当前位置:文档之家› 浅谈高速铁路有砟轨道拨捣方案制定

浅谈高速铁路有砟轨道拨捣方案制定

浅谈高速铁路有砟轨道拨捣方案制定
浅谈高速铁路有砟轨道拨捣方案制定

浅谈高速铁路有砟轨道拨捣方案制定

发表时间:2017-11-13T12:48:48.463Z 来源:《基层建设》2017年第24期作者:赵志刚刘超非

[导读] 摘要:以津保高速铁路线路工程提前介入、联调联试及后期维护工作为例,利用安博格3000轨检小车,对津保铁路线路进行测量,不断优化精测设计方案,指导线路大机进行拨捣作业

北京铁路局保定工务段河北省保定市 071000

摘要:以津保高速铁路线路工程提前介入、联调联试及后期维护工作为例,利用安博格3000轨检小车,对津保铁路线路进行测量,不断优化精测设计方案,指导线路大机进行拨捣作业,利用Excel中折线图将起、拨道量形象、直观呈现,实现线路平面与纵断面同时优化设计,做到“标准化、数字化、精细化”,便于数据分析,总结经验,建立捣固车作业质量的综合评价分析体系,将理论与实践有机结合起来进行综合评价,确定出最优方案,是一种简便易行的新方法。同时,确保高速铁路新建工程及线路设备质量维护的顺利进行。

关键词:精测高铁设计方案优化

1 前言

随着我国经济社会持续快速发展,高速铁路迎来了前所未有的发展机遇期。高铁的开通运营不仅方便了乘客的出行,同时还缩短了各大城市间的时间距离,促进了区域经济的快速发展。然而高速铁路的安全运营和旅客乘坐的舒适度,在很大程度上取决于高速铁路线路质量的好坏,而高速铁路线路质量的好坏又依赖于大型养路机械作用的发挥。如何实现捣固车对高速有砟铁路的精确养护具有重大的意义。本文就简要谈谈在津保高速铁路新线建设及维护过程中,线路平面、纵断面联合设计方案制定及优化,对大机养护施工作业进行评价,为高铁的前期联调联试和后期维护管理提供坚实的保障。

2 精测方案制定

现以CPⅢ精测网和安博格轨检小车在津保高铁在轨道精调中的应用经验为例,设有轨道控制网(CPⅢ)的地段使用安博格3000轨检小车进行线路平、纵断面测量,导出线路轨道精测数据,测量点每5m一点(间距可依据实际情况自由设定),制定精测设计方案。

2.1 设计原则

(1)线路平纵断面设计以达到设计线型为原则。根据现场实际情况和测量数据,按照逐步恢复线型设计的原则,进行优化线型设计。

(2)一次起道量不宜超过30mm,一次拨道量不宜超过10mm。拨道量大的地段可适当增加起道量。设计拨道量时要实际考虑线间距问题,防止线间距超限。

(3)线路纵断面设计要最小坡段长度要满足《高速铁路有砟轨道线路维修规则》(试行)。当两线并行时,两线轨面高程宜按等高进行设计。

2.2 制定要求

津保铁路大机捣固、改道作业应全面进行,按照恢复线型设计的原则分为一次、二次、三次作业制定捣固方案,并全面推行大机数字化捣固,提高捣固作业精度和质量,确保作业效果。现根据津保铁路实际情况,制定测量方案如下:

(1)里程统一为运营(贯通)里程。依据大机作业数量、作业进出站及作业能力,以大机作业区段(如霸州西-白沟间)建立一个Excel文件。

(2)将每次利用安博格轨检小车测量导出数据及相应的设计要求作在同一折线图图表中,起道方案设计与拨道方案设计分开放置,起道方案放置于拨道方案上方,中间空五行单元格,便于数据分析。

(3)图形各部位尺寸要求如下:高程、平面原始图形选取散点式,一次精测高程、平面选取灰色,二次精测高程、平面选取蓝色,三次精测高程、平面选取黑色;一次方案后高程、平面偏差选取鲜绿色,二次方案后高程、平面偏差选取橘黄色,三次方案后高程、平面偏差选取红色,3榜;具体可以自行设定颜色、磅值。

(4)依据方案制定里程不同,合理调整图幅范围,建议在作方案之前将图表区域均调整至整数的行数和列数,方便数据计算,达到各种长短里程方案比例尺的统一、规范,使测量数据量不超过图表区。

(5)图表坐标轴分类数建议调整为(20,10;50,25),将横纵坐标比例化,实现图标的美化。图表选项:标题命名方法为“津保优化设计方案(xx年x月x日)”,14号字,宋体加粗;横坐标主要刻度选择50m;高程偏差纵坐标刻度规定为-80~35mm(特殊地段可扩大范围),主要刻度选择10mm;水平偏差纵坐标刻度规定为-35~35mm(特殊地段可扩大范围),主要刻度选择5mm;字体为宋体,12号字;图例标示放置于里程栏下方,字体为宋体,12号字。绘图区格式中填充效果选取无色。起、拨道量分区显示。起拨道图形与起拨道方案分两个工作表放置,按里程增加方向依次插入新工作表;每个Excel文件中工作表命名方法为,X代表下行,S代表上行,T代表图标。如X66.5-70.5为下行K66+500-K70+500的起拨道方案设计,S70.5-75.5T为上行K70+500-K75+500的起拨道方案图形。

3 精测方案优化

(1)建立津保铁路正线大机捣固统计表,依据线宽(或行高)、颜色不同确定每次、每台大机捣固(或不捣)及分界地段,便于对大机捣固效果进行分析比较。

(2)建议将图表区平曲线、竖曲线、桥梁、涵洞等设置到平面调整图表内,便于观察不同地段的拨捣效果。

(3)做好平纵断面精确测量工作,根据纵断面测量结果和坡段、坡度、竖曲线资料,合理确定起道量。根据大机捣固起道量和拨道量的要求及捣固的次数,制定每次大机的起道量和拨道量。

