显提高了功率因数,减少了电流和线损率,电压也相对稳定提高了供电可靠性,并能充分利用配电设备的容量,达到节能降损的预期目标。 ③电容补偿的目的和积极意义

微电网系统中谐波和无功补偿问题的研究

学校代号10731 学号092081103001 分类号TM761 密级公开 硕士学位论文 微电网系统中谐波和无功补偿问题的研 究 学位申请人姓名张磊 培养单位电气工程与信息工程学院 导师姓名及职称党存禄教授 学科专业系统工程 研究方向电力系统谐波和无功补偿 论文提交日期

学校代号:10731 学号:092081103001 密级:公开 兰州理工大学硕士学位论文 微电网系统中谐波和无功补偿问题的研 究 学位申请人姓名:张磊 导师姓名及职称:党存禄教授 培养单位:电气工程与信息工程学院 专业名称:系统工程 论文提交日期: 论文答辩日期: 答辩委员会主席:

Research on the Problem of the Harmonic and Reactive Power Compensation in the Micro-grid System by ZHANG Lei B.E.( Zhengzhou Institute of Aeronautical Industry Management) 2008 A thesis submitted in partial satisfaction of the Requirements for the degree of Master of Engineering in Power Electronics & Power Drives in the Graduate School of Lanzhou University of Technology Professor Dang Cunlu May, 2012

