当前位置:文档之家› 安全稳定控制装置在电力系统的应用

安全稳定控制装置在电力系统的应用

安全稳定控制装置在电力系统的应用
安全稳定控制装置在电力系统的应用

安全稳定控制装置在电力系统的应用

安全稳定控制装置在电力系统的应用

摘要:随着电网网架结构的不断壮大,电网的安全可靠运行变的越来越重要,安全稳定控制装置在电网的应用,极大的保证了电网的安全可靠运行。文中从安全稳定控制装置的发展历程、分类、功能、安装配置、通信连接等方面,简述安全稳定控制装置在电力系统的应用。

关键词:电力系统系统运行安全稳定控制装置

中图分类号:F407.61文献标识码:A 文章编号:

前言

1 电力系统

电力系统的主体结构有电源(水电站、火电厂、核电站等发电厂),变电所(升压变电所、负荷中心变电所等),输电、配电线路和负荷中心。各电源点还互相联接以实现不同地区之间的电能交换和调节,从而提高供电的安全性和经济性。

2 系统运行

系统运行指系统的所有组成环节都处于执行其功能的状态。电力系统的基本要求是保证安全可靠地向用户供应质量合格、价格便宜的电能。所谓质量合格,就是指电压、频率、正弦波形这 3个主要参量都必须处于规定的范围内。电力系统的规划、设计和工程实施虽为实现上述要求提供了必要的物质条件,但最终的实现则决定于电力系统的运行。实践表明,具有良好物质条件的电力系统也会因运行失误造成严重的后果。例如,1977年7月13日,美国纽约市的电力系统遭受雷击,由于保护装置未能正确动作,调度中心掌握实时信息不足等原因,致使事故扩大,造成系统瓦解,全市停电。事故发生及处理前后延续25小时,影响到900万居民供电。据美国能源部最保守的估计,这一事故造成的直接和间接损失达3.5亿美元。60~70年代,世界范围内多次发生大规模停电事故,促使人们更加关注提高电力系

统的运行质量,完善调度自动化水平。

3 安全稳定控制装置的应用

3.1 安全稳定控制装置的发展历程

随着国家经济的高速发展,用户负荷的不断增长,电网作为输送和分配电能的中间环节,亦在不断的发展、不断的改进,以满足用户的需求。

20世纪80年代,我国以行政区划分为基础逐步发张,开始形成区域电网。安全稳定控制装置仅具有简单的低频、低压等功能作为第3道防线。2003年形成全国联网的基本框架,兼具第2道、第3道防线的大区域稳定控制装置开始应用。

3.2 安全稳定控制装置的分类

安全稳定控制装置可分位就地型、区域型、混合型。

就地型:根据电力系统中某一地方的就地信息进行判别,一旦满足设定的启动、动作值时发出动作命令;在切除部分负荷后,再次对就地信息进行判别,如有需要继续切除负荷,直至系统正常运行,实现电力系统的第3道防线。

区域型:电力系统第2道防线是允许切除电源或负荷,以保证系统的稳定运行。要实现这个功能,首先要根据控制范围,收集控制范围内电网网架结构的实时运行信息,根据实时运行情况,与目前情况下能保证系统正常运行的参数进行比较,根据比较结果做出相应的选择,通常通过区域型安全稳定控制装置实现。区域型安全稳定控制装置,能通过预先设置好的稳控策略,当发生故障时,及时切除负荷,保证电网的正常运行。随着电网网架结构的不断变化,稳控策略需不断的及时更新,才能更为有效的保证系统运行安全。

混合型:随着电网网架结构的不断变化,电力系统的第2道防线和第3道防线,很多情况下,在一个系统或装置上实现。区域性安全稳定控制装置具备远方功能的同时,具备就地联切功能,可以克服就地型和区域型安全稳定控制装置单独使用时的不足。

3.3 安全稳定控制装置的功能

以广东电网为例,截止2012年初,广东电网共设置1个中调管理主站、2个控制主站、12个控制子站及其所属的59个切机切负荷

执行站。

广东稳定控制主站:在南方电网交直流系统发生严重故障时,由南方电网调管的控制站稳控装置进行判断和计算切负荷量,通过南网设在广东的南网控制主站将需要切的负荷量下发广东控制主站,广东控制主站根据所带各控制子站的灵敏度进行分配并下发至各控制子站。

广东稳定控制子站(500kV变电站):收集控制子站内500kV线路、220kV线路、主变运行状况及负荷量,并上送广东稳定控制主站;当站内主变、500kV线路、220kV线路发生故障,或接收到广东稳定控制主站下发联切负荷量,稳控子站装置进行判断和计算切负荷量,根据收集到的所带各执行站上传负荷量,下发联切负荷只各执行站。

广东稳定控制执行站(220kV变电站):收集控制执行站内220kV 线路、110kV线路、主变运行状况及负荷量,并上送广东稳定控制子站;当站内主变、220kV线路、110kV线路发生故障,或接收到广东稳定控制子站下发联切负荷量,稳控执行站装置进行判断和计算切负荷量,联切站内各220kV线路、110kV线路、主变变低。

110kV及以下电压等级电网变电站由低频低压减载装置实现。

3.4 安全稳定控制装置的安装配置

就地型:就地型安全稳定控制装置一般是单套配置,若是重要厂站亦可采用双套配置。

区域型:区域型安全稳定控制装置,稳控主站、稳控子站按双套配置,执行站按单套配置。

1)稳控主站,主机单独组屏安装在厂站继保室或计算机室,复用通信接口屏安装至通信室。

2)稳控子站,根据厂站继保室的分布情况,分为集中式和分散式安装。继保室集中布置,不设继保小室,则稳控主机和从机装置组屏1面、从机装置组屏1面安装在继保室,复用通信接口装置、通道录波装置组屏安装在通信室。继保室分散布置,设继保小室,则稳控主机,单独组屏安装至主控楼计算机室,稳控从机,单独组屏安装至各继保小室,复用通信接口装置、通道录波装置组屏安装在通信室。

3)稳控执行站,执行站一般是安装在220kV变电站,220kV变

电站一般采用继保室集中布置。稳控主机和从机装置组屏1面、从机装置组屏1面安装在继保室,复用通信接口装置组屏安装在通信室。

混合型:现阶段的区域型安全稳定控制装置,均具备就地及远方功能,混合型安全稳定控制装置的配置方式与区域型安全稳定控制装置一致。

3.5 安全稳定控制装置的通信连接

就地型:就地型安全稳定控制装置无需与其它厂站建立通信连接。

区域型:稳控主站与稳控子站建立通信连接,稳控子站与执行站建立通信连接,通信连接通道均采用复用2M通道,稳控系统连接示意图详见下图。

4 结束语

安全稳定控制装置在电力系统的应用,为我国各电压等级电网的安全稳定运行提供了极大的安全保证。下一代的安全稳定控制装置将继续朝着网络化、智能化、广域化的方向发展,在具有很强的信息处理和分析能力的同时,能与其它装置有良好的互换性和互操性,协调控制系统的稳定问题。在稳控策略方面,将向多系统协调、有优化能力和自适应控制能力的方向发展。安全稳定控制装置将发展成为一个理想的“实时计算”、“实施匹配”的广域、协调稳定控制系统。

5 参考文献

[1] 宋锦海,李雪明,姬长安,等.安全稳定控制装置的发展现状及展望[J].电力系统自动化,2005,29(23).