(4)将津保精化优化测设方案进行编号管理,上下行方案分奇偶进行规范化管理。

(5)形成模板,方便使用。在使用过程中将区段捣固方案粘贴到Excel表格中,替换掉原来表格中的数字即可(注意折线图源数据中的范围)。津保高铁精测优化设计方案的图例分别如下,见图1。

《高速铁路有砟轨道线路维修规则(试行)》(2013)29

TG/GW116-2013 高速铁路有砟轨道线路维修规则 (试行) 2013年2月

前言 线路养护维修技术是高速铁路技术体系的重要组成部分,为指导我国高速铁路有砟轨道线路养护维修,满足线路高可靠性、高稳定性、高平顺性的要求,特制定本规则。 本规则在总结高速铁路有砟轨道相关研究成果和国内外养护维修技术基础上编制而成。在编写过程中,得到了南昌、武汉铁路局的大力支持。 本规则共分九章和十二个附录,阐述了高速铁路有砟轨道线路主要设备技术标准和维修要求,规定了线路设备检查内容和周期、维修标准、维修作业要求、线路质量评定及精测网应用与维护要求等。 在执行本规则过程中,希望各单位结合工作实践,认真总结经验、积累资料,如有需要补充和完善之处,请及时将意见和有关资料反馈铁道部运输局工务部(北京市复兴路10号,邮政编码:100844),供今后修订时参考。 本规则技术总负责人:康高亮、郭福安、曾宪海、赵有明。 本规则编制单位:中国铁道科学研究院,高速铁路轨道维护管理技术组。 本规则主要起草人:吴细水、肖俊恒、王邦胜、姚冬、刘丙强、江成、黎国清、姜子清、田新宇、段剑峰、万坚、张银花、王长进、邹定强、杨桉、吕关仁、吴仕凤、李传勇、肖卫军、马德东、蒋金洲、王树国、周清跃、李力、黎连修、田常海、高睿、宋贲。 本规则主要审查人:康高亮、郭福安、曾宪海、赵有明、张军政、侯文英、沈榕、杨忠吉、许有全、刘建基、田斌、郭良浩、寇东华、梁春方、张冠军、乔连军、张金龙、谭敦枝、胡永乐、杨厚昌。 本规则由铁道部运输局工务部负责解释。

目录 第一章总则 (7) 第二章线路设备维修工作内容及计划 (9) 第一节工作分类 (9) 第二节工作内容 (9) 第三节管理组织 (11) 第四节工作计划 (11) 第三章线路设备标准和修理要求 (13) 第一节线路平面 (13) 第二节线路纵断面 (15) 第三节道床 (16) 第四节轨枕 (17) 第五节钢轨 (17) 第六节扣件 (21) 第七节道岔及调节器 (24) 第八节无缝线路 (28) 第九节标志标识 (31) 第四章线路设备检查 (33) 第一节一般要求 (33) 第二节线路动态检查 (33) 第三节线路静态检查 (34) 第四节钢轨检查 (36) 第五节量具检查 (39) 第五章线路设备维修主要作业要求 (41) 第一节一般要求 (41) 第二节钢轨修理 (41) 第三节扣件维修及轨道几何尺寸调整作业 (46) 第四节轨枕修理作业 (49) 第五节道岔及调节器作业 (49) 第六节大型养路机械起拨道、捣固、稳定作业 (51) 第七节无缝线路作业 (52) 第八节冻害整治作业 (55) 第六章线路设备维修标准 (57) 第一节线路设备维修周期 (57)

高速铁路有砟、无砟轨道结构及精调.

第二章高速铁路有砟、无砟轨道结构及精调 第一节概述 无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。以下是无砟轨道的主要优势和缺点。 一、无砟轨道的优势主要有: 1、轨道结构稳定、质量均衡、变形量小,利于高速行车; 2、变形积累慢,养护维修工作量小; 3、使用寿命长—设计使用寿命60年; 二、无砟轨道的缺点主要有: 1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2型 板式500万。 2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉 降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。 3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型 存在较大困难。 4、一旦损坏整治困难:尤其是连续式无砟轨道。 第二节无砟轨道结构 一、国外铁路无碴轨道结构型式 国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。无碴轨道已成为高速铁路的发展趋势。 1.日本 日本是发展无碴轨道最早的国家之一。早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90年代则达到80%以上。

高速铁路路基设计规范标准

6 路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100 年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。 6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施

法国高速列车(TGV)教学提纲

法国高速列车(T G V)

法国高速列车(TGV) 概述 1971年,法国政府批准修建东南线TGV(巴黎至里昂,全长417公里,其中新建高速铁路线389公里),1976年10月正式开工,1983年9月全线建成通车。TGV高速列车最高运行时速270公里,巴黎至里昂间旅行时间由原来的3小时50分缩短到2小时,客运量迅速增长,预期的经济效益良好。TGV东南线的成功运营,证明高速铁路是一种具有竞争力的现代交通工具。1989年和1990,法国又建成巴黎至勒芒、巴黎至图尔的大西洋线,列车最高时速达到300公里。1993年,法国第三条高速铁路TGV北线开通运营。北线也称北欧线,由巴黎经里尔,穿过英吉利海峡隧道通往伦敦,并与欧洲北部比利时的布鲁塞尔、德国的科隆、荷兰的阿姆斯特丹相连,是一条重要的国际通道。由于在修建高速铁路之初,就确定TGV高速列车可在高速铁路与普通铁路上运行的技术政策和组织模式,所以目前法国高速铁路虽然只有1282公里,但TGV高速列车的通行范围已达5921公里,覆盖大半个法国国土。根据规划,法国将在21世纪的头10年内,把东南线延伸至马赛,还要修建通向意大利和西班牙的南部欧洲线以及巴黎至德国的东部欧洲线。 路网介绍 按照建造时间顺序,法国TGV高速铁路网主要包括东南线、大西洋线、北方线、东南延伸线(或称罗纳河一阿尔卑斯线)、巴黎地区联络线、地中海线和东部线等7个组成部分。下面分别对其发展过程作一简单描述。 1、东南线 巴黎和里昂是法国两个最大的城市,人口分别为1000万和l50万,自20世纪60年代起,联结巴黎-第戎-里昂的铁路运量就已达到饱和状态,当时曾考虑过加修复线等多种方案,

