当前位置:文档之家› 熔融盐储能技术及应用现状汇总

熔融盐储能技术及应用现状汇总

熔融盐储能技术及应用现状汇总
熔融盐储能技术及应用现状汇总

熔融盐储能技术及应用现状

随着全球新能源产业的快速发展,风力发电与太阳能等随机性和间歇性很强的发电方式对电网的正常运行管理提出了相当高的挑战,相应地,各类储能(储热)技术也逐渐纳入了人们的视角。熔融盐储能技术是利用硝酸盐等原料作为传热介质,通过新能源发出的热能与熔盐的内能转换来存储或发出能量,一般与太阳能光热发电系统结合,使光热发电系统具备储能和夜间发电能力,满足电网调峰需要,具有很强的经济优势,已经在西班牙、意大利等欧洲地区和部分北美地区等发达国家得到了实际的商业化应用。

一、熔融盐介绍

1.1 熔融盐的特性

熔融盐是盐的熔融态液体,通常说的熔融盐是指无机盐的熔融体,广义上的熔融盐还包括氧化物熔体及熔融有机物。除了单一无机盐外,将同一类熔融盐按照一定比例混合,或者将不同种类的熔融盐按照一定的配方混合,可以形成多种新型混合共晶熔融盐。这些混合熔融盐可以根据成分配比的不同,获得各种熔点和使用温区的熔融盐工质,能够避免硝酸盐使用温度低、氯化盐熔点温度高等缺点,同时保留熔融盐热稳定性和化学稳定性好、饱和蒸汽压低、比热容大等一系列优点,因此在工业上获得了广泛应用。目前,寻找性能优越的混合熔融盐成为熔融盐传热蓄热研究的主要方向之一。

熔融盐有不同于水溶液的诸多性质,主要包括:①熔融盐为离子熔体,通常由阳离子和阴离子组成,具有良好的导电性能,其导电率比电解质溶液高1个数量级;②具有广泛的使用温度范围,通常的熔融盐使用温度在300~1000℃之间,新研发的低熔点混合熔融盐使用温度更是扩大到了60~1000℃;③饱和蒸汽压低,保证了高温下熔融盐设备的安全性;④热容量大;⑤对物质有较高的溶解能力;⑥低粘度;⑦化学稳定性好;⑧原料易获得,价格低廉,与常见的高温传热蓄热介质——导热油和液态金属相比,绝大多数熔融盐的价格都非常低廉,且容易获得。这些优异的特性使熔融盐被广泛用作热介质、化学反应介质以及核反应介质,尤其近些年来在太阳能热发电系统中,熔融盐得到了广泛的应用。

1.2 熔融盐的种类

熔融盐作为传热介质既可以达到较高的工作温度又具有蓄热功能,又可以克服由于云遮带来的蒸汽参数不稳定等问题,是目前应用较多、较为成熟的传热蓄热材料。最常见的熔融盐是由碱金属或碱土金属与卤化物、硫酸盐、碳酸盐、硝酸盐以及磷酸盐组成。下面分别介绍几种常见的熔盐。

1) 碳酸盐。

碳酸盐价格不高,熔解热大,腐蚀性小,密度大( 相对密度约为2),是很有希望的相变材料。碳酸盐按不同比例混合可以得到不同熔点的共晶混合物。其中,碳酸钾和碳酸钠共晶混合物是很有应用前景的碳酸盐混合物。碳酸盐的缺点是熔点较高而且液态碳酸盐的黏度大,有些碳酸盐容易分解,这就限制了碳酸盐的广泛应用。

2) 氯化物。

氯化物种类繁多,价格一般都很便宜,可以按要求制成不同熔点的混合盐,而且相变潜热比较大。氯化物作为熔融盐缺点是其工作温度上限较难确定,而且大多腐蚀性强。

3) 氟化物。

氟化物主要为碱金属及碱土金属氟化物,是非含水盐。由于氟化物常具有很高的熔点及很大的熔融潜热,所以它们常常作为高温型储热材料使用。熔融状态氟化物具有蒸气压力低,传热性能好,与空气、水都不发生剧烈反应,和金属容器材料的相容性较好等优点。它的缺点主要有两点:一是由液相转变为固相时体积形变大,如LiF 高达23 %;二是热导率低。