[2] 广东电网电力调度控制中心文件.关于印发《2012年广东主网稳控系统策略研究、改造方案暨设计联络会会议纪要》的通知. 广电调控方[2012]10号.

[3] 广东电网电力调度控制中心文件.关于印发《广东电力系统安全自动装置标准化设计要求(2010年版)》的通知.广电调方〔2010〕187号.

[4] 广东电网公司部门文件. 关于印发《安自装置二次回路接线

设计规范》及《安自装置及其相关二次回路作业风险控制要求》的通知. 广电运部〔2011〕23号.

[5] 广东电网公司部门文件. 关于印发《广东电力系统安全自动装置端子排标准化设计》的通知. 广电运部〔2011〕106号.

------------最新【精品】范文

电力系统稳定与控制作业

华北水利水电大学研究生结课论文 姓名杨双双 学号201420542396 专业控制工程 性质国家统招(√)单考() 工程硕士()同等学力()科目电力系统稳定与控制 成绩

加强电网三道防线建设的建议 开题报告 1、选题的背景及意义 随着电网的发展,电网的动态特性日益复杂,电网运行稳定控制的复杂度也相对提升。然而近年来,美国,澳大利亚,瑞典等国家均发生了大面积停电,给这些国家的经济造成了巨大的损失,并严重影响了这些国家的社会生活,这些引起了国内外对电网安全运行的高度关注。为了确保电网的安全稳定运行,一次系统建立了合理的电网结构、配备完整的电力设施、安排合理的安全运行方式,二次系统应配备性能完备的继电保护系统和适当的安全稳定控制措施,这组成一个完备的防御系统,为三道防线。 《电力系统安全稳定导则》规定我国电力系统承受最大扰动能力的安全稳定标准分为三级: 第一级标准:保持稳定运行和电网的正常供电[单一故障(出现概率较高的故障)]; 第二级标准:保持稳定运行,但允许损失部分负荷[单一严重故障(出现概率较低的故障)]; 第三级标准:当系统不能保持稳定运行是,必须防止系统崩溃并尽量减少负荷损失[多重严重故障(出现概率很低的故障)]。 三道防线是电力系统防御体系的重要组成部分,设置三道防线来确保电力系统在遇到各事故时的安全稳定运行,其定义如下: 第一道防线:由性能良好的继电保护装置构成,确保快速、正确地切除电力系统的故障元件。 第二道防线:由电力系统安全稳定控制系统、装置及切机、切负荷等稳定控制措施构成,对预先考虑到的存在稳定问题的运行方式与故障进行检测、判断和实施控制,确保电力系统的安全稳定运行。 第三道防线:由失步解列、频率及电压紧急控制装置构成,当店里系统发生失步震荡、频率异常、电压异常等事故时采取解列、切负荷、切机等控制等措施,防止系统崩溃,避免出现大面积停电。第三道防线一般不站队特定的运行方式与

电力系统安全稳定控制

摘要:近年来,伴随着经济社会的快速发展,电力系统规模的不断扩大使得电网体系的结构日趋复杂,电力设备单机容量逐步提高,与之相关的电力系统安全稳定问题也不断涌现。积极研究和运用先进的安全稳定控制技术不但可以使电力系统运行的可靠性大大提高,而且可以直接带来可观的经济效益。从电力系统安全稳定的相关概念入手分析了电力系统安全稳定控制的相关技术,然后就这些技术在电力系统中的实际应用进行了说明,旨在为电力部门提高安全稳定控制水平提供参考。 关键词:电力系统;安全稳定;控制技术;应用 电力作为当今社会最主要的能源,与人民生活和经济建设息息相关。供电系统如果不稳定,往往导致大面积、长时间的停电事故,造成严重的经济损失及社会影响。因此,学习电力系统安全稳定控制理论并研究适应时代发展要求的新的电力系统安全稳定控制技术对于实现当前电力资源的合理配置、提高我国现有电力系统的输电能力和电网的安全稳定运行具有十分重要的意义。 一、电力系统安全稳定控制概述 1.电力系统稳定的相关概念 电力系统的主要任务就是向用户提供不间断的、电压和频率稳定的电能。它的性能指标主要包括安全性、可靠性和稳定性。电力系统可靠性是指符合要求长期运行的概率,它表示长期连续不断地为用户提供充足电力服务的能力。安全性指电力系统承受可能发生的各种扰动而不对用户中断供电的风险程度。稳定性是指经历扰动后电力系统保持完整运行的持续性。 2.电力系统安全稳定控制模式的分类 按照信息采集和传递以及决策方式的不同,电力系统安全稳定控制模式可以分为以下几种:一是就地控制模式。在这种控制模式中,控制装置安装在各个厂站,彼此之间不进行信息交换,只能根据各厂站就地信息进行切换和判断,解决本厂站出现的问题。二是集中控制模式。这种控制模式拥有独立的通信和数据采集系统,在调度中心设置有总控,对系统运行状态进行实时检测,根据系统的运行状态制定相应的控制策略表,发出控制命令并实施对整个系统的安全稳定控制。三是区域控制模式。区域控制型稳定控制系统是针对一个区域的电网安全稳定问题而安装在多个厂站的安全稳定控制装置,能够实现站间运行信息的相互交换和控制命令的传送,并在较大范围实现电力系统的安全稳定控制。 二、电力系统安全稳定控制的关键技术