长轨精调专项施工方案

新建哈尔滨至齐齐哈尔铁路客运专线HQTJ-X标无砟轨道静态精调施工专项方案 编制: 审核: 审批:

中铁XX局集团有限公司哈齐客专项目部 2014年05月01日 无砟轨道静态精调专项施工方案 一、编制依据 1)《无砟轨道和高速道岔首件工程评估实施细则》(工管技[2011]35号); 2)《哈齐客运专线CRTSI型无砟轨道板施工设计图》; 3)现场踏勘调查所获得当地资源、交通状况、运输条件及施工环境等调查资料; 4)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设函[2006]158号); 5)《客运专线铁路无砟轨道铺设条件评估技术指南》局部修订条文(铁建设[2007]150号); 6)《高速铁路轨道工程施工技术指南》(铁建设[2010]241号);

7)《高速铁路工程测量规范》(TB10601-2009); 8)《高速铁路轨道工程施工质量验收标准》(TB10754-2010);9)现行国家及地方关于安全生产和环境保护等方面的法律法规;10)哈齐客运专线有限公司下发的各类相关文件。 二、工程概况 新建铁路哈尔滨至齐齐哈尔客运专线HQTJ-X标段由中铁XX局集团哈齐客专项目部承担CRTSⅠ型板式无砟轨道施工,起讫里程为DK173+600~DK218+000, 途经大庆市让胡路区喇嘛甸镇、齐家、高家、泰康等地,全长44.4km。 哈齐客专线路设计时速250km/h;全线桥5座/19.672km,占线路全长的44.3%;路基长度22.678km,占线路全长的51.08%;站长2.05km,占线路全长的4.62%。区间采用CRTSⅠ型板式无砟轨道,道岔区采用轨枕埋入式无砟轨道,共铺设无砟轨道双线88.8km。三、无砟轨道静态精调施工总体安排 X标段无砟轨道单线长44.4km。轨道精调首件工程计划于2014年5月15日前通过评估。根据哈齐公司的各标段节点工期要求,轨道精调在2014年5月16日开始,2014年8月18日完成。X标段无砟轨道静态精调施工节点工期详见“附表一:哈齐客专铺轨及轨道精调进度计划表”。

高速铁路无砟轨道施工技术难点分析

龙源期刊网 https://www.doczj.com/doc/a612561715.html, 高速铁路无砟轨道施工技术难点分析 作者:朱本兵 来源:《中国高新科技·下半月》2018年第03期 摘要:文章以实际工程为例,阐述高速铁路无砟轨道施工过程中遇到的技术问题,分析无砟轨道需要控制的因素,提出控制施工材料的质量、严格控制无砟轨道的精度、沉降观测点的设置、严格控制无砟轨道的刚度、严格把控混凝土的浇筑过程等技术措施,保证了施工质量和进度,达到了预期要求。 关键词:高度铁路;无砟轨道;沉降观测点;混凝土浇筑文献标识码:A 中图分类号: U213 1工程概况 二十里堡隧道为单洞双线隧道,隧道进口至DK37+474.829段位于直线上; DK37+474.829~DK38+107.301段位于左偏曲线上,曲线半径R=2800m;DK38+289.293~ DK39+196.376段位于右偏曲线上,曲线半径R=4000m;DK39+554.387~DK40+967.233段位于右偏曲线上,曲线半径lR=5000m;DK43+899.704至出口段段位于右偏曲线上,曲线半径 R=4000m;其余段落均位于直线上。隧道内全线为上坡,其中DK37+035~DK40+970段坡率为4.9%。;DK40+970~DK44+680段坡率为5.1%。无砟轨道起讫里程为DK37+065~ DK44+650,全长7.585km。 2高速铁路无砟轨道施工过程中遇到的技术问题 (1)无砟轨道的形式以扣件体系为主,所以对铁轨地基的稳定性要求特别高。但是在实际的施工过程中,铁轨地基的稳定性受到沉降或变形等因素的影响特别大,所以铁轨地基性的稳定性是很难把握的。 (2)因为无砟轨道高速铁路的施工技术过于先进,以往的探测技术等已不能满足该技术的施工需要。所以,为了保证无砟轨道高速铁路的质量水平,还需大力发展和应用更高水平的测量技术和测量设备。 (3)无砟轨道高速铁路在建设的过程中很难控制轨道的平顺性,因为轨道地基的变化比较大,无砟轨道在安装好后就不能随意进行变动,所以轨道的平顺性也成为了无砟轨道建设的一大难题。 (4)无砟轨道在岔路口进行施工时要注意无砟铁轨各个区域之间的无缝对接,施工技术人员和监督部门要按照施工的相关要求对整个工程的工序进行严格的监督。 3无砟轨道需要控制的因素

法国高速列车(TGV)