电网的无功补偿与电压调整

电网的无功补偿与电压调整 、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些

装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户

浅析无功补偿在电力电网中的应用

浅析无功补偿在电力电网中的应用 发表时间:2017-11-01T11:42:22.800Z 来源:《电力设备》2017年第18期作者:马静 [导读] 摘要:在现代供电行业内部,功率因数是考核电网运行的重要指标之一,为了确保功率因数达到考核指标,保证电网供电的政策运行,无功补偿就显得尤为重要。本文就无功补偿的原因和策略进行了探讨,以期给电网企业一些借鉴价值。 (国网吴忠供电公司宁夏回族自治区吴忠市 751100) 摘要:在现代供电行业内部,功率因数是考核电网运行的重要指标之一,为了确保功率因数达到考核指标,保证电网供电的政策运行,无功补偿就显得尤为重要。本文就无功补偿的原因和策略进行了探讨,以期给电网企业一些借鉴价值。 关键词:无功补偿;电力电网;应用 电力系统中先天性地存在着大量的无功负荷,这些无功负荷来自电力线路、电力变压器以及客户的用电设备。系统运行中大量的无功功率将降低系统的功率因数,增大线路电压损失和电能损失,严重地影响着电力企业的经济效益,解决这些问题的一个行之有效的方法就是进行无功补偿。为了起到节能降损的作用,改善电能的质量,提高输变电设备的有功出力,使电气设备处在最佳经济状态下运行,使有限的电力能更好地为社会主义建设服务,做好无功补偿工作势在必行。 1 电力电网中无功补偿的原因 随着国民经济的快速发展,国内的工业用电和生活用电不断增加,需求的增加对供电系统提出了更高的要求,无功补偿的运用,可以有效的降低电力电网的有功损耗,提高电力电网运行的科学性、经济性。无功补偿设备可以有效的降低电网中的功率耗损,根据公式I=P/Ucos可知,其中电流与cos成反比,因此,按装无功补偿设备之后可以有效的提高功率因数,线路中的负荷电流降低,进而使有功功率的损耗有所降低,同时还可以减少电网中电压的损失,提高电压的质量,减少客户的电费费用,减少设备投资。由于无功补偿可以减少无功功率在电网中的流动,降低线路和变压器因为输送无功功率而造成电能损失,安装无功补偿设备可以有效的降低电力网的损耗。而且无功补偿可以提高功率因数,相对其他节能措施而言,是一项收效快、投资少的降损节能措施,它可以使电力系统少送无功功率,多送有功功率,而且可以在电力系统无功功率不足时,迅速提供无功功率。 2 电力电网中无功补偿的使用 一般无功补偿设备是在用户的负载点或者配电室进行补偿,供电部门会与用户进行协商,鼓励用户在在用电处安装无功补偿设备,减少电费支出,进而提高功率因数,使功率因数符合考核标准。相关资料表明,无功功率约有40%在消耗在变压器和电线线路,剩余的则消耗在客户的用电设备中。为此,供电部门要与用户加强沟通,共同做好无功补偿设备的配置,保证电力资源的高效合理使用,减少能源浪费。 2.1无功补偿设备的选定 无功补偿设备的选定要按照合理布局、就地平衡、全面规划的原则,保证电力电网的无功补偿取得最佳的经济效益和社会效益。合理的无功补偿设备容量设定是决定其是否能够实现节能降耗的重要因素,在实际工作中,电力企业首先要根据不同的负荷情况,以及供电部门的要求确定无功补偿后应该达到的功率因数,然后计算无功补偿设备应具有的实际容量大小。 2.2并联电容器的无功补偿 提高功率因数最常用的办法就是与电感性负载并联静电电容器,并联补偿的电力电容器,根据电压高低的不同内部接线也不同,高压电容器组一般宜接成中性点不接地星形;低压变压器组一般接成三角形。目前我国使用的补偿方式有单独就地补偿、低压集中补偿、高压集中补偿三种。 2.2.1单独就地补偿 相比其他两种补偿方式,单独就地补偿的补偿范围最大,补偿效果也最好,电力企业一般优先采用这种方式进行补偿。单独就地补偿的电容器组是使用电设备自身的绕组电阻来放电,它是将并联补偿电容器组装在需要进行补偿的用电设备附近,它可以直接补偿安装部位的变压器和所有高低压电线线路的无功功率。单独就地补偿需要的投资费用较大,利用率较低,一般而言,当被补偿的用电设备停止作业时,单独就地补偿的电容器组也会被切除,导致资源浪费。为此,它适用于一些经常运转,负荷较平稳而且容量又大的设备,如,高频电炉、感应电动机等等,以及一些虽然容量较小,但是数量多,长期稳定运行的机械设备,如荧光灯等。 2.2.2低压集中补偿 低压集中补偿主要用于补偿高压配电线路、电力系统以及车间变电所低压母线前车间变电所的无功功率,可以使用专门的放电电阻或者白炽灯的灯丝进行放电,使用成本较低,运行和维修也比较方便安全,同时,它可以依据用户的用电负荷水平的波动,投入相应的电容器,进行跟踪补偿。低压集中补偿的目的在于提高专用变压器用户的功率因数,投资费用和后期维护都是由专用变压器用户自己承担。 2.2.3高压集中补偿 高压集中补偿是将高压电容器组集中装设在工厂变电所的6~10kV母线上,因此,这种补偿方式只能补偿6~10kV母线前的所有线路的无功功率,而母线后的电线线路的无功功率得不到有效补偿。但是相对而言,这种补偿方式的投资较小,而且便于工厂进行集中管理和控制,同时对于工厂高压的无功功率进行有效的补偿,比较适用于大中型的工厂。 3 无功补偿设备的使用管理 在进行无功补偿设备配置和管理的过程中,坚持集中补偿与分散补偿相结合,以分散补偿为主。对分散补偿的配置要从实际出发,确保无功补偿之后可以达到功率因数的审核标准,对于供电公司而言,无功补偿设备过于分散,导致企业的设备维护量大,工作难度较大,为此,大多采用变电站集中补偿和配变就地分散补偿相结合的方式。另外,在无功补偿过程中要坚持调压与降损相结合,同时以降损为主,因为无功补偿产生的最大的经济效益和社会价值是降损,在一定程度上调整电压只是为了保证电压质量。特别是对于很多轻载运行的电线线路,由于电压偏高,会导致配电变压器的铁损占线损的70%以上,这种情况下,就不宜再安装电容,否则在线路电压升高过快时,配电变压器的损坏程度会进一步增加,使线损程度增大,为此,投切无功补偿设备,使电网中的电力功率因数提高,减低电网的损耗。能源建设是我国国民经济建设的战略重点之一,在进行能源建设的过程中,我国坚持贯彻实施科学发展观,要求相关部门在加强能源开发的过程中,不断提高资源的使用效率,使有限的能源发挥尽可能多的经济效益,同时减少在使用过程中的能源浪费。为此,在电力电网内出现大负荷欠补偿时,供电企业、发电企业和用电企业要协同合作,共同把无功补偿工作搞好。电力电网通过无功补偿节约电能,不仅可以降低工厂的生产成本,而且可以为国家积累更多的财富,促进国