DLT723-2000 电力系统安全稳定控制技术导则

F23 备案号:7783—2000 中华人民共和国电力行业标准 DL/T 723—2000 电力系统安全稳定控制技术导则 Technical guide for electric power system security and stability control 2000-11-03 发布 2001-01-01 实施 中华人民共和国国家经济贸易委员会发布 前言 本标准根据原电力工业部综科教[1998]28号文《关于下达1997年修订电力行业标准计划的通知》中所列项目任务《电力系统安全稳定控制技术导则》而编制。 电力系统安全稳定控制是保证电力系统安全稳定运行的重要措施。这类措施虽然已在电力系统中有较普遍的应用,但尚缺乏较全面、系统的技术规定来指导有关的科研、设计、制造和运行工作。本标准即为了适应这一要求而制定。 原电力工业部曾制定了《电力系统安全稳定导则》(1981年),并且正在进行修订。该导则提出了对电力系统在扰动时的安全稳定原则要求。本标准是根据这些原则提出对安全稳定控制的技术要求。 本标准编写格式和规则遵照GB/T 1.1—1993《标准化工作导则第一单元:标准起草与表达规则第1部分标准编写的基本规定》及DL/T600—1996《电力标准编写的基本规定》的要求。 本标准附录A是标准的附录,附录B和附录C是提示的附录。 本标准由中国电机工程学会继电保护专委会提出。 本标准由电力行业继电保护标准化技术委员会归口。 本标准起草单位:中国电机工程学会电力系统安全稳定控制分专委会和电力自动化研究院。 本标准主要起草人:袁季修、孙光辉、李发棣。 本标准由电力行业继电保护标准化技术委员会负责解释。 目次 前言

电力系统的稳定运行及其防范措施

电力系统的稳定运行及其防范措施 摘要:当前,随着我国工农业社会经济的飞速发展,人们对电力需求不断加大,同时对电力系统的稳定运行和电压质量的要求也愈来愈高,这就给我们电力部门 提出了更高的要求和希望。为了保障电力系统安全稳定运行,防止系统稳定破坏,需要我们充分认识电力系统的稳定运行的重要性,防止电网事故的防范措施。 关键词:电力系统;稳定运行;频率;电压;防范措施 1.前言 电力系统稳定性的破坏是事故后影响系统安全运行的最严重后果。随着电力 系统的迅速发展,现代电网以大机组、大电网、超高压、长距离、重负荷、大区 域联网、交直流联合为特点,虽然强有力地保证了社会日益增长的用电需求,但 同时也产生了一系列的系统稳定问题。如果处理不当,不但导致电力系统因不能 继续向负荷正常供电而停止运行,甚至其后果将使电力系统的长期大面积停电, 严重是还会造成系统崩溃事故,带来巨大的经济和社会损失。因此,现代电网对 系统的安全、经济运行提出了很高的要求,即要求系统具有很强的抗干扰能力并 保持电力系统有足够的安全稳定运行裕度,同时也是赋予系统规划设计和电网调 度运行的一项重要任务。 2.电力系统的稳定运行分类 当电力系统受到扰动后,能自动恢复到原来的运行状态,或者凭借控制设备 的作用过渡到新的稳定状态运行,即为电力系统稳定运行。 电力系统的稳定运行从广义角度来看,可分为: 1)发动机同步运行的稳定性问题。根据电力系统所承受的扰动大小的不同,又可分为静态稳定、暂态稳定、动态稳定三大类。 (1)静态稳定是指当电力系统受到小干扰后不发生非同期性失步,自动恢复到起始运行状态。 (2)暂态稳定功是指当电力系统受到大扰动各同步电机保持同步运行并过渡到新的或恢复到原来稳定运行方式的能力,通常指保持第一或第二个振荡周期不 失步的功角稳定,是电力系统功角稳定的一种形式。 (3)动态稳定是指电力系统受到小的或大的扰动后,在自动调节或控制装置的作用下,保持较长过程的运行稳定的能力。 2)电力系统无功不足引起的电压稳定性问题。电压稳定是指电网电压受到 小的或大的扰动后,能保持或恢复到允许的范围内,不发生电压失稳的能力。电 压失稳可表现为静态失稳、大扰动暂态失稳、大扰动动态失稳或中长期过程失稳。 3)电力系统有功功率不足引起的频率稳定性问题。频率稳定是指电力系统有功功率扰动后,电网运行频率能够保持或恢复到允许的范围内,不发生频率崩溃 的能力。 3.保证电力系统安全稳定的“三道防线” “三道防线”是指电力系统受到不同扰动时,对电网保证安全可靠供电方面提 出的要求: 1)当电网发生常见的概率高的单一故障时,电力系统应当保持稳定运行,同时保持对用户的正常供电; 2)当电网发生了性质较严重但概率较低的单一故障时,要求电力系统保持稳定运行,但允许损失部分负荷(或直接切除某些负荷,或因系统频率下降,负荷 自然降低);

励磁控制与电力系统稳定

技术讲座讲稿 励磁系统与PSS 2004年10月

1. 前言 根据我国国家标准GB/T 7409.1~7409.3-1997“同步电机励磁系统”的规定的定义,同步电机励磁系统是“提供电机磁场电流的装臵,包括所有调节与控制元件,还有磁场放电或灭磁装臵以及保护装臵”。励磁控制系统是包括控制对象的反馈控制系统。励磁控制系统对电力系统的安全、稳定、经济运行都有重要的影响。我国国家标准和行业标准都对励磁控制系统提出了具体的要求。这里,就励磁系统分类、对励磁控制系统的要求、励磁控制系统与电力系统稳定的关系、电力系统稳定器等几个问题和大家一起进行讨论。 2. 励磁系统分类 同步电机励磁系统的分类方法有多种。主要的方法有两种,即按同步电机励磁电源的提供方式分类和同步电机励磁电压响应速度分类两种分类方法。 按同步电机励磁电源的提供方式不同,同步电机励磁系统可以分为直流励磁机励磁系统,交流励磁机励磁系统和静止励磁机励磁系统。 按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。 2.1 直流励磁机励磁系统 由直流发电机(直流励磁机)提供励磁电源的励磁系统叫直流励磁机励磁系统。它主要由直流励磁机和励磁调节器组成。早期的中小容量的同步电机的励磁调节器从发电机的PT(电压互感器)和CT(电流互感器)取得电源;较大容量的同步电机的励磁调节器的电源有时经励磁变压器取自发电机端时,此时,励磁变压器也是主要组成部分(图2-1)。 同步电机的励磁电源是直流励磁机的输出,励磁调节器根据发电机运行工况调节直流励磁机的输出,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。 直流励磁机主要采用由原动机拖动与主发电机同轴的拖动方式,少数(主要是备用励磁机)为由异步电动机非同轴的拖动方式。直流励磁机的励磁方式,主要有它励、自并励和自励加它励三种方式。它励方式的直流励磁机的励磁全部由励磁调节器提供;自并励方式的直流励磁机的励磁全部由直流励磁机本身提供,励磁调节的任务是通过调节与励磁绕组相串联的电阻的大小来实现的;自励加它励方式的直流励磁机的励磁,一部分由励磁

