当前位置:文档之家› 南昌大学物理实验报告-光的等厚干涉

南昌大学物理实验报告-光的等厚干涉

南昌大学物理实验报告-光的等厚干涉
南昌大学物理实验报告-光的等厚干涉

物理实验报告

姓名:罗程学号:5902616003序号:26

班级:能源与动力工程161班

实验名称:光的等厚干涉

实验目的:1.观察牛顿环和劈尖的干涉现象

2.了解形成等厚干涉现象的条件及特点

3用干涉法测量透镜的曲率半径以及测量物体的微小直径

实验仪器:牛顿环装置,钠光灯,读数显微镜,劈尖等

实验原理:当一个曲率半径很大的平凸透镜的凸面放在一片平玻璃片上时,两者之间就形成类似劈尖的劈型空气薄层,当平行光垂直的射向平凸透镜时,由于透镜下表面所反射的光和平玻璃片上表面所反射的光互相干涉,结果形成干涉条纹,如果光束是单色光,我们将观察到明暗相间的同心环形条纹,如是白色光,将观察到彩色条纹,这种同心的环形干涉条纹称为牛顿环,牛顿环是一种典型的等厚干涉,利用它可以检验光学元件的平整度,光洁度;测定透镜的曲率半径或测量单色光波长等。

本实验用牛顿环来测定透镜的曲率半径,为此,需要找出干涉条纹半径r ,光波波长λ,和曲率半径R 三者之间的关系。

设在条纹半径r 处空气厚度为e,如图所示,那么,在空气层下表面B 处所反射的光线比在A 处所反射的光线多经过一段距离2e,此外,由于两者反射情况不同,:B 处是从光疏介质(空气)射向光密介质(玻璃)时在界面上的反射,A 处则从光密介质射向光疏介质时被反射,因B 处产生半波损失,,所以光程差还要增加半个波长,即2=δe 2

/λ+

根据干涉条件,当光程差为波长整数倍时光强互相加强,为半波长奇数倍时互相抵消,因此2e+λλk =2/(明环)

2/)12(2/2λλ+=+k e (暗环)(15-2)从上图中可知,2222Re 2)(e

e R R r -=--=因R 远大于e,故2e 远小于2Re,2e 可忽略不计,于是e=R r 2/2(15-3)

上式说明e 与r 的平方成正比,所以离开中心越远,光程差增加越快,所看到的圆环也变得越来越密。

把上式(15-3)代入式(15-2)可求得明环和暗环的半径

2/)12(2λR k r -=λkR =2r (15-4)

如果已知入射光的波长λ,测出第k 级暗环的半径r,由上式即可求出透镜的曲率半径R。

但在实际测量中,牛顿环中心不是一个理想的暗点,而是一个不太清晰的暗斑,无法切确定出k 值,又由于镜面上有可能存在微小灰尘,这些都给测量带来较大的系统误差。

我们可通过取两个半径的平方差值来消除上述两种原因造成的误差,假设附加厚度为a,

则光程差为2/)12(2/)a e 2λλδ+=++=k (

即a

k -=2/e λ将式(15-3)代入得:Ra kR r 22-=λ(15-5)

取m、n 级暗环,则对应的暗环半径为n r r .m ,由式(15-5)可得

Ra mR r 22m -=λRa

nR r 22n -=λ由此可解得曲率半径R 为)(2

2m n m r r R n --=λ(15-6)采用式(15-6)比采用式(15-4)能得到更准确的结果,又由于环心不易准定,所以式

(15-6)要改用直径n m d d 、来表示:)(422m n m d d R n --=λ(15-7)

本实验即采用上式计算透镜的曲率半径。

劈尖干涉也是一种等厚干涉,如图所示,其同一条纹是由劈尖相同厚度处的反射光相干产生的,其形状决定于劈尖等厚点的轨迹,所以是直条纹。与牛顿环类似,劈尖产生暗纹条件为2/)12(2/e 2λλ+=+k 与k 级暗纹对应的披肩厚度2

/e λk =

设薄片厚度d,从劈尖尖端到薄片距离l,相邻暗纹间距l ?,则有

2

d λ??=l l 实验内容:

一、利用牛顿环测定透镜的曲率半径

1、启动钠光灯电源,待稳定即可实验

2、利用自然光或灯光调节牛顿装置,均匀且很轻的调节装置上的三个螺丝,使牛顿环中心

条纹出现在透镜正中,无畸变,且为最小,然后放在显微镜物镜下方。

3、前后左右移动读数显微镜,也可轻轻转动镜筒上的045反光玻璃,使钠光灯正对0

45玻

璃,直至眼睛看到显微镜视场较亮,呈黄色(显微镜如图)4、用显微镜观察干涉条纹:先将显微镜筒放置最低,然后慢慢升高镜筒,看到条纹后,来回轻轻微调,直到在显微镜整个视场都能看到非常清晰的干涉条纹,观察并解释干涉条纹的分布特征。