探讨配电网无功补偿技术及其应用

探讨配电网无功补偿技术及其应用 随着社会经济的发展,电能的供应和配电网络的建设受到了越来越多的重视,在电力系统当中,配电网的链接输电系统是一个枢纽。在人们对电能电量的需求越来越多并要求电能供应越来越稳定的情况下,对配电网的应用要求也就逐渐的提高。对于无功补偿在配电网中的应用来说,能够有效地提高供电质量的技术。本文针对配电网无功补偿技术的应用现状和相关的应用展开研究,对配电网无功补偿技术的原理和典型的应用模式等方面的问题进 行分析,希望能够对以后的工作提供帮助。标签:配电网络;无功补偿技术;现状与应用分析 引言: 随着工业的发展和信息技术的进步,电能已经成为人们生产和生活中不可或缺的一项能源,在电能供应的规模和性能都得到了很大的发展。在我国的配电体系中,其主要的作用就是沟通发电厂和电力用户的核心环节,也在很大程度上决定了供电的效率和质量。随着电力系统的不断完善和整体化,配电网中的电力损耗和安全稳定及自动化运行变得越来越重要,在配电网的管理技术中需要迫切的解决这一难题。 一、配电网无功补偿的技术原理 无功补偿技术是针对配电网产生的管理技术,主要是对电力损耗和电力波动的现象展开管理工作的,这项技术已经在配电网中已经得到了广泛的应用。在无功补偿技术的原理上主要是将电磁感应技术应用到其中并进行多种形式的能量转化,这样就能产生交变磁场。在核定的时间内对能量的功率进出之间达到平衡,这就是所说的无功功率,在有功功率为一定值的前提条件基础上,供电系统的功率越小,对整个系统的无功功率的要求就越高,在电网系统中,如果消耗了过多的无功功率,配额很脏中的整体电容量就会有所增加,如果这个时候在用户端缺少功率的补偿就会在电路上消耗更大的电力资源,这样也会使整个电力系统运行的效率有所减小,所以这时无功功率的补偿技术就具有重要的作用,能够为电力系统的平稳运行和供电的质量提供帮助。 二、无功补偿的工业作用 在配電系统中的无功补偿技术的实现过程中,想要真正的进行有效的无功补偿就要在技术操作上遵循一定的原则,其中具体的技术操作包括以下几点: (一)提供功率因素。 功率的价值主要表现在功率处于一定值时,无功功率得到一定的补偿后,功率因素角度就会相应的减少,这样就使功率因素的余弦值会相应的增大。这样在

电网的无功补偿与电压调整

电网的无功补偿与电压调整 1、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线

路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网 相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,

详解电网无功补偿与电压调节

详解电网无功补偿与电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准:

500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。 以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一