电力系统中自动化控制技术的应用()

电力系统中自动化控制技术的应用 电力系统中自动化控制技术的应用 摘要:电气自动化技术在电力行业中的应用,让电力系统的各个环节的作用以及运行更加高效。谈谈电气自动化控制技术在电力系统中的应用。关键词电力系统自动化控制技术应用 城市化进程与人们生活水平的飞速发展让人们对电能需求越来越大,因而随着计算机技术的发展,电气自动化控制技术在电力系统中应用范围也在逐步扩大,电气自动化控制技术在电力系统中的应用让劳动生产力、劳动生产时间、劳动成本等都得到了有效的节约,成本节约也只是其中的一项,资源的最大化利用才是其中最为根本的优势所在。电气自动化技术在电力行业中的应用,让电力系统的各个环节的作用以及运行更加高效。 1电力系统中电气自动化控制技术的应用 1.1电力系统中应用电气自动化控制技术的发展现状。传统的供变电设备与控制系统已经无法对现代电力生产与配送需求进行满足,所以电气自动化控制技术的快捷、稳定、安全等优势让我国的电力系统的发展更加多元、复杂、广

泛。降低了电力企业生产成本也让电能的配送服务更加高效,电力供应的安全与稳定是电力企业在市场竞争中的重要武器,因此电力自动化控制技术的研究水平标志着我国电力企业发展运行中的进步与创新。 1.2电力系统中电气自动化控制技术的作用和意义。我国科学技术的不断完善与进步,让计算机技术在各个行业的普及度得到了很大跨度的提升。在电气行业的技术发展中也因为得到了计算机技术与PLC技术的辅助获得了长足性的发展。计算机在电力系统中承载着重要的核心作用,是电力系统中供电、变电、输电、配电等各个环节的基础支撑,并起着重要的调控作用。PLC技术是让电力系统进行自动化控制的一项技术,主要的作用是让电力系统的数据信息收集与分析可以更加准确,传输的过程更加稳定,并在此过程中将电力系统的运行成本进行了有效的降低,侧面提升了电力系统的整体运行效率。 2电气自动化控制技术在电力系统中的具体应用 2.1电气自动化控制的仿真技术。电气自动化技术因为得到我国专业科研人员的重点研究与发展,技术创新步伐正在不断加快。电力系统中电气自动化技术也因为科研人员的深入性研究,达到了国际标准。值得一说的是其中的仿真建模技术,不仅提升了数据的精确性与传输数据效率,同