4) 硝酸盐

在冶金工业中常用于钢和轻合金的处理,大多数硝酸盐的熔点在300℃左右。主要的优点是价格低、腐蚀性小及在500℃以下不会分解。对混合硝酸盐熔盐的研究比较成熟,目前已成功应用在太阳能热发电系统中。

现在,高温熔盐已由空间发电发展到地面太阳能电站发电。运用高温硝酸熔盐发电可以使太阳能电站操作温度提高到450~500℃,这样就使得蒸汽轮机发电效率提高到40%。此外,运用熔融盐也可以使储热效率提高2.5倍,从而减小蓄热容器的体积。表1为常见的无机盐储能材料的热物理特性。

二、熔融盐储能系统的技术现状

目前使用的储能方法和技术主要分为四类:机械储能主要包括利用物体的势能和动能蓄能,压缩空气储能也是势能的一种方法;电化学储能主要采用电化学方法通过蓄电池储能;电磁储能利用超导原理和电荷吸附原理,如超导磁储能和超级电容储能等;蓄热储能就是采用不同材料在不同温度段下所具有的蓄热能力,达到蓄热和放热的目的。不同的储能方式可以用于不同方面。四种储能的方法及其技术特点见下表2。

表2 四种储能的方法及其技术特点

2.1 熔融盐蓄热储能的方式

作为新型的储热蓄能,熔融盐储能技术是目前国际上最为主流的高温蓄热技术之一,具有成本低、热容高、安全性好等优点,已在西班牙等国的太阳能光热发电中得到了实际应用。常用的高温蓄热材料可分为显热式、潜热式和混合式。

显热储能主要是通过某种材料温度的上升或下降而储存热能,是目前技术最成熟、材料来源最丰富、成本最低廉的一种蓄热方式。显热储能包括双罐储能(导热油、熔融盐)、水蒸气储能、固体储能(混凝土、陶瓷)、单罐斜温层储能(导热油、熔融盐)等。

潜热储能主要是通过蓄热材料发生相变时吸收或放出热量来实现能量的储存,包括熔盐相变储能、熔盐+无机材料复合相变储能等。潜热式高温蓄热材料虽然存在着高温腐蚀、价格较高等问题,但其蓄热密度高,蓄热装置结构紧凑,而且吸热—放热过程近似等温,易于运行控制和管理。高温熔盐作为潜热蓄热相变材料的一种,同时又能形成离子液体,具有许多低温蓄热材料所没有的特点,因而引起人们极大的关注。

混合储能就是将显热储能、潜热储能等方式结合起来,以取得最好的经济性。混合储能包括相变储能+斜温层储能、相变储能+混凝土储能等。

图1 三种储能方式的使用温度

2.2 熔融盐蓄热储能的技术手段

结合不同的储能方式,可将熔融盐实现蓄热储能的技术手段分为塔式、直接蒸汽塔式和槽式三种。首先熔盐塔式发电可持续24小时发电,可调峰调度,可完全取代传统的煤、石油等能源,无需天然气等其他辅助能源。塔式热发电站中的吸热器是将太阳能转化为热能的核心部件,采用熔融盐作为传热介质,效率高、功率大、易于大容量蓄热,可实现连续、稳定大规模发电。该类型的发电站是未来最适宜商业化的太阳能热发电系统,但连续工作在非稳态的高温环境下,而且高温时熔融盐工质具有一定腐蚀性,这就使得吸热器很容易发生故障,其中最常见的故障就是过热。吸热器发生过热将导致结构破坏、熔融盐换热工质劣化等后果,直接影响电站的正常运行。直接蒸汽塔式发电不能储热,仍然需要一些辅助的能源,传热不稳定,还面临高压、高应力的问题。槽式发电是两次换热,首先是导热油和熔盐,第二是熔盐和水,它是世界上商界化运作最为成熟的一种发电模式,需要天然气作为辅助能源。

据美国可再生能源集团私募股权基金提供的资料,对熔盐储热塔式、直接蒸汽塔式及传统槽式技术进行了如下对比:

熔盐储热塔式DSG塔式槽式

○一体化的储热系统提供稳定24小时发电;

○可调度,可完全取代传统化石能源;

○无需天然气即可提供稳定不间断电力,无需天然气排放及管道许可,无需考虑燃料成本及成本变化;

○技术已通过Solar Two证明;

○联合技术公司提供技术担保。

○无一体化储热

系统,只能通过附加储

热,增加的热交换会导

致系统效率降低;

○需要天然气预

热系统,对于选址及项

目许可有困难,燃料费

用有风险;

○两相蒸汽流动

问题,不均匀的热交

换,系统高压,水滴的

产生,发电机组的损

害;

○高压系统,管壁

较粗,运维费用高。

○无一体化储热系统,只能通

过附加储热,增加的热交换及较低

的运营温度会导致系统效率降低;

○导热油作为传热介质的局限

性,每1MW需要1.6公里长的管道,

需要极大的天然气辅助热源,导热

油本身有毒性,对环境不友好,较

低温度导致较低的蒸汽质量;

○是一个相对成熟的技术,但

发电成本要高出塔式不少

表3 熔盐储热塔式、直接蒸汽塔式及传统槽式的对比

一方面,由于储热同储热介质的温差是成正比的,以导热油作介质,一般的槽式电站可实现390摄氏度左右的温度,而塔式电站可实现温度为560摄氏度,按此计算温差,储热量相同情况下,槽式电站需要3倍以上的熔盐才能达到同样的储热小时数,这将导致成本上升很多。

另外,在气候寒冷的高海拔地区,100MW的槽式电站需要超过100公里长的集热管,这些集热管长期暴露于寒冷的环境中,无法保温,集热管里的导热油在晚上无法抽出,这时就变成了巨大的散热场。运营方面,槽式电站在晚间为了保温,需要辅助天然气,其能耗占其白天收集能量的比例可达30%以上。目前全球所有的在运行槽式电站没有一个位于海拔超过2000米的地区。

而对于熔盐塔式,100MW的熔盐塔式电站仅仅需要600米的管道,所有的熔盐管道都加了极厚的保温层并位于建筑结构内,管道里的熔盐在晚上流回保温能力强的罐内。运营商无需天然气或其他辅助燃料保温。

塔式熔盐技术的优点明显,但技术难度较大,主要体现在对熔盐的控制上,如何防止熔盐的凝固,熔盐传输管道万一发生熔盐凝固,对整个系统将造成巨大损失。但国内外业内目前普遍看好该技术的市场前景,这已成为光热发电未来发展的主流方向之一。

三、熔融盐储能的应用现状

3.1 国外熔盐储能项目的应用介绍

近几年随着欧美国家太阳能光热发电的兴起,熔融盐作为一种蓄热介质也被广泛应用。目前美国、德国、以色列、西班牙、南非、印度、中东等很多国家,都把熔融盐作为蓄热介质应用到光热发电储能中去。熔融盐具有广泛的使用温度,相对于其他的流体(有机物流体、水和液态金属),它的使用范围最广,而且具有较低的蒸汽压,特别是混合熔融盐,蒸汽压更低。由于具有较低的粘度,系统流动运行安全性较高,同时化学稳定性好,特别是在高温下使用状态稳定。因此,近几年以来美国桑迪国家实验室、可再生能源实验室,澳大利亚联邦科学与工业研究组织、印度科学技术部、以色列威茨曼研究院、法国阿海珐等诸多大型研究院和企业都在致力于熔融盐储热技术的开发。

目前世界上已经建设运行和正在建设中带储热的光热电站,储热时间已由过去的1小

时、3小时到目前的6小时、9小时、十几小时发展!这已经在很大程度上提高了电站运行效率,同时意味着运作成本大幅度降低。以美国lvanpah项目为例,该电站由BrightSoure 公司施工建设,总装机量超过380MW,是目前世界上最大的太阳能塔式光热电站。

据统计,目前全球共建成105座太阳能光热电站。这些电站几乎全部采用熔融盐储热,其具体配置为双罐式结构,如下图所示。其中加利福尼亚的SEGS槽式光热电站已经连续运行了30年,SEGS电站之后美国又在西部沙漠地区建设了一大批光热电站。