5、测量牛顿环的直径

转动目镜看清目镜筒中的叉丝,移动牛顿环仪,使十字叉丝的交点与牛顿环中心重合,移动测微鼓轮,使叉丝交点都能准确的与各圆环相切,这样才能正确无误的测出各环直径。

在测量过程中,为了避免转动部件的螺纹间隙产生空程误差,要求转动测微鼓轮使叉丝超过右边第33环,然后倒回到第30环开始读数,(在测量过程中不可倒退,以免产生空程误差)在转动鼓轮过程中,每一个暗环读一次数,几下各次对应的坐标x,第20环以下,由于条纹太宽,不易对准,不比读数,这样,在牛顿环两侧,可读出二十个位置数据,由此可计算出从第21环至第30环的十个直径,即2121,,x x x x d i -=分别为同一暗环直径左右两端的读数,这样一共10个直径数据,按m-n=5配成5对直径平方之差,即(22m n d d -)。

6.已知钠光波长cm 10893.55-?=λ,利用式(15-7)分别求出五个相应的透镜曲率半径值,并求出算术平均值。

次数环数)

(i mm x (左)

)(i mm x ?(右))(i mm D )(22i mm D 225i i i i D D P -=+13024.219

15.7718.44871.369-10.37322924.156

15.8288.32869.356-10.57332824.099

15.9068.19367.125-10.43942724.025

15.9708.05564.883-10.40452623.959

16.0307.92962.869-10.43762523.905

16.0957.81060.996/724

23.83116.1647.66758.783/

8

2323.76416.2357.52956.686/9

2223.68716.3067.38154.479/102123.62416.3837.24152.432/

由公式)(422m n m d d R n --=λ残差R R i i -=υ计算

=1R 0.8802m 2R =0.8972m 3R =0.8862m 4R =0.8832m 5R =0.8862

m =1υ-0.0062m 2υ=0.0112

m 3υ=02m 4υ=-0.0032m 5υ=02m =--=?=∑=15)(51i 2R R R i R σ 6.4423-10?m

==∑=51

i 51i i P P -10.4452

mm 所以,R =m P 886.010445.10n)-(m 476

i =????-=--λR R R ?±==0.892m E=R

R ?=0.007二、利用劈尖干涉测量微小厚度或细丝直径

将叠在一起的两块平板玻璃的一端插入一个薄片或细丝,则两块玻璃板间即形成一空气劈尖,当用单色光垂直照射时,和牛顿环一样,在劈尖薄膜上下两表面反射的两束光也将发生干涉,呈现出一组与两玻璃板交接线平行且间隔相等、明暗相间的干涉条纹,这也是一种等厚干涉。

1.将被测薄片或细丝夹于两玻璃板之间,用读数显微镜进行观察,描绘劈尖干涉的图像

2.测量劈尖两玻璃板交线到待测薄片间距l

3.测量十个暗纹间距,进而得出一个条纹间距l

?玻璃板到细丝的长度L=5.391(mm)次数条数起点1x (mm)终点?i x (mm)

?-=?i i x x i (mm)i n ?=10i (mm)11028.081

27.3980.68314.64122027.398

26.025 1.3737.2833

3026.02524.962 1.0639.407由公式2λ??=l L n

d ?1d =2.33cm 105-?cm 521031.2d -?=cm

531048.4d -?=所以(31d =)d 321d d ++=3.04cm 105-?原始数据如下

等厚干涉实验报告(2)

大学物理实验报告(等厚干涉) 、实验目的: 1?、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空 气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为入,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空 气膜上下两界面依次反射的两束光线的光程差为 - 扎 =2nd k 亠— 2 式中,n为空气的折射率(一般取1),入/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 下界面上的两束反射光的光程差存在两种情况: 根据干涉条件,当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上 2k K=1,2,3,….,明环

(2k 1) 2K=0,1,2,….,暗环

2 2 2 由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系R =(R-d k) - r k o o 由于dk远小于R,故可以将其平方项忽略而得到2Rd k二r k o结合以上的两种情况公式,得到: *5 r k =2Rd k二kR,, k= 0,1,2…,暗环 由以上公式课件,r k与d k成二次幕的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜 要作图求出斜率4R,,代入已知的单色光波长,即可求出凸透镜的曲率半径R o 2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行) 则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: k =2d k - =(2k 1) 2 k=0, 1,2,… 可知,第k级暗条纹对应的空气劈尖厚度为 面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。由上可得: 2 2 d m — d n R 二--------- 4(m - n) ■ 式中,D m、D n分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。测得多组不同的D m和m,根据公式D2m = 4R m , 可知只 Hi