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

基于响应的电力系统暂态稳定控制技术探讨

基于响应的电力系统暂态稳定控制技术探讨 发表时间:2018-10-01T11:18:49.463Z 来源:《电力设备》2018年第16期作者:孟祥华郭珂 [导读] 摘要:基于响应的电力系统暂态稳定控制技术的产生与发展较传统的电力控制系统具备较大的优势,它在运行过程中能够不被电力系统的元件模型与产生的参数所影响,也可以不事先预想故障集合与运行方式。 (国网新疆电力有限公司新疆乌鲁木齐 830011) 摘要:基于响应的电力系统暂态稳定控制技术的产生与发展较传统的电力控制系统具备较大的优势,它在运行过程中能够不被电力系统的元件模型与产生的参数所影响,也可以不事先预想故障集合与运行方式。运用该项技术能够有效、全面的制定出合理的控制措施,对电网运行中的暂态安全稳定加以水平提升。 关键词:电力系统;暂态;稳定控制;技术分析 引言:维持电力系统的安全运行一直以来是保障社会安定和经济发展的重要因素之一。为保障电网稳定运行,我国大型互联电网通常配置了特定的继电保护及安全稳定控制系统,构成了电网安全稳定运行的三道防线。其中,常规二道防线具有针对性强、速度快、可靠性高等特点,但若实际扰动超出了它所涵盖的事件范围,则无法做出有效应对。此外,二道防线的失稳判据和控制策略都是基于离线仿真计算得到,其可靠性严重依赖于仿真模型和参数的准确性。因此,我国现有的暂态稳定控制技术在适应性、控制效率、可靠性等方面仍存在诸多不足。 1.电力系统安全稳定性分类 功角稳定:主要指电网中的互联系统内部的同步发电机,在受到扰动冲击之后还能保持同步的运行能力,是电力系统中的重要热点问题。若功角发生失稳现象,则会引起控制系统中正在运行的发动机转子之间产生的相对角度逐渐扩大.最后难以维持同步运行,从而会在电力系统中产生电压、功率等电气量的不断震荡,导致整个系统的崩溃。电压稳定:主要指在电力系统的初始运行状态下,遭受到一定的扰动后,仍然能够保持全部母线维持稳定电压的能力它主要是由于负荷需求和电力系统向负荷供电之间形成的一种保持平衡的能力。若系统提供的负荷功率随着电流的增大而增大时,则系统的电压处于稳定状态。若系统提供的负荷功率不能随着电流的变化而变化,则系统的电压处于失衡状态。 2基于响应的电力系统稳定性判别技术 2.1基于响应的功角稳定判别技术 数值预测技术是用来判别电力系统功角稳定的重要技术,此类方法主要是利用实测相应信息,然后在通过各类数学方法对发电机的功角摇摆曲线进行预测。此项技术的运用能够有效的判断功角的运动数值是否不小于某一闭值,从而确定系统的暂态稳定性。数值预测技术主要是运用数值序列的排列方式进行分析从而发现有效数据,不用依赖电力系统中的数学模型和参数,只通过数学中的三角函数拟合、多项式拟合以及泰勒级数等方式便可对系统的暂态稳定性作出判别。如可以运用响应数据作为判定基础,对量测数据进行插值运算或是进行曲线拟合等数值运算,进而得到发电机的转子角与角速度的高阶导数,从而获得暂态稳定性的有效数据。 2.2基于响应的暂态电压稳定判别技术 当前在电力系统电压稳定的相关问题研究中,基于响应的电力系统暂态稳定研究还较少,主要是集中在长期电压稳定的领域。运用戴维南等值跟踪系统能够有效的对暂态电压下的稳定状态进行很好的判别,并通过与实时测量信息的结合实现对对系统的稳定控制与分析。在电力系统中只需将任意负荷点在任意时间等值为一个电势源经等值阻抗向该节点负荷供电的一个单机系统,就是戴维南等值。若电力系统中的这一负荷节点电压出现崩溃现象,造成电压出现大幅下降但戴维南等值的电势却变化不大,则电压处于失稳状态。 3.基于广域响应的暂态稳定紧急控制 由于系统的广域响应已包含了电网的所有特征信息,包括运行工况、事故信息等,基于广域响应确定最优的紧急控制地点并计算相应控制量已成为可能。该类控制技术无需制定针对性的策略表,省去了繁琐的计算过程,且基于当前系统的真实性状进行计算,达到“全局分析,实时决策”的目的。此外,通过PMU/WAMS开展数据集中分析,可根据全局信息实现各地区控制装置间的协调、经济运行,是最理想的稳定控制模式。目前,基于广域响应的紧急控制方法研究大多建立在EEAC基础上。提出了一种基于量测数据的闭环暂态稳定紧急控制方法:基于等值单机轨迹,应用广义Hamilton理论定量估计所需的紧急控制量,从而实现在线紧急切机决策。根据等值功角-不平衡功率相平面轨迹,利用曲线拟合外推方法预测系统的完整减速面积。基于单机能量函数,以判别失稳时刻等值单机系统的动能作为剩余减速面积,计算系统到达不稳定平衡点前需降低的等值机械功率,并在计算过程中进一步考虑了失稳判别与紧急控制间的时延所带来的影响。在此基础上,根据等值单机面积积分公式,通过迭代求解方法计算需降低的等值机械功率,提高了切机量的计算精度。 该类紧急控制方法基于等值单机受扰轨迹进行切机量计算。对系统模型参数依赖性小,可应对复杂故障场景,具有良好的适应性。但是,该类方法依赖于全网发电机量测,计算量大、通讯要求高。由于当前广域信息尚存在不确定性时滞,可能会严重影响紧急控制的时效性。 4.展望 基于广域响应的电力系统暂态稳定控制技术,摆脱了传统事件驱动型稳控技术对系统元件模型和参数的依赖,可应对各种复杂运行工况与故障情形,具有极大的在线应用前景,是未来电网安全稳定控制技术的重要发展方向。但WAMS技术尚处于发展初期,虽然在广域动态数据的同步采集和通讯方面已经取得了长足的进展,但在如何高效利用PMU数据,挖掘可靠的系统稳定性特征方面还需进行大量工作,应涉及以下几个方面内容: 一是相关研究中尚未涉及时滞问题和坏数据问题。实际电网在采样和通讯过程中,存在不确定性时延和噪声干扰,将对暂态稳定控制技术的时效性产生重大影响。因此,需建立合理的数学模型研究广域通信时滞的机理,分析所带来的影响并制定有效的应对方法。同时,可研究针对性的滤波方法,从而提高暂态稳定控制技术的抗干扰能力。 二是需进行基于多种控制措施的紧急控制策略研究。实际电网中可用于改善系统暂态性能的控制措施包括:切机/切负荷、HVDC功率调节等。因此,可综合各类控制措施的特点,根据系统实际需求启动最佳的紧急控制策略,以最小代价维持电网暂态稳定。 三是基于实际响应的暂态稳定控制技术,无法准确获知系统未来的真实轨迹,不能对控制后系统的特征进行先验评估。为防止紧急控制过控或欠控所造成的损失,可结合一定的系统快速仿真手段,实现失稳判别的防误和控制策略的校核,进一步提高暂态稳定控制技术的

分布式安全稳定控制装置的应用

分布式安全稳定控制装置的应用 (1.国网江芎=省电力公司海安县供电公司,江苏南通226600;2.南京师范大学,江苏南京210000)[摘要]介绍了分布式安全稳定控制装置的基本原理和控制策略,结合实例阐述了具体的系统配置方案与控制策略的设置。结果表明,合理的控制策略可以有效提高安全稳定控制装置的运行可靠性,确保信号采集的正确性,进而保障电网安全、稳定地运行。[关键词]安稳装置;控制策略;通道配置;稳控策略近年来,为了优化能源结构、推动节能减排,实现经济可持续发展,国家大力推广特高压骨干电网以及光伏电源建设,我国的电网结构因此发生了很大变化。因多个区域电网的联系加强,一旦特高压骨干电网发生故障,将波及多个区域电网,增加了电网稳定特性的复杂度。安全稳定控制装置(以下简称“安稳装置”)是能够快速切除系统故障、确保系统稳定运行的装置。电力系统发生短路或异常运行称为电力系统的一次事故,而把可能导致电力系统失步的称为二次事故。为了防止二次事故产生的严重后果,必须装设安稳装置。当电网受到大扰动而出现紧急状态时,安稳装置能够迅速执行紧急控制措施,维持系统功角稳定、电压稳定和频率稳定,使系统恢复到正常运行状态。装设安稳装置是提高电力系统稳定性、防范电网稳定事故、防止大面积停电事故的有效措施,目前已广泛应用在全国各级目网和电厂。1 分布式安稳装置基本原理分布式安稳装置是在多年研制开发安稳装置经验的基础上,为了满足特高压互联电网稳定运行要求而研发的新一代安稳装置。分布式安稳装置既可用于特高压电网的稳定控制和大区互联电网的安全稳定控制,又可适用于区域电网和单个厂站的稳定控制,满足电力系统安全稳定控制的需要,提高对电网的驾驭能力。分布式安稳装置要采集交流电流、交流电压等模拟量信息和开关、刀闸等位置信号以及保护跳闸信号;并且为实现协调控制,还需要采集异地的线路、元件、装置等运行信息,通过采集的信息自动识别电网当前的运行方式。当系统故障时,根据判断出的故障类型(包括远方送来的故障信息)、事故前电网的运行方式及主要送电断面的潮流大小,查找存放在装置内的预先经离线稳定分析制定的控制策略表,确定应采取的控制措施及控制量,如切机、切负荷、解列、直流功率紧急调制、调机组出力、投切电抗器/电容器等。2 安稳装置控制策略以某供电公司辖区内110kV光伏电站并网为例,对安稳装置控制策略进行具体分析研究。各个变电站均采用