法国高速列车(TGV) 概述 1971年,法国政府批准修建东南线TGV(巴黎至里昂,全长417公里,其中新建高速铁路线389公里),1976年10月正式开工,1983年9月全线建成通车。TGV高速列车最高运行时速270公里,巴黎至里昂间旅行时间由原来的3小时50分缩短到2小时,客运量迅速增长,预期的经济效益良好。TGV东南线的成功运营,证明高速铁路是一种具有竞争力的现代交通工具。1989年和1990,法国又建成巴黎至勒芒、巴黎至图尔的大西洋线,列车最高时速达到300公里。1993年,法国第三条高速铁路TGV北线开通运营。北线也称北欧线,由巴黎经里尔,穿过英吉利海峡隧道通往伦敦,并与欧洲北部比利时的布鲁塞尔、德国的科隆、荷兰的阿姆斯特丹相连,是一条重要的国际通道。由于在修建高速铁路之初,就确定TGV 高速列车可在高速铁路与普通铁路上运行的技术政策和组织模式,所以目前法国高速铁路虽然只有1282公里,但TGV高速列车的通行范围已达5921公里,覆盖大半个法国国土。根据规划,法国将在21世纪的头10年内,把东南线延伸至马赛,还要修建通向意大利和西班牙的南部欧洲线以及巴黎至德国的东部欧洲线。 路网介绍 按照建造时间顺序,法国TGV高速铁路网主要包括东南线、大西洋线、北方线、东南延伸线(或称罗纳河一阿尔卑斯线)、巴黎地区联络线、地中海线和东部线等7个组成部分。下面分别对其发展过程作一简单描述。 1、东南线 巴黎和里昂是法国两个最大的城市,人口分别为1000万和l50万,自20世纪60年代起,联结巴黎-第戎-里昂的铁路运量就已达到饱和状态,当时曾考虑过加修复线等多种方案,经详细的技术经济分析后,最终选择了新建一条高速客运专线的方案。该线包括联络线在内全

无砟轨道精调技术方案

无碴轨道精调技术方案 1、编制依据 1《无碴轨道铁路工程工程测量技术》。 2《高速铁路工程测量规范》。 3《高速铁路工程测量规范条文说明》。 4 业主下达的相关文件。 2、编制范围 新建兰渝铁路1标段DK84+950—DK100+707段范围黑山隧道无碴轨道施工。 3、无砟道床施工前具备的条件 ⑴CRTS-I型双块式无砟轨道道床施工应在隧道施工结束后,并对隧道沉降变形等进行系统的观测和分析,满足《客运专线无砟轨道铺设条件评估技术指南》要求并经业主指定的有资质的单位评估合格并出具评估报告后,开始安排施工作业。 ⑵无砟轨道控制网(CPⅢ网)的测设工作已完成,测量精度满足《高速铁路工程测量规范》的要求,并已报设计单位评估合格。 4、测量网控制 无砟轨道测量基础网采用CPⅢ控制网技术,测量精度严格按《高速铁路工程测量规范》执行。在道床施工准备期间,必须查验与铺设段轨道工程有关的线下工程施工质量检验报告、沉降变形观测资料及评估报告,接收线下工程单位的线路测量资料及控制基桩,对线路范围内CPⅡ网进行加密、复测后,在施工工点范围内建立独立、完整、

精确的基标控制网。CPⅢ控制基标每50-80m设一对。成对布设在线路两侧的两个基标点里程差不超过1m。一次布设的CPⅢ施工基标精密控制网最短长度不得少于2km。 5、测量放线 步骤1:通过不少于4对CPⅢ控制点按设计道床板位置在每一个纵断面上放出道床板边线控制点(直线段10m一个断面,曲线段5m 一个断面),采用钢钉精确定位做好标记,红油漆标识,用墨线弹出道床板边线。 步骤2:通过不少于4对CPⅢ控制点按设计道床板轨面标高在两侧护墙上放出道床板轨面绝对标高点(直线段10m一个断面,曲线段5m一个断面),采用黑色记号笔在两侧护墙上做好标记,红油漆标识,用墨线弹出道床板轨面绝对高程线。 ▲人员:测量员3人,普工2人。 ▲机具、材料:测量仪器1套(放线定位);墨斗(弹线);钢卷尺;红油漆。 6、轨排粗调 粗调顺序。对某两个特定轨排架而言,粗调顺序为:1→4→5→8→2→3→6→7→1→2→3→4→5→6→7→8。(见图1) 图1 轨排粗调顺序 步骤1:中线调整。配备全站仪和测量手簿,采用自由设站法定

高速铁路轨道施工和管理试卷及答案

1、根据《中长期铁路网规划(2008年调整)》,中国将规划建设“四纵四横”客运专线,客车速度目标值达到每小时200公里以上。 4、CRTS I型板式无砟轨道由钢轨、扣件、垫板、轨道板、CA砂浆垫层、混凝土底座、凸形挡台及其周围填充树脂等组成。 7、按照轨道板连接方式不同,路基地段CRTS Ⅲ型板式无砟轨道有后张预应力纵向连接、普通纵向连接和单元式三种结构型式。 10、桥上CRTS II型板式无砟轨道与路基上的无砟轨道过渡时,应根据设计要求,在台后路基上设置摩擦板、过渡板和端刺。 11、桥上CRTS II型板式无砟轨道结构在简支梁的固定端设置了剪力齿槽,将部分纵向力传递至墩台。 12、CRTS I型板式无砟轨道线路曲线超高设置在底座板上,采用外轨抬高方式,并在缓和曲线区段按线性变化完成过渡。 13、无缝线路是用标准长度的钢轨焊接而成的长钢轨线路,它既是轨道结构技术进步的重要标志,也是高速重载轨道的最优选择。 15、外轨超过度是指曲线地段外轨顶面与内轨顶面水平高度之差。在设置外轨超过时,主要有外轨提高法和线路中心高度不变法两种。