图2 双罐式熔盐储能结构图

2009年3月,西班牙Andasol槽式光热发电成为全球首个配置熔盐储热系统商业化运行的 CSP电站以后。2010年,意大利国家电力集团建设运营的Archimede(阿基米德)电站包括面积为30000 m2的反射镜面、长达5400m的熔融盐真空管、热交换罐和涡轮发电机。反射镜面将太阳能集中于真空管,加热管中流动的熔融盐,可使其温度升高到550℃。熔融盐将热量传导给蓄水的热交换罐,通过热交换产生高温、高压的水蒸气,最后带动涡轮发电机发电。由于完全使用熔融盐为导热介质,阿基米德电站蓄热能力强,与普通太阳能光热发电站相比,即使在光照强度低的情况下,系统仍熔融盐储热系统经济性分析。

作为全球光热发电技术的领先者,西班牙公司采用熔盐储热技术在中东沙漠地区也建立了大批不同发电形式的光热电站,而Gemasolar电站被认为是目前建设的最成功的一个。2011年7月初,总装机19.9兆瓦的西班牙Gemasolar太阳能光热电站顺利完成了为期1个月的试运行,成功实现24小时不间断发电,成为世界上首个能够全天持续供电的商业化太阳能发电厂。该项目使用新型太阳热发电技术(New Solar Thermal Electricity Generation Technology),利用融熔盐为能量储存与传导载体。Gemasolar发电站的聚光系统由2600多个聚光镜面板组成,散布在185公顷的空地上。单个镜面板接收到的光能被积聚在中央的接

收器,将熔盐罐加热,通过热传导形成高温压力蒸气,推动涡轮机发电。光照充足时产生的多余能量被熔盐罐储存,在缺少阳光的情况下释放能量,可继续向电网供电15小时,从而实现24小时全天候不间断发电。

2011年9月,一个由美国能源部助资助、名为太阳能储存(SolarReserve)的项目在加利福尼亚启动,该项目旨在为内华达州一个名为CrescentDunes的太阳能热电项目做能量储存,希望解决太阳能发电的间歇性问题。CrescentDunes项目发电规模为110兆瓦,使用镜面把太阳光反射到阵列中央的一个中心接收塔上。中心接收塔上的蒸汽锅炉将驱动涡轮机,从而产生清洁、可再生的电力。

其实熔盐太阳能储存并不是什么新技术。早在20世纪70年代,美国能源部在莫哈韦沙漠(位于加利福尼亚州西南部)一个名为“SolarOne”的太阳能热电厂项目中,就应用了这一技术。这次的SolarReserve项目就是借鉴了当时的经验。该热电厂一直运行到20世纪80年代,到20世纪90代进行了改良并升级为“SolarTwo”,于1996年重新运作,并配备了当时最先进的太阳能熔盐储存设备。到了21世纪,太阳能熔盐技术也随之发展。当时负责太阳能储存项目的Rocketdyne公司如今已被Pratt & Whitney division of United Technologies吞并,后者与美国可再生能源集团合作,共同负责这次的SolarReserve项目。

据麻省理工科技评论(MIT Technology Review)报道,美国加州Emeryville市的创新型储热技术公司Halotechnics正在向电网级能源存储领域推进熔盐储热技术的应用,其将建设一个示范级的能源存储系统,为大规模能源存储提供更廉价、更切实可行的解决方案,帮助电网接纳更多不稳定的可再生能源。Halotechnics已经宣布与合作方签署协议建设这样一个1MW的示范项目,采用熔盐存储技术。Halotechnics正在开发的是一种新的采用熔盐化学材料,能够存储各种电力能源的系统。这种系统采用电力驱动的热泵,热泵可以将低品位的热能收集,Halotechnics的创新在于开发一种熔盐材料可以从现有的热泵中存储热能。开发这种熔盐通过采用自动化系统来混合各种不同的盐,测试其混合物的性能,找到最合适的熔盐混合物。