安全稳定控制装置在电力系统的应用

安全稳定控制装置在电力系统的应用 安全稳定控制装置在电力系统的应用 摘要:随着电网网架结构的不断壮大,电网的安全可靠运行变的越来越重要,安全稳定控制装置在电网的应用,极大的保证了电网的安全可靠运行。文中从安全稳定控制装置的发展历程、分类、功能、安装配置、通信连接等方面,简述安全稳定控制装置在电力系统的应用。 关键词:电力系统系统运行安全稳定控制装置 中图分类号:F407.61文献标识码:A 文章编号: 前言 1 电力系统 电力系统的主体结构有电源(水电站、火电厂、核电站等发电厂),变电所(升压变电所、负荷中心变电所等),输电、配电线路和负荷中心。各电源点还互相联接以实现不同地区之间的电能交换和调节,从而提高供电的安全性和经济性。 2 系统运行 系统运行指系统的所有组成环节都处于执行其功能的状态。电力系统的基本要求是保证安全可靠地向用户供应质量合格、价格便宜的电能。所谓质量合格,就是指电压、频率、正弦波形这 3个主要参量都必须处于规定的范围内。电力系统的规划、设计和工程实施虽为实现上述要求提供了必要的物质条件,但最终的实现则决定于电力系统的运行。实践表明,具有良好物质条件的电力系统也会因运行失误造成严重的后果。例如,1977年7月13日,美国纽约市的电力系统遭受雷击,由于保护装置未能正确动作,调度中心掌握实时信息不足等原因,致使事故扩大,造成系统瓦解,全市停电。事故发生及处理前后延续25小时,影响到900万居民供电。据美国能源部最保守的估计,这一事故造成的直接和间接损失达3.5亿美元。60~70年代,世界范围内多次发生大规模停电事故,促使人们更加关注提高电力系

统的运行质量,完善调度自动化水平。 3 安全稳定控制装置的应用 3.1 安全稳定控制装置的发展历程 随着国家经济的高速发展,用户负荷的不断增长,电网作为输送和分配电能的中间环节,亦在不断的发展、不断的改进,以满足用户的需求。 20世纪80年代,我国以行政区划分为基础逐步发张,开始形成区域电网。安全稳定控制装置仅具有简单的低频、低压等功能作为第3道防线。2003年形成全国联网的基本框架,兼具第2道、第3道防线的大区域稳定控制装置开始应用。 3.2 安全稳定控制装置的分类 安全稳定控制装置可分位就地型、区域型、混合型。 就地型:根据电力系统中某一地方的就地信息进行判别,一旦满足设定的启动、动作值时发出动作命令;在切除部分负荷后,再次对就地信息进行判别,如有需要继续切除负荷,直至系统正常运行,实现电力系统的第3道防线。 区域型:电力系统第2道防线是允许切除电源或负荷,以保证系统的稳定运行。要实现这个功能,首先要根据控制范围,收集控制范围内电网网架结构的实时运行信息,根据实时运行情况,与目前情况下能保证系统正常运行的参数进行比较,根据比较结果做出相应的选择,通常通过区域型安全稳定控制装置实现。区域型安全稳定控制装置,能通过预先设置好的稳控策略,当发生故障时,及时切除负荷,保证电网的正常运行。随着电网网架结构的不断变化,稳控策略需不断的及时更新,才能更为有效的保证系统运行安全。 混合型:随着电网网架结构的不断变化,电力系统的第2道防线和第3道防线,很多情况下,在一个系统或装置上实现。区域性安全稳定控制装置具备远方功能的同时,具备就地联切功能,可以克服就地型和区域型安全稳定控制装置单独使用时的不足。 3.3 安全稳定控制装置的功能 以广东电网为例,截止2012年初,广东电网共设置1个中调管理主站、2个控制主站、12个控制子站及其所属的59个切机切负荷

7 安全稳定控制装置运行规程(已修订)

大盈江水电站(四级)运行规程 安全稳定控制装置 1 主题内容及适用范围 1.1 主题内容 1.1.1 本规程规定了安全稳定控制装置的运行方式、运行操作和维护,保护使用和故障、事故处理。 1.1.2 本规程对安全稳定控制装置的运行方式、运行操作和维护,保护使用和故障、事故处理等做出具体规定。 1.2 适用范围 1.2.1 本规程适用于大盈江(四级)水电站的运行管理。 1.2.2 大盈江(四级)水电站运行人员应掌握本规程,其他生产技术管理人员应熟悉本规程;本规程也可供有关维护专业人员参考。 2 依据与引用标准 2.1 《微机继电保护装置运行规程》中华人民共和国电力行业标准(DL/T587—1996) 2.2 《继电保护和安全自动装置技术规程》国家标准(GB14285—93) 2.3 《电业安全工作规程》 2.4 《电力系统安全稳定导则》(DL775-2001) 2.5 《电力系统安全稳定控制技术导则》(DL/723-2000) 2.6 《继电保护及安全自动装置检修条例(试行)》中国南方电网 2.7 《中国南方电网安全稳定控制系统入网管理及试验规定(试行)》等其它电力行业标准 3 安全稳定控制装置 3.1 安全稳定装置的配置 3.1.1 采用南瑞稳定公司的FWK-300分布式安全稳定控制装置。该系统由A,B 两套硬件相同,原理相同,接线,通信上互相独立的装置组成。A,B系统分别组屏安装,每个系统设置独立的打印机,两套系统共用一块通信屏,负责与德宏变的安稳装置通信。附属设备包括稳压电源、电源插板、复归按钮、功能压板、电源空开、电压回路空开、接线端子等。 3.1.2 FWK-300分布式安全稳定控制装置主要功能是采集四台机组的电压电流,500KV出线电压电流,并计算其功率,自动判断各种故障和设备状态并将其信息上传到德宏500KV变电站,为安稳系统切机提供依据;同时作为执行站接受德宏变切机命令,当退出德宏变通道后,具有就地切机功能。