1、在目前已建成的京沪高速铁路中,主要采用(B)无砟轨道。 A CRTS I型板式 B CRTS II型板式 C CRTS III型板式 D CRTS I型双块式 2、已建成的京沪高速铁路的总里程是(B)。 A1069公里B1318公里C1776公里D1956公里 3、CRTS II型板式无砟轨道所用轨道板的长度是(D)。 A 4.95米 B 5.50米 C 6.00米 D 6.45米 4、在目前已建成的成都至都江堰的“成灌快速铁路”中,主要采用(C)无砟轨道。 A CRTS I型板式 B CRTS II型板式 C CRTS III型板式 D CRTS I型双块式 5、京沪高速铁路中,使用数量最大的扣件形式是(D)。 A弹条III型B WJ-7扣件C WJ-8扣件D V ossloh-300 6、CRTS I型板式无砟轨道技术是在“引进、吸收、消化”(A)板式轨道技术的基础上经过再创新研发的。 A日本B德国C法国D荷兰 7、路基地段CRTS Ⅲ型板式无砟轨道轨道板下的结构层为(D)。 A底座板B支撑层C CA砂浆D自密实混凝土 8、CRTS III型轨道板铺设放样施工时,在CPⅢ网布设完成后进行粗铺控制点布设,每次设站放样距离不大于(C)。 A40 B60 C80 D100 9、CRTS III型轨道板精调完成后,采用扭力扳手,将普通连接器连接相邻两块轨道板的预应力钢筋上,扭力应达到(B)。 A30KN B40KN C50KN D60KN 10、下图是施工中的轨道结构,该轨道结构形式是(B)。 A CRTS I型板式 B CRTS II型板式 C CRTS III型板式 D CRTS I型双块式

法国高速列车(TGV)

法国高速列车(TGV) 概述 1971年,法国政府批准修建东南线TGV(巴黎至里昂,全长417公里,其中新建高速铁路线389公里),1976年10月正式开工,1983年9月全线建成通车。TGV高速列车最高运行时速270公里,巴黎至里昂间旅行时间由原来的3小时50分缩短到2小时,客运量迅速增长,预期的经济效益良好。TGV东南线的成功运营,证明高速铁路是一种具有竞争力的现代交通工具。1989年和1990,法国又建成巴黎至勒芒、巴黎至图尔的大西洋线,列车最高时速达到300公里。1993年,法国第三条高速铁路TGV北线开通运营。北线也称北欧线,由巴黎经里尔,穿过英吉利海峡隧道通往伦敦,并与欧洲北部比利时的布鲁塞尔、德国的科隆、荷兰的阿姆斯特丹相连,是一条重要的国际通道。由于在修建高速铁路之初,就确定TGV高速列车可在高速铁路与普通铁路上运行的技术政策和组织模式,所以目前法国高速铁路虽然只有1282公里,但TGV高速列车的通行范围已达5921公里,覆盖大半个法国国土。根据规划,法国将在21世纪的头10年内,把东南线延伸至马赛,还要修建通向意大利和西班牙的南部欧洲线以及巴黎至德国的东部欧洲线。 路网介绍 按照建造时间顺序,法国TGV高速铁路网主要包括东南线、大西洋线、北方线、东南延伸线(或称罗纳河一阿尔卑斯线)、巴黎地区联络线、地中海线和东部线等7个组成部分。下面分别对其发展过程作一简单描述。 1、东南线 巴黎和里昂是法国两个最大的城市,人口分别为1000万和l50万,自20世纪60年代起,联结巴黎-第戎-里昂的铁路运量就已达到饱和状态,当时曾考虑过加修复线等多种方案,经详细的技术经济分析后,最终选择了新建一条高速客运专线的方案。该线包括联络线

法国高速铁路的成功经验

TGV的发展 TGV是法文“TrainaGrandeVitesse”的缩写,意思是高速列车。1981年,连接巴黎至里昂的法国TGV东南线的开通运行,同1964年日本新干线的问世一样,它们都是交通史和铁路史上的里程碑式事件。从第一辆“子弹头列车”起,在那些采用了高速铁路技术的国家,高速铁路不仅在技术上有了很大的进展,同时在商业上也取得了巨大的成功。作为一种大众运输方式,高速铁路不仅速度快, 其安全性、舒适 性以及运输效率 也都得到了证 实。总之,高速铁 路技术使得铁路 运输重新获得高 速的发展,并已 成为现代社会的 一种标志。 高速铁路系统已经得到充 分的验证,在交通史和铁路史都 具有划时代的意义。法国TGV东 南线是欧洲的第一条高速铁路 线,特别是TGV大西洋线西南段 在1990年创下了时速515.3公里 的轮轨速度世界记录之后,TGV 法 国 高 速 铁 路 的 郑天池 成功经验 图1法国高速铁路网处于欧洲 高速铁路网中心位置 图2TGV旅客年运载量

技术的优越性得到大家的广泛承认。从1981年到2001年的20年间,TGV技术快速发展,1990年TGV大西洋线开通,1993年北欧线(TGVNordEurope)开通,2001年TGV地中海线(TGVMediterranean)开通,这些线路的开通都充分地证明了TGV技术 在实际运行中的可靠性。 1.技术路线选择 法国国营铁路公司(SNCF)于1970年开始宣传高速铁路的概念,提议在巴黎和里昂之间修建一条新铁路。这条新线路遵循如下三个原则:专门用于客运、可实现与现有的铁路网路的兼容、更频繁地运行于短途旅行路线。这些选择在后来都被证明是正确的,成功地降低了建设新线路的成本,其正常的运行速度可达到每小时240 ̄270公里,优化了TGV新线路的运量,有效减少了新线路的运营和维持费用及机车成本,也解放了已有常规线路的货运能力。这些因素都极大地推动了交通的发展,增强了高速铁路的盈利能力。 法国TGV的一个尤为独特的特点是其相对很低的建设成本。第一条TGV东南线的建筑成本仅为每公里400万美元,是世界上(高速铁路)最低的建筑成本。最近的线路项目成本约为每公里1000万美元,最新的TGV地中海线上包括7个长为17.155公里的高架桥以及1个长为12.768公里的隧道,每公里的成本也只有1500万美元。 2.TGV线路 现在,法国TGV高速网络总长度已达到1520公里,具体分布情况如下: (1)TGV东南线(长417公里):从巴黎至里昂。 (2)TGV大西洋线(长281公里):巴黎至勒芒,1990年延长至图3由于乘坐高速铁路旅客数量急剧增加,法国铁路不得不开行双层高速列车。 图4法国的高速邮政列车。 图5风驰电掣般的法国高速列车。 图6法国的高速铁路与既有的铁路基础设施相兼容