大学物理实验报告-等厚干涉

得分教师签名批改日期深圳大学实验报告 课程名称:大学物理实验(一) 实验名称:实验等厚干涉 学院:物理科学与技术学院 专业:课程编号: 组号:16 指导教师: 报告人:学号: 实验地点科技楼509 实验时间:2011 年06 月20 日星期一 实验报告提交时间:年月日

1、实验目的 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________

惠斯通电桥实验报告南昌大学

南昌大学物理实验报告 课程名称:_____________ 大学物理实验 实验名称:_______________ 惠斯通电桥 学院:___________ 专业班级: 学生姓名:_________ 学号: 实验地点:___________ 座位号: 实验时间:第11周星期4上午10点开始

、实验目的: 1. 掌握电桥测电阻的原理和方法 2. 了解减小测电阻误差的一般方法 、实验原理: (1) 惠斯通电桥原理 惠斯通电桥就是一种直流单臂电桥,适用于测中值电阻,其原理电路如图 7-4所示。若调节电阻到合适阻值时, 可使检流计 G 中无电流流过,即 B 、D 两点的电位相等,这时称为“电桥平衡”。电桥平衡,检流计中无电流通过, 相当于无BD 这一支路,故电源 E 与电阻R ,、R x 可看成一分压电路;电源和电阻 R 1 上面两式可得 R 2 桥达到平衡。故常将 R 、R 2所在桥臂叫做比例 臂,与R x 、R S 相应的桥臂分别叫做测量臂和比 较臂。 V B C 点为参考,贝y D 点的电位V D 与B 点的电位V B 分别为 R 2 R S R S V D R X 因电桥平V B V D 故解 R 2、R S 可看成另一分压电路。若以 R x 为 E 待测电阻,则有 R>< R X R S 上式叫做电桥的平衡条件,它说明电桥平衡时,四个臂的阻值间成比例关系。如果 1 10,10 1等)并固定不变,然后调节 金使电

(2)电桥的灵敏度

n R S R S 灵敏度S 越大,对电桥平衡的判断就越容易,测量结果也越准确。 此时R s 变为R s ,则有:R x R2 R s ,由上两式得R x . R s R s 三、 实验仪器: 线式电桥板、电阻箱、滑线变阻器、检流计、箱式惠斯通电桥、待测电阻、低压直流电源 四、 实验内容和步骤: 1. 将箱式电桥打开平放,调节检流计指零 2. 根据待测电阻(线式电桥测量值或标称值)的大小和 R 3值取满四位有效数字原则,确定比例臂的取值,例如 R 为数千欧的电阻,为保证 4位有效数字,K r 取 3. 调节F 3的值与R <的估计 S _____ S 的表达式 R S R S S-i S 2 _____________________ ES R i R 2 R s R x 1 R E % R i R 2R X Rg 2 R x R s R 2 R - R E 2 R R s R x (3) 电桥的测量误差 电桥的测量误差其来源主要有两方面,一是标准量具引入的误差, 二是电桥灵敏度引入的误差。为减少误差传递, 可采用交换法。 交换法:在测定R x 之后,保持比例臂 R -、R 2不变,将比较臂 R s 与测量臂R x 的位置对换,再调节 R s 使电桥平衡,设 电桥的灵敏程度定义: R i

大学实验报告模板三篇

大学实验报告模板三篇 篇一:大学物理实验报告格式 实验名称:杨氏弹性模量的测定 院专业学号 姓名 同组实验者 20XX年月日 实验名称 一、实验目的。。。。。。。。。 二、实验原理。。。。。。。。。。 三、实验内容与步骤。。。。。。。。。 四、数据处理与结果。。。。。。。。。 五、附件:原始数据 ****说明: 第五部分请另起一页,将实验时的原始记录装订上,原始记录上须有教师的签名。 篇二:大学实验报告册模板 实验课程名称开课学院理学院指导老师姓名学生姓名学生专业班级 200— 200 学年第学期 实验课程名称:

实验课程 名称: 篇三:浙江大学实验报告模板 专业:________________ 姓名:________________ 实验报告 学号:________________ 日期:________________ 地点:________________ 课程名称: _______________________________指导老师:________________成绩:__________________ 实验名称: _______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验名称:_______________________________姓名: ________________学号:__________________