对电网无功补偿的探讨

对电网无功补偿的探讨 发表时间:2018-09-18T20:13:23.650Z 来源:《基层建设》2018年第23期作者:刘桂秀 [导读] 摘要:无功功率是保证电网电压稳定和减少有功损耗的重要因数,它的产生基本不消耗能源,但无功功率在输电线路上传送却要引起无功功率和电网电压的损耗。 身份证号码:45232219830915xxxx 摘要:无功功率是保证电网电压稳定和减少有功损耗的重要因数,它的产生基本不消耗能源,但无功功率在输电线路上传送却要引起无功功率和电网电压的损耗。通过有效合理的对无功补偿设备的配置,改善无功功率的分布可以有效的减少无功功率和电网电压的损耗。 关键词:无功功率、无功补偿、电网电压、损耗 电网传输的功率分有功功率和无功功率。直接消耗电能,将电能转变为机械能、热能等,利用这些能做功的部分功率称为有功功率;不消耗电能,只是把电能转换成另一种形式的能,这种能作为电气设备能够做功的必备条件,并且在电网中与电能进行周期性转换,这部分功率称为无功功率,无功功率的传送同样需要电流来完成,这样就会增加线路上的功率损耗,引起发热,增加线路末端的电压降。 电网中有很多感性负载要吸收无功功率,如变压器、交流电焊机等,且这部分感性无功值是大于零的,在电网中安装并联电容器等无功补偿设备以后,由于容性无功的值小于零,这样一个小于零的无功和一个大于零的无功就可以相互抵消,这样就减少了无功功率在电网线路中的流动,因此降低线路和变压器因输送无功功率造成的电能损耗,以实现无功功率的就地供应、分区平衡,从而提高电能做功的效率,这就是无功补偿。 电网无功补偿的基本原则:按电压分层、按电网分区、就地平衡,避免无功功率的远距离输送,以免占用线路输送容量和增加有功损耗。 一、无功补偿的设计原则 无功补偿应全面规划、合理布局、分级补偿,就地平衡的原则确定最优的补偿容量和分布方式,具体内容如下: 1、总体的无功平衡与局部的无功平衡相结合。既要满足供电网的总无功需求,又要满足分线、分站的变电站及各用户无功平衡。 2、集中补偿和分散补偿相结合。以分散补偿为主,这就要求在负荷集中的点进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,使无功平衡,减少变压器和线路的损耗。 3、高压补偿与低压补偿相结合。以低压补偿为主,高压无功补偿装置应装设在变压器的主要负荷侧,当不具备条件时,可装设在变压器的第三绕组侧,高压侧无负荷时,不得在高压侧装设补偿装置。 4、降损和调压相结合。以降损为主,兼顾调压。这是针对供电半径较长,分支较多,负荷比较分散,自然功率因数低的线路。这种线路负荷率低,线路的供电变压器多工作在空载或轻载的工况下,线路损耗大,若对此线路进行补偿,可提高线路的供电能力。 二、无功补偿容量的确定 1、高压补偿容量:变电站内按主变压器容量的10%-15%配置,线路补偿按照15%配置; 2、低压集中补偿容量:按变压器容量的20%-40%配置; 3、就地补偿容量:一般按电动机功率的25%-40%。 三、无功补偿回路数的确定 在补偿容量确定的情况下,补偿的回路数分得越多,每一回路的补偿容量越小,补偿的效果越好,但投资越大,设备的造价越高,产品的性价比越差。同时电容器的分组数越多,与系统发生谐振的几率越大。 通常根据最小负荷波动特点确定单支路补偿的容量,从而确定补偿回路数。0.4kV系统的户外补偿箱一般选择2-4个回路,户内补偿柜一般选择4-10个回路,高压补偿一般1-4回路,补偿回路数越多,在存在谐波的情况下与系统产生谐波谐振的几率越大。因此,在保证投切精度的情况下,以选择的回路数越少性价比越高。 四、选用电容器进行功率因数补偿的意义 采用电容器无功补偿具有管理维修方便,布置灵活,深入负荷中心,成本低廉等优点,低压电容器补偿被广泛应用,其重要意义有如下几点: 1、充分发挥发电机、变压器的装机容量的潜力,发电机、变压器只向负荷提供有功功率,而负荷所需的无功功率,则由电容器提供,电容器被看成是个无功电源。这样电源可只输送负荷所需的有功功率,从而减少线路有功损耗、线路导线截面积开关容量,从而节省投资。 2、无功补偿对减轻电压波动、改善电源质量有帮助。加入电容器补偿,可以减少线路无功功率的传输。当大型感性设备投入时,其冲击电流在线路上的压降减少,使电压波动的副值减少,从而改善电压质量。 3、采用电容器就地补偿后,对电动机的启动有好处,因为启动时无功就地由电容器供给,电网只有提供有功功率,线路电压降减少,电动机端电压提高,有利于电机的顺利启动。 4、采用电容补偿使功率因数提高,这样不但不会受到供电部门罚款,而且还可以得到奖励,直接获取经济效益。采用电容补偿,可使变压器装机容量减少,这样用户安装增容费减少,而按二部电价收取的固定电费部分也相应减少。 五、动态补偿和静态补偿的特点 静态补偿,是指补偿电容器不随无功功率的波动而实时跟踪投切,不但不实时投切,还要人为地延时投切,一般延时在40S以上。随着用电设备的投入或切除,电网所需的无功功率也随之变化,为了不使电容器投切过于频繁,造成投切元件损坏严重及电容器收到冲击次数过多,采取人为延时措施,待供电回路功率因数稳定地低于某一规定值后,再投入电容器。反之。当功率因数持续高于某一值,或出现向电网反送无功功率时,经延时后,上述现象没有改观再切除补偿电容器。静态补偿对用户在一段时间内的平均功率因数并无不良影响,也不影响供电部门对收费的影响,反而因避免频繁投切延长了执行元件及补偿电容器的使用寿命。另外,由于不随无功功率的波动而实时地进行投切,投切的执行元件采用接触器即能满足要求,从而减少补偿装置的造价,也方便对其维护。 动态补偿,是补偿电容器的投切要紧随负荷的无功功率的变化,不失时机的投切电容器,即进行实时跟踪补偿。为达到实时跟踪补偿的目的,从信号的检测到投切的执行要在10-20ms内完成。若采用电磁元件作执行元件,将无法满足快速投切要求。为达到此要求,采用

相关主题
文本预览
相关文档 最新文档