高铁无砟轨道精调施工方案

无砟轨道长轨精调施工要点 1 工程概况 中国××××项目部管段起点于DK000+000,止于DK000+000,全长00.000公里。途经××市、××市××开发区和××市。管段包括桥梁00座(特大桥00座、大桥00座、中桥00座),桥梁全长00000.00m,占管段长的00.0%,制架箱梁000孔,连续梁(刚构)0联;路基全长00000.00m(含××车站一座,长0.0km),占管段长的00%;隧道1座长000m,占管段长的0.0%;涵洞00座,计0000.00横延米;公路桥00座。 2编制依据 1、《高速铁路无砟轨道施工质量验收标准》 2、《高速铁路施工测量规范》 3、《高速铁路无砟轨道施工测量暂行标准》 4、《WJ-7扣件安装说明书》 3 主要作业内容 3.1 施工准备 3.1.1控制网复核 长轨精调测量前,应对CPⅢ控制网进行复测,并检查确认控制点工作状态良好,其精度复核精调作业要求。及时恢复破坏的CPⅢ控制点,并拉入整网进行平差。连续梁上的控制点必须在长轨精调前进行复核测量,精度不满足要求时,应在长轨精调前一天对控制点坐标进行测量更新。 3.1.2资料复核 认真核对设计资料,确保设计线形等资料输入正确。重点核对平面曲线要素、变坡点位置和竖曲线要素、曲线超高等。确定基准轨,平面位置以高轨为基准,高程以低轨为基准,直线区间上的基准轨参考大里程方向的曲线。 3.1.3扣件安装

1)施工流程 WJ-7B型扣件安装流程:承轨台表面清理→绝缘缓冲垫板安装→铁垫板安装→平垫块安装→锚固螺栓安装→轨下垫板安装→安放钢轨→绝缘块安装→T型螺栓安装→弹条安装→平垫圈、螺母安装→质量检查。 2)施工要求 1、扣件安装前,应清除轨道板面上的淤泥和杂物及预埋套管里的杂物和积水。 2、铺设绝缘垫板时,垫板孔应与预埋套管孔对中。并用铁垫板安装专用工装定位两对基准铁垫板,其间距以20m左右为宜,且基准铁垫板安装位置的轨道板横向偏差不能大于0.7m。然后拉铁线定位中间的铁垫板。 3、铁垫板安装时,轨底坡(铁垫板上的箭头方向)应朝向轨道内侧。 4、平垫块应安装在铁垫板上,且平垫块距圆孔中心较长一侧朝内。 5、将锚固螺栓套上弹簧垫圈,并将螺纹部分涂满铁路专用防护油脂,旋入预埋套筒中,在锚固螺栓拧紧前调整铁垫板位置使铁垫板上标记线与平垫块上的标记线对齐。