挪威Yara(雅苒)国际集团是一家化肥和环境保护应用产品生产、开发及销售的大型跨国企业,总部位于挪威首都奥斯陆,公司致力于可持续农业、环境和安全以及高效工业的发展,在全球50多个国家建立了销售网络。2013年,Yara国际公司发现一种新的硝酸钾、硝酸钠和硝酸钙的配比混合熔盐拥有很特殊的热存储性能,并由此开发出一种新的熔盐系统,该系统拥有多个创新点:第一,该产品大大降低了储热系统的成本,新加入的硝酸钙在价格上要低于传统的硝酸钾和硝酸钠,这使得整个储热系统的成本要低于传统的二元储热材

料组成的储热系统。第二,Yara国际完善的全球物流系统将可以保证供应链的可靠性,这将大幅度降低运输成本。第三,该产品不含氯化物,将大大降低熔盐的腐蚀性,这将使我们可以延长储热系统的使用寿命。第四,这种新的产品增大了熔盐储热系统的有效温度范围,有效降低了熔盐的熔点,约从传统的220摄氏度降低至目前的131摄氏度,这将提升熔盐的流动和储热性能。这种温度的变化将有利于光热发电项目的稳定运行。这也是为何称之为“新一代熔盐”的主要原因。储热系统收益情况,原风电场投资按照8000元/kW估算,运营期经济性评价参数按照常规风电项目经验参数测算。

2014年1月,可持续技术开发商Abengoa获得智利110MW聚光光热(CSP)电站的标案授权,这是Abengoa首次采用熔盐传热储热的塔式技术开发商业化光热电站。该聚光光热电站将采用熔盐发电技术,使得能源在没有直接太阳能辐照的情况下存储长达17.5个小时。Abengoa预计可以于2015年6月动工建设该电站,于2018年6月建成投运。

3.2 国内熔盐储能项目的应用介绍

江苏太阳宝新能源有限公司是国内最早从事太阳能光热发电储能研发与制造的企业。通过多年的研发与实践得出,熔融盐作为蓄热材料与其它材料相比较,熔融盐具有成本低、蓄热温度高、不易燃,具有很高的传热系数和热容,是一种理想的蓄热介质。2010年6月份,江苏太阳宝新能源有限公司进入太阳能光热发电产业,开始了熔融盐储能技术的研发。2013年8月,中国第一座高温熔融盐储能系统在太阳宝公司建成,储热达20MWh。2014年3月份以来,熔盐温度再次提升至550度,经过20多天的运行调试,整个系统运行稳健,各项指标正常,项目运行成功。该项目的成功运行,填补了国内空白,标志着中国太阳能光热发电已经进入熔融盐储能时代,中国已经成为少数几个掌握高温熔融盐储能技术的国家之一。

首航光热是目前亚洲地区唯一一家同时掌握槽式和塔式电站核心技术,已投产建成电站主要装备太阳岛整岛生产线,并具备大型光热电站设计、采购、施工、调试、运营的EPC 总承包能力并已实际参与多个光热项目开发及投资的企业。由首航节能投资并由首航光热公司EPC总承包的敦煌10MW熔盐塔式项目已完成所有前期工作,即将正式开工。该项目的建成,将成为亚洲首座、全世界第三座具备夜间连续发电能力的商业化塔式电站,结合首航光热公司的技术和成本优势,将极大地有助于全面启动国内的光热发电市场。

2014年7月1日,中国广核集团德令哈5万千瓦光热发电示范项目正式动工,成为我国首个正式开工建设的大型商业化光热发电项目,该项目位于青海省德令哈市太阳能发电基

地内,规划分两期建设10万千瓦槽式光热发电项目。本期新建1座5万千瓦槽式太阳能热发电站,采用高温槽式导热油聚光集热技术,配套建设7小时熔融盐储能装置,年发电量约为2.25亿千瓦时。目前项目前期工作全部完成,具备全面开工建设条件,预计2016年10月建成投产。