电力系统安全稳定控制技术分析 刘向楠

电力系统安全稳定控制技术分析刘向楠 发表时间:2018-01-06T20:25:24.343Z 来源:《电力设备》2017年第26期作者:刘向楠李文翔 [导读] 摘要:随着科学信息技术的发展,采用先进的技术是保障电力系统的安全稳定运行的关键。 (国网江西赣西供电公司江西新余 338000) 摘要:随着科学信息技术的发展,采用先进的技术是保障电力系统的安全稳定运行的关键。充分发掘与综合运用信息技术和计算机网络以及控制领域的先进技术来为电力系统安全稳定控制服务,是提升电力安全系统稳定控制水平的有效方式。本文主要对几项重点的技术手段进行了分析,希望对今后的工作有所帮助。 关键词:电力系统;安全稳定;控制技术;应用 1 电力系统安全稳定控制概述 1.1电力系统稳定的相关概念 电力系统的主要任务就是向用户提供不间断的、电压和频率稳定的电能。它的性能指标主要包括安全性、可靠性和稳定性。电力系统可靠性是指符合要求长期运行的概率,它表示长期连续不断地为用户提供充足电力服务的能力。安全性指电力系统承受可能发生的各种扰动而不对用户中断供电的风险程度。稳定性是指经历扰动后电力系统保持完整运行的持续性。 1.2电力系统安全稳定控制模式的分类 按照信息采集和传递以及决策方式的不同,电力系统安全稳定控制模式可以分为以下几种:一是就地控制模式。在这种控制模式中,控制装置安装在各个厂站,彼此之间不进行信息交换,只能根据各厂站就地信息进行切换和判断,解决本厂站出现的问题。二是集中控制模式。这种控制模式拥有独立的通信和数据采集系统,在调度中心设置有总控,对系统运行状态进行实时检测,根据系统的运行状态制定相应的控制策略表,发出控制命令并实施对整个系统的安全稳定控制。三是区域控制模式。区域控制型稳定控制系统是针对一个区域的电网安全稳定问题而安装在多个厂站的安全稳定控制装置,能够实现站间运行信息的相互交换和控制命令的传送,并在较大范围实现电力系统的安全稳定控制。 2 电力系统安全稳定控制技术 2.1 低频控制技术 低频振荡与系统网络结构、运行状况及发电机磁系统参数密切相关,产生的原因主要包括远距离的输电电路发生功率摆动、大区间联系弱、大机组系统阻尼变弱、远距离输电线路中部或受端的电压不足等。在安全稳定控制装置内增加低频检测判据和控制策略就可实现对低频振荡进行及时的检测和控制。具体措施包括增强网架、串联补偿电容、采用直流输电方案和在远距离输电线路中部装设同步调相机以加强电压支撑的作用。 2.2 低压控制技术 由于电压不稳定会导致整个系统的不稳定。电压崩溃是伴随电压不稳定导致电力系统大面积、大幅度的电压下降的过程,致使大范围内停电。低压控制技术能利用相关的信息管理系统采集当前系统运行时的各种数据,同时还可以针对可能造成电压崩溃的预想事故进行暂态电压稳定(小于 10秒)和中期电压稳定(10~30 秒)分析计算,提出电压预防性控制措施。 2.3 过频控制技术 过频切机是目前电网系统所普遍采用的防止频率过高的防护措施。过频切机的运行机制就是根据电网电源的分布情况合理配置过频切机装置和这些装置的动作值。为了提高动作的可靠性,还应设有频率启动级和频率变化率闭锁。 2.4 基于光电传感器的新技术 与传统的电压和电流互感器相比,新型光学电流和电压互感器具有非常明显的优势,譬如良好的绝缘性能、较强的抗电磁干扰能力等。与现代数字信号处理器(DSP)技术紧密结合的光电传感器成为电力系统安全稳定控制技术的新导向,同时将其应用于全球定位系统(GPS)中可以使广域中采集实时量的统一时标问题得到有效的解决。这一问题的解决对促进继电保护技术的进一步发展发挥了至关重要的作用。 2.5 自适应稳定控制技术 使控制系统对未建模部分的动态过程以及对过程参数的变化变得不敏感是自适应控制的最终目标。其作用原理是这样的:当系统控制过程发生动态变化时,自适应控制系统就能及时捕捉到这一变化并实时调节控制策略和相关的控制器参数,从而实现系统的稳定控制。除此之外,为了使控制操作更为精确,安装有自适应稳定控制系统的电力系统主站或调度中心还可以根据其所接收的电网实测数据及时完成紧急控制策略的自动优化,从而有效实现电力系统的自适应稳定控制,同时还具备相关的事故自动处理功能。目前,自适应稳定控制技术与电力系统紧急控制在线决策技术以及广域测量技术的有效结合实现了电力系统安全稳定的广域测量分析控制一体化,为实现电力系统安全稳定提供了极为重要的技术支撑。 3 电力系统安全稳定控制技术应用分析 3.1 电力系统安全稳定控制体系的构建 在进行电力系统规划设计时要把电力系统的安全性放在首要位置,确保电力系统的持续安全稳定。电力系统安全稳定控制体系可以分为受扰动前的电力系统安全保障体系和受扰动后的电力系统安全稳定控制体系。整个体系由三道防线构成。第一道防线:用于保证系统正常运行和承受各类电力系统大扰动的安全要求。在发生安全故障时该防线可以借助继电保护机制安全快速切除故障元件,确保电网发生常见的单一故障时能够正常稳定运行。该防线主要应用了继电保护、一次性系统设备以及安全稳定预防性控制技术等措施。 第二道防线:该防线借助稳定控制装置及切机、切负荷等稳定控制、功率紧急调制以及串联补偿等技术措施来有效预防稳定破坏,实现系统参数发生严重越限时的紧急控制,从而确保在发生严重故障时电网能继续保持稳定运行。 第三道防线:该防线采用系统解列、再同步以及频率及电压紧急控制等技术实现系统崩溃时的紧急控制,从而当电网遇到多重严重事故而稳定破坏时可以有效防止事故扩大,从源头上杜绝电力供应中大面积停电的出现。 3.2 电力系统安全稳定控制过程分析 电力系统作为一个极其复杂的非线性的动态大系统,由于系统的电气量变化范围相对比较大,而且持续的时间短,分析计算又相对比