高速铁路无砟轨道桥面防水层施工研究与应用

高速铁路无砟轨道桥面防水层施工研究与应用 发表时间:2018-10-01T17:33:57.933Z 来源:《基层建设》2018年第26期作者:王双宇 [导读] 摘要:目前中国正处在可持续发展的关键阶段,为了满足人们日益增长的出行需求,高铁正在大量修建,并对桥梁工程的质量提出更高要求,而桥面防水施工质量则直接影响桥梁的耐久性,关系到桥梁的使用寿命。 中铁十局二公司河南省郑州市 450000 摘要:目前中国正处在可持续发展的关键阶段,为了满足人们日益增长的出行需求,高铁正在大量修建,并对桥梁工程的质量提出更高要求,而桥面防水施工质量则直接影响桥梁的耐久性,关系到桥梁的使用寿命。以下主要结合高速铁路桥面薄涂型聚氨酯防水层施工技术的应用进行简单分析,希望能够为高铁建设提供一些帮助。 关键词:薄涂型聚氨酯防水层;施工技术应用 引言 理想的高铁桥面防水体系必须满足以下要求:1)良好的不透水性能;2)与混凝土桥面有足够的粘结力,特别是边角部分;3)步行交通和高铁正常运营条件不易破损;4)良好的耐高、低温性能;5)对桥面状况(平整度、清洁度、温度、湿度等)有广泛的适应性;6)能抵御桥面裂缝的影响;7)良好的耐紫外老化性能和耐化学腐蚀性能;8)施工简单、快捷,不受桥面几何因素的制约等。 1 高速铁路桥面薄涂型聚氨酯防水层施工技术的应用的重要意义 1.1确保桥面防水工程的质量 高铁桥面防水体系中最重要的性能是不透水性能,桥面防水体系的病害主要表现在防水性能的丧失。目前薄涂型聚氨酯防水层施工作为一种新型的防水施工工艺,缺乏成熟的施工技术,防水层刷涂、滚涂施工的外观质量差;现有的刷涂、滚涂施工方法具有一定的局限性,且防水层容易产生气泡,返工率较高;而采用该施工技术,经检测均满足质量要求,无返工情况,经长时间检查,无问题出现。 1.2提高桥面防水施工进度 常见的刷涂、滚涂法施工周期长,不利于大批量施工;人力劳动强度,采用本技术喷涂法施工工艺能够达到目标要求,简化施工工序,提高工作效率,加快施工进度,缩短工期。 1.3提高经济效益 采用该施工技术进行施工控制,施工质量保证,避免材料的浪费,杜绝返工,每公里材料同比节省5万元,有明显的经济效益,工期的缩短也带来显著的成本节约。 2 高速铁路桥面薄涂型聚氨酯防水层施工技术 2.1施工工艺流程及操作要点 2.1施工工艺流程 施工工艺流程为:基面清理→基面修补(潮湿基面处理)→封闭漆施工→底面漆(PPU-M1)施工→表面漆(PPU-M2)施工。 2.2 操作要点 2.2.1基面清理 施工中首先进行梁面标高采集,根据标高数据,泄水孔位置,定出排水坡度方向。打磨分两遍进行,第一遍用打磨机进行粗略打磨,尖角、凸起等打磨平整或圆滑,必要时按照排水坡度进行深度打磨。使用吸尘器或吹风机清除粉尘杂质,清理干净后,检查基面,发现不合格的地方用打磨机、钢丝刷进行第二遍打磨,使用稀料等溶剂清除污垢,并用清水冲洗。施工中采用2m平尺进行平整度检查。严禁打磨过深,破坏梁面保护层,影响梁面耐久性。底座板、防护墙根部切除掉不密实部位,清理干净,保证以后的倒角处防水搭接。 等待雨天或梁面浇水,检查梁面有无积水现象。如局部积水,则需进行疏水处理,确保桥面排水畅通。 梁面打磨是一道关键前期工作,打磨程度的好坏直接影响桥面平整度、桥面排水坡度、防水层的粘结力等,必须确保打磨到位。 2.2.2基面修补 混凝土表面明显的裂缝、蜂窝、麻面、孔洞、掉块等缺陷,用石英砂修补,修补前要先清除杂物粉尘。 对于雨天影响,基面潮湿,影响施工进度,现场采用拖把去水,晾晒,必要时采用热风机吹干,保证基面干燥。 基层面应进行验收,基层应作到平整、不起砂及无凹凸不平现象,平整度的要求:用2米长靠尺测量,空隙不大于3mm,空隙只允许平缓变化,每米不超过一处。桥面基层无浮渣、浮灰、油污,直径≥5mm气孔已封闭等,同时防护墙根部应无蜂窝、麻面。梁面清洁、干燥后方可进入防水层施工。 5.2.3封闭漆施工 组成:环氧类材料,封闭细裂缝和混凝土表面的毛细孔,防止混凝土表面的碱性对涂装材料的性能影响,并增加涂装材料与混凝土表面的附着力,所以底涂材料要求有较好的渗透性、封闭性、柔韧性和抗冲击性,并与面涂材料有较好的相容性与附着力。 施工时环境温度在5°C-35°C,环境相对湿度不大于85%,风力不大于5级,当低于5°C,材料流动性、硬化降速度降低,影响材料性能,温度过高,容易出现涂层气泡。 施工以喷涂工艺为主,刷涂工艺为辅。待修补空洞完毕后的基面清洁、干燥后即可进行封闭漆施工,施工时应确保封闭漆充分湿润基面。参考用量为0.3kg/㎡~0.4kg/㎡。底漆为A、B双组分,混合比例为5:1,使用时应在20min内完成施工。封闭漆施工后检查有无漏涂、气泡、等缺陷,通过刺破气泡补涂。 封闭漆原则上是涂刷一遍,一遍后仍存在不平整、孔洞,细微裂缝地方,再用封闭漆掺入一定量的80目-150目的石英砂涂刷第二遍,起到封闭平整的作用,为后面底面漆施工提供封闭的基面,避免出现鱼眼、气泡等。 2.2.4底面漆施工 底面漆:介于封闭漆与表面漆之间,不宜暴露于大气环境的涂层。底面漆采用PPU-M1薄涂型改性聚氨酯防水漆,属芳香族聚氨酯防水漆,芳香族聚氨酯涂料价格较低,涂层具有较高的物理力学性能(较高的拉伸强度、断裂伸长率等),所以在桥梁防水领域得到广泛应用。由于含有苯环,在室外使用不耐阳光曝晒,易出现黄变、粉化,所以平时存放在遮阳处。 底面漆涂装工作应在封闭漆涂装后的24h后施工。施工时环境温度在5°C-35°C,环境相对湿度不大于85%,风力不大于5级,当低于

无砟轨道精调方案52850

长昆(沪昆)铁路客运专线湖南段IV标段 目录 1 工程概况 (1) 2编制依据 (1) 3 施工准备 (2) 3.1控制网复核 (2) 3.2资料复核 (2) 3.3测量人员及设备 (2) 3.4扣件安装 (3) 3.5、粗调 (3) 4轨道精调测量 (3) 4.1 数据输入 (4) 4.2仪器检校 (4) 4.3全站仪设站 (5) 4.4精调小车安装 (6) 4.5轨道精调测量 (6) 5 注意事项 (7) 页脚内容8

贵广铁路GGTJ-11标段无砟轨道精调方案 1 工程概况 我标段负责施工的新建贵阳至广州铁路GGTJ-11标段DK690+815~DK746+842.47范围,正线2×55.933km、站线2×1.95km,包括桥、路底座和支承层在内的CRTSI型双块式无砟轨道工程。其中:正线桥梁45座/14.622Km,隧道27座34.566Km,明洞3座0.648/km,路基6.097Km。CRTS I型双块式无砟轨道结构自上而下依次由:钢轨、扣件、轨枕、道床板和底座板或支撑层构成。 钢轨:钢轨采用60kg/m、12.5m工具轨,钢轨质量符合相关技术要求。 扣件:采用WJ-8A型弹性扣件,扣件支点间距一般为650mm,施工时可根据道床板分段情况合理调整,但不宜小于600mm;梁缝处最大扣件节点间距按700mm控制,但不应连续设置。 轨枕:采用SK-2型双块式轨枕,中铁七局集团轨枕厂厂内预制 2编制依据 1、《高速铁路轨道工程施工质量验收标准》TB10754-2010; 2、《高速铁路工程测量规范》TB10601-2009; 3. 《铁路工程测量规范》TB10101-2009; 4、新建贵阳至广州铁路有关设计文件,设计图纸; 3 施工准备 3.1控制网复核 精调测量前,检查确认CPIII控制点工作状态良好,其精度符合精调作业要求。对被破坏的CPIII控制点应及时恢复,并拉入整网进行平差。连续梁上的控制点必须在精调前进行复核测量,精度不满足要求时,应在精调前一天