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

薄透镜焦距的测定 物理实验报告

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:薄透镜焦距的测定 学院:信息工程学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼座位号:01 实验时间:第7周星期3下午4点开始

一、实验目的: 1.掌握光路调整的基本方法; 2.学习几种测量薄透镜焦距的实验方法; 3. 观察薄凸透镜、凹透镜的成像规律。 二、实验原理: (一)凸透镜焦距的测定 1.自准法 如图所示,在待测透镜L的一侧放置一被光源照明的物屏AB,在另一侧放一平面反射镜M,移动透镜(或物屏),当物屏AB正好位于凸透镜之前的焦平面时,物屏AB上任一点发出的光线经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像。 A'B' 此时物屏到透镜之间的距离,就是待测透镜的焦距,即 f=s 由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在之间。 1%~5%

2.成像法 在近轴光线的条件下,薄透镜成像的高斯公式为 1 s '?1s =1f '当将薄透镜置于空气中时,则焦距为: f ' =?f =ss ' s ?s '式中为像方焦距,为物方焦距,为像距,为物距。 f 'f s 's 式中的各线距均从透镜中心(光心)量起,与光线行进方向一致为正,反之为负,如图所示。若在实验中分别测出物距和像距,即可用式求出该透镜的焦距。但应注意:测得量须添加符号,求得量s s 'f '则根据求得结果中的符号判断其物理意义。 3.共轭法 共轭法又称为位移法、二次成像法或贝塞尔法。如图所示,使物与屏间的距离并保持D >4f 不变,沿光轴方向移动透镜,则必能在像屏上观察到二次成像。设物距为时,得放大的倒立实像;s 1物距为时,得缩小的倒立实像,透镜两次成像之间的位移为d ,根据透镜成像公式,可推得:s 2 f ' = D 2?d 2 4D 物像公式法、自准法都因透镜的中心位置不易确定而在测量中引进误差。而共轭法只要在光具座上确定物屏、像屏以及透镜二次成像时其滑块移动的距离,就可较准确地求出焦距。这种方法无需考f '虑透镜本身的厚度,测量误差可达到。 1%

大学物理实验报告-总结报告模板

大学物理实验报告 摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电阻温度特性 1、引言 热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-~+)℃-1。因此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。 Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。 2、实验装置及原理 【实验装置】 FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(Ω)以及控温用的温度传感器),连接线若干。 【实验原理】 根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1) 式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:专业班级:应用物理学111班班级编号:S008实验时间:13时 00 分第3周星期三座位号: 07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现 象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电 子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回 路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量, 如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。 按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号: 07 教师编号:T003成绩: 此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频 率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。 南昌大学物理实验报告 学生姓名:黄晨学号:59 专业班级:应用物理学111班班级编号:S008实验时间:13时 00 分第3周星期三座位号: 07 教师编号:T003成绩: 四、实验步骤 1.调整仪器,接好电源,按下光源按钮,调节透镜位置,让光汇聚到单色 仪的入射光窗口,用单色仪出光处的挡光片2挡住光电管窗口,调节单色仪 的螺旋测微器,即可在挡光片上观察到不同颜色的光。 2、用单色仪入口光窗口处的挡光片1挡住单色仪的入口,移开挡光片2,将 单色仪与光电管部分的黑色的链接套筒连接起来形成暗盒,将测量的放大器 “倍率”旋钮置于(10^-5),对检流计进行调零。 3、按下测量按钮借给光电管接上电压,电压表会有读数,此式检流计会有 相应的电流读数,此时所读得得即为光电管的暗电流。 4、旋转电压调节的旋钮,仔细记录从不同电压下的相应的暗电流。让出射

大物实验报告光的等厚干涉

大学物理实验报告 实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3:45开始 地点:基础实验大楼313 一、实验目的: 1.观察牛顿环和劈尖的干涉现象。 2.了解形成等厚干涉现象的条件及特点。 3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理:

在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。(2)调节叉丝方位

大学物理实验报告优秀模板

大学物理实验报告优秀模板 大学物理实验报告模板 实验报告 一.预习报告 1.简要原理 2.注意事项 二.实验目的 三.实验器材 四.实验原理 五.实验内容、步骤 六.实验数据记录与处理 七.实验结果分析以及实验心得 八.原始数据记录栏(最后一页) 把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。 实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。 实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学

论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。 实验报告内容与格式 (一) 实验名称 要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证×××”;分析×××。 (二) 所属课程名称 (三) 学生姓名、学号、及合作者 (四) 实验日期和地点(年、月、日) (五) 实验目的 目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 (六) 实验内容 这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程. (七) 实验环境和器材 实验用的软硬件环境(配置和器材)。 (八) 实验步骤 只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图(实验装置的结构示意图),再配以