电力系统安全稳定控制的探讨

电力系统安全稳定控制的探讨 发表时间:2018-05-30T09:26:37.003Z 来源:《电力设备》2018年第1期作者:高磊塔娜 [导读] 摘要:电力系统的安全是电网运行的关键之所在,文章阐述和分析了电力安全稳定计算的原则和组成,重点就电力系统安全稳定控制的进行了研讨和分析,同时结合笔者多年的实际工作和设计经验,针对电力安全控制提出了一些休整意见和建议,最后通过应用实例说明了电力系统安全稳定控制的重要性。 (内蒙古电力(集团)有限责任公司鄂尔多斯电业局康巴什供电分局内蒙古自治区鄂尔多斯市 017200) 摘要:电力系统的安全是电网运行的关键之所在,文章阐述和分析了电力安全稳定计算的原则和组成,重点就电力系统安全稳定控制的进行了研讨和分析,同时结合笔者多年的实际工作和设计经验,针对电力安全控制提出了一些休整意见和建议,最后通过应用实例说明了电力系统安全稳定控制的重要性。 关键词:电力系统稳定;电力行业;安全生产 十一五期间,我国以新增4.3亿千瓦的电力装机跃居世界第一的电网规模,展示了我国电力系统是如何成为国民经济发展的引擎。在现代化的运输体系中,我国电网企业在物联网中率先起步,以特高压长距离输送能源的方式,实现了整体运输效能的最优组合,创造了最大的综合效益。在特高压领域,我国电网企业已经成为世界电网企业的领跑者;在开发具有信息化、自动化和灵活特性的智能电网方面,我国电网企业或将成为世界标准的制定者;由此可见,无论是“十二五”的投资规模还是科技水平,我国电网以其巨大规模正在实现弯道超车。本文重点在借鉴国外先进控制技术的基础上,结合工作实际就电力系统安全稳定控制进行了探讨。 1、电力系统安全稳定计算分析 电力系统安全稳定性关系到国民经济的发展和人民生活改善,一个国家要发展就必须要有一个稳定的能源补给系统,因此稳定性计算成了电力系统计算的重中之重。1972年自加拿大Dommel教授等首次将隐式梯形积分规则应用于电力系统暂态过程的数值仿真计算后,隐式梯形积分规则在电力系统暂态稳定性分析计算中一直占据主导地位。近年来,我国学者在国内外率先将“辛几何方法”应用于电力系统暂态稳定性数值计算。正是在对比研究中他们发现并证明了传统的数值积分方法并不是“绝对稳定的”数值计算方法,目前“辛几何方法”已运用于国内最大的南方电网电力系统之中。在电力系统安全稳定计算中,我们都是以配置自动装置为最终目的,其关键就是研究系统正常接线的情况下多发生的二三级扰动下的稳定性。如果系统出现异常,就应该在第一时间找到异常故障,通过区域内功率平衡找出具体的分区解列点。 2、安全稳定控制系统的要求 可靠性要求是安全稳定控制系统运行的关键和基础,如果安全稳定控制系统发生拒动,就会产生较大的破坏性,它不但会直接导致系统稳定的剧降,还会引发数据的误动,从而造成部分系统的机组和负荷的损失,其后果是不可低估的。所以说我们在可靠性要求过程中,极力强调安全稳定控制系统的安全性。通常情况下,我们对安全稳定控制系统分两个方面进行控制。第一种是在系统发生了相对比较大扰动,为了确保系统的安全稳定运行,控制了部分机组和负荷,装置运行之后,一旦控制量不能满足前提要求,系统就会处于一个完全失稳的状态之下,这样就起不到任何的稳定控制的作用。第二种是对控制对象的选择,最为常见的处理方式就是快速消弱出力控制对象,第一时间对一些有效性相对比较高的对象进行控制。在远距离的送电稳定控制装置中,电厂出线为主要的保护范围,根据实际需要最多可以延伸到下一级,通过对下一级出线故障进行控制而缓解损失。对于一些网间的稳定性控制,一般都是利用特质的网间装置对其进行控制,特殊情况下,还可以通过发电厂的具体装置进行控制。所以说,安全稳定控制系统要确保协调控制,逐步满足所有系统的具体要求。 3、安全稳定控制系统的组成 3.1安全稳定控制装置的配置 在正常潮流方式和正常接线情况下,电力系统一旦发生了二三级扰动,或者是检修接线正常潮流方式和正常接线加重潮流方式下,电力系统发生了一二级扰动,只是简单地依靠电力系统的一次网架是难能满足A级稳定的要求,必须要配置一些安全的稳定控制装置进行对其科学合理的控制和引导。如果电力系统一旦发生了扰动,管理者必须要应用具体的处理方式对其进行处置和控制,让其在短时间内快速降低扰动,使之能够满足B级的稳定要求。在系统安全的装置中,通常都是按照双重的配置进行设计,这种配置都是在单一的装置,通过三选二的起动逻辑对其进行控制,利用这种双重冗余的配置就能满足相应的要求。 3.2自动限制频率装置 本项装置必须要覆盖所有的独立运行区域,主要包括因为异步方式而被自动控制所解列出来的所有系统。我们可以利用限制频率装置对整个系统进行切机/切负荷的控制,这样就可以进一步实现所有的限制缺额频率变化。通常情况下我们都是对这种装置进行分散配置的,这种同类配置的做大优势就是可以实现配置间相互备份和共享。自动限制装置的目的就是为了减少和防范事故发生后,电力系统一些节点不允许值的突然增大或者减小而导致的设备损坏。在实际的操作中,我们对于这种装置都是依据其计算结果,对其进行配套的配置。在允许时间内的限制电气设备超过允许的过电流值。比如真实的电流并没有高于手控时间允许值时,就尽量不要装设任何的限制设备。当前我国还没有出现装置设备和允许时间之间参数值的具体规定,很多情况下都是依据国外数值进行选定,笔者建议我们在自动限制设备的装置过程中,应该设计一些对电流和电压进行监视的设备,这样就可以对输送电的厂家减小出力或切负荷的控制。 4、安全稳定控制系统的应用 沈阳万益安全科技有限公司生产的RCS-992A系列稳控装置采用了模块化、主从式结构,整套系统由多个相对独立的模块组合而成。系统由主机RCS-992A从机RCS990A,通信复接装置MUX-22A、MUX-64B和MUX-2M等共同构成。主站、子站和执行站装置的硬件结构基本一致,只是当稳控系统较大时,主站需扩展通信接口,而子站用于与主站和执行站的通信接口较少,执行站可能只需要一个通信接口用于与主站或子站通信。每个站均由一套主机和数套从机构成,需要时还有信号复接设备。子站主机负责与其他站的装置通信、接收本站从机采集的数据和判别结果、实施稳定控制策略,从机负责数据采集、计算,判别线路(主变、机组)是否运行、及判别线路(主变、机组、母线)是否跳闸及故障形式等,并执行主机下发的命令;从机同时需要进行与系统运行方式无关的稳定控制功能的实施,如变压器或线路的过负荷判别等。某地区联变过载远切负荷稳控系统由A、B、C、D、E变电站的稳控装置通过通讯通道连接而成。该稳定控制系统A 站为主站,其他站均为远方切负荷执行站。各站间采用2M光纤通信,A站装置系统由500kV向220kV送电时主编过载三轮动作,向其他4个

相关主题
文本预览
相关文档 最新文档