250km有砟轨道高速铁路路基电缆槽技术交底

·技术交底书表格编号 项目名称中铁二局梅汕客专(MSSG-3标)工程指挥部第二项目部第1页 共9页交底编号 工程名称路基电缆槽 设计文件图号 施工部位DK83+071.97~DK93+600段落5段区间路基、1段站场路基段落 交底日期 路基电缆槽施工技术交底: 一、编制目的 明确路基电缆槽施工作业的工艺流程、操作要点、工艺标准及安全质量和环水保要求等,指导、规范作业施工,以保证施工安全、施工质量和环境保护。 二、编制依据 《混凝土结构工程施工质量验收规范》(2010年版) 《铁路路基电缆槽》(通路(2010)8401) 《高速铁路路基工程施工技术指南》(铁建设【2010】241号) 《高速铁路路基工程施工质量验收标准》(TB10751-2010) 三、工程概述 梅汕客专二分部起屹里程为:DK83+071.97~DK93+600,其中5段区间路基、1段站场路基,路基全长2978.63m。 路基段落设计电缆槽为钢筋混凝土盖板式电缆槽,每节长为0.5m,为小型预制场预制,型号分为I、II、III三种类型,其中I型电缆槽在外侧壁及隔板底部各设一泄水孔,孔径50mm;II型电缆槽在I型的基础上内侧壁设置接地端子及其引接线预留孔,孔径70mm;III 型电缆槽在I型的基础上内侧壁设置通信、信号线缆引出电缆槽预留孔,孔径80mm。 为保证电缆槽的稳定性,电缆槽外侧于基床底层顶面处设置C25混凝土护肩,护肩顶面宽度为10cm,护肩底面每隔3m设一直径100mmPVC管半圆形泄水孔和80mmPVC管圆形泄水孔。

四、施工工序 4.1、I 型盖板应用于一般地段电缆槽,II 型盖板为桥头路基电缆槽防盗盖板。其中 I 、II 型盖板根据是否设开启孔或设扣槽的个数又细分为两类。 4.2、I-2型盖板每块设两个开启孔,开启孔应预制成孔,特殊条件下可现场集中或出厂前机械钻孔。设计采用盖板式电缆槽的地段,一般每隔20块I-1型盖板安装一块I-2型盖板。 4.3、II-1型盖板两端各设一个扣槽,II-2型盖板每块一端设一个扣槽。设计采用防盗盖板时,防盗范围端头设一块II-2型盖板,其余采用II-1型盖板。 4.4、为了防止线缆被盗,桥头路基盖板式电缆槽100m 范围内可采用以下措施防盗: 桥头路基电缆槽盖板采用M10水泥砂浆进行固定封闭。防盗措施应在所有线缆敷设完成后进行,发现破损应及时维修。 五、施工方法 5.1 路基综合接地施工 施工准备 测量放线 机具就位 切割电缆槽位 基底压实检测 铺设土工布及排水 层 基坑、护肩施工 安装盖板 钢筋制作 电缆槽施工工艺流程图 槽顶处理 结束 预制电缆槽 节间接口处理

高速铁路有砟轨道设计

目录 第1章绪论 .............................................................................................................................. - 1 - 1.1 高速铁路发展史.................................................................................................................. - 1 - 1.1.1 高速铁路三次发展高潮........................................................................................... - 1 - 1.1.1.1 高速铁路建设的第一次高潮........................................................................ - 1 - 1.1.1.2 高速铁路建设的第二次高潮........................................................................ - 2 - 1.1.1.3 高速铁路建设的第三次高潮........................................................................ - 2 - 1.1.2 中国高速铁路发展概况........................................................................................... - 3 - 1.2 铁路高速化的技术基础...................................................................................................... - 4 -第2章高速铁路轨道结构类型选择............................................................................................... - 5 - 2.1 轨道结构类型...................................................................................................................... - 5 - 2.2 有砟轨道结构...................................................................................................................... - 5 - 2.1.1 钢轨 .......................................................................................................................... - 5 - 2.1.2 轨枕 .......................................................................................................................... - 6 - 2.1.3 扣件 .......................................................................................................................... - 7 - 2.1.4 道床 .......................................................................................................................... - 7 - 2.3 曲线轨道外轨超高.............................................................................................................. - 9 - 2.4 无缝线路概况...................................................................................................................... - 9 -第3章轨道各部分强度检算..........................................................................................................- 11 - 3.1 按中速韶山9电力机车检算轨道各部件强度.................................................................- 11 - 3.1.1 钢轨强度检算..........................................................................................................- 11 - 3.1.1.1 检算所需公式及说明...................................................................................- 11 - 3.1.1.2 检算过程...................................................................................................... - 12 - 3.1.2 轨枕弯矩检算......................................................................................................... - 14 - 3.1.3 道床顶面应力检算................................................................................................. - 17 - 3.1.4 路基道床压应力检算............................................................................................. - 17 - 3.2 按中国高速列车ZGS检算轨道各部件强度 .................................................................. - 18 - 3.2.1 钢轨强度检算......................................................................................................... - 18 - 3.2.2 轨枕弯矩检算......................................................................................................... - 20 - 3.2.3 道床顶面应力计算................................................................................................. - 22 -

相关主题
文本预览
相关文档 最新文档