光的等厚干涉 实验报告——大连理工大学大学物理实验报告

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705 姓名学号实验台号 实验时间2020 年10 月04 日,第周,星期二第5-6 节 实验名称光的等厚干涉 教师评语 实验目的与要求: 1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.掌握读数显微镜的使用方法。 实验原理和内容: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 成绩 教师签字

设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为 2 2λ δ+ =k k nd 式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况: 2 ) 12(2 22 2λ λ λ δ+= + =k k d k k 由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系 222)(k k r d R R +-=。 由于dk 远小于R , 故可以将其平方项忽略而得到2 2k k r Rd =。 结合以上 的两种情况公式, 得到: λkR Rd r k k ==22 , 暗环...,2,1,0=k 由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。 而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得: λ )(422n m D D R n m --= 式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。 由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。 测得多组不同的D m 和m , 根据公式m R D m λ42=, 可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。 2. 劈尖 将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示: K=1,2,3,…., 明环 K=0,1,2,…., 暗环

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

大物实验报告-光的等厚干涉

大学物理实验报告实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3: 45开始 地点:基础实验大楼313

一、实验目的: 1?观察牛顿环和劈尖的干涉现象。 2?了解形成等厚干涉现象的条件及特点。 3?用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚 度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理: 在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现 象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45 °玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)

转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第 24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触, 形成劈尖,然后置于读数显微镜载物台上。( 2)调节叉丝方位 和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。(3)用读数显微镜测出20条暗条纹间的垂直距离I,再测出棱边到细丝所在处的总长度L,求出细丝直径do (4) 重复步骤3,各测三次,将数据填入自拟表格中。求其平均值o 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射 镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。

南昌大学物理实验报告分光计的调节与使用

一 实验目的 1了解分光计的结构,掌握调节分光计的方法 2 掌握三棱镜的顶角的两种测量方法 3 测量三棱镜玻璃的折射率 二 实验仪器 分光计、三棱镜、准直镜 三 实验原理 1 棱镜玻璃折射率的测定:最小偏向角法测量 如图所示当'21 i i =时 δ为最小,此时2'1α =i 2 2 1'11min α δ - =-=i i i 2)(min 1αδ+= i 设棱镜折射率为n , 则 2sin 'sin sin 11α n i n i == 2 sin 2sin 2 sin sin min 1 α αδα += =i n 只要测得 α和min δ 就能用上式求得待测棱镜材料的折射率 。

四 实验步骤 1 调节分光计 (1) 调整望远镜: a目镜调焦:清楚的看到分划板刻度线。 b调整望远镜对平行光聚焦:分划板调到物镜焦平面上。 c调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,反射象落在上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。 (2) 调整平行光管发出平行光并垂直仪器主 轴:将被照明的狭缝调到平行光管物镜焦面上,物镜将出射平行光。 2. 使三棱镜光学侧面垂直望远镜光轴。 (1)调整载物台的上下台面大致平行,将棱镜放到平台上,是镜三边与台下三螺钉的连线所成三边互相垂直。 (2)接通目镜照明光源,遮住从平行光管来的光,转动载物台,在望远镜中观察从侧面AC 和AB 返回的十字象,只调节台下三螺钉,使其反射象都落在上十子线处。 2 自准法测量三棱镜顶角 转动游标盘,使棱镜AC 正对望远镜记下游标1的读数1 和游标2的

读数 2 θ 。再转动游标盘,再使AB 面正对望远镜,记下游标1的读 数'1θ和游标2的读数。'2θ同一游标两次读数误差|'|11θθ-或 |'|22θθ-,即是载物台转过的角度Φ,而Φ是α角的补角,α = Φ?π. 重复操作两次,记下数据。 3 测量最小偏向角 将待测棱镜放在载物平台上,转动望远镜,直至能从望远镜中看 见待测线谱。慢慢转动有游标盘,使谱线偏向减小的方向移动,同时转动望远镜跟踪谱线。当棱镜无论向哪个方向移动,偏向角均增大时,谱线的极限位置就是棱镜对该谱线的最小偏向角的位置。使望远镜叉丝对准该谱线中心,读出望远镜在此位置的坐标值。 撤去三棱镜,转动望远镜使之正对平行光管,定位后再读出望远镜的角坐标,两次数值之差即为最小偏向角。再将三棱镜翻转180°,使光经过平行光管后从三棱镜的另一个侧面入射,重复测量最小偏向角,两次结果取平均。 五 数据记录

相关主题
文本预览
相关文档 最新文档