四、熔融盐储能系统经济性分析

4.1 熔盐材料成本

熔盐的成本是决定熔盐能否作为蓄热材料的先决条件,若材料成本比较高,用在太阳能热发电就不现实。同时,温度对系统操作成本也有很大影响,操作温度高,高温熔盐蓄热率高,系统发电效率也高,长期来说,就可以降低操作成本。表 4 列出的是当太阳能发电系统温度从100℃到200℃变化时,各种高温蓄热材料蓄热成本受温度的影响。从表4可以看出,Solar Salt 有最低的材料成本和蓄热成本,但它的熔点也最高,实际运用中需有熔点保护措施。Hitec XI材料成本比较高,但在单位蓄热成本方面比Therminol VP—l低,当温度升高200℃时,仅为Therminol VP—l的70%。虽然Hitec的熔点比Hitec XL高,但是它比Hitec XL有更低的价格优势。

总体比较,熔融盐材料在经济性上是很有优势的。

表4 几种常见蓄热材料成本

4.2 熔盐储能系统整体成本

整套储热系统的成本如表5所示。除熔融盐材料本身的价格,系统的成本还包括了材料、施工和人工等。根据单价-总价的一般规律,随着储热系统容量的增加,尽管整体系统的造价很高,但单位成本却在显著下降,倾向于稳定在31$/kW·ht附近,对比其他种类的储能方式,储热系统的单位成本是相对较低的。

表5 熔融盐储热系统整体成本(1000$)

4.3 风电储热经济性分析

由于风电的随机性、间歇性甚至“反调峰”特性,导致电网对风电场采取经常性的限电措施,风电场限电“弃风”,实际发电量远远低于设计的等效满负荷发电小时数,产生风电的“消纳”问题。2012年,我国全年“弃风”损失电量约有200亿kW·h,风能资源浪费严

重,风电开发商为此遭受巨大经济损失。

在这种情况下,国内建设了多种风电场储能系统示范项目,然而由于现有项目主要基于电池储能系统,所以成本相对较高,接近5000 元/kW·h。相比而言,储热系统具备明显的经济优势。由于风电场储能不能产生新的能源,只是将“弃风”转化为热能存储起来,在目前电力市场和风电政策下,风电场储热的效益主要体现在减小风电场“弃风”带来的电量和收入损失。

由于增加了储热设备投资,在未限电条件下,原风电场的收益下降,但随着限电比例增加,储热系统的效益开始显现,能够明显降低限电带来的收入损失;在风电场限电比例13.5% 时,配置储能系统和未配置储能系统的风电场具有相同的收益率;随着限电比例的增加,配置储能系统的风电场的经济性优势将更加明显,即使限电比例达到50%,风电项目的收益率仍在8% 以上。

我国新能源发展规划明确提出太阳能光热利用在“十二五”乃至“十三五”期间的发展目标。无论是太阳能还是光能都是我国未来新能源发展的重要组成部分,而熔融盐储热系统作为实用价值较高的能量保障方式,必将成为解决并网消纳问题的重要技术手段。

五、结束语

由于具有使用温度较高、热稳定性好、比热容高、对流传热系数高、粘度低、饱和蒸汽压低、价格低等“四高三低”的优势,熔融盐作为一种性能优良的高温传热蓄热介质,在太阳能热发电、核电等高温传热蓄热领域具有非常重要的应用前景,在目前商业化运行的太阳能热发电站中已有近40%的电站采用了熔融盐传热蓄热技术。集成熔融盐蓄热技术的太阳能热发电技术能够提供稳定连续可调的清洁电力,是未来解决世界能源问题的主要技术途径之一。

不过,尽管太阳能热发电技术发展迅猛,但国外的太阳能热发电站并未找到最终的解决方案。太阳能热发电技术还存在成本高、效率低和可靠性低的缺陷,造成上述缺陷的关键之一就是传热蓄热介质不合理。目前,国内外在熔融盐传热蓄热工质方面的研究偏重于混合硝酸盐、混合氟化盐等,使用的混合熔融盐配方还存在熔点高、使用温度低等缺陷,还不能完全满足太阳能热发电的需求。对熔融盐热物性的研究还集中在简单的测试上,关于混合熔融盐宏观性能与熔融盐种类、性质、比例、混合方法等的关联还缺乏深入研究,混合盐热物性推算的完整理论体系尚未建立。基础研究上的不足,一方面,造成了混合熔融盐热物性参数

匮缺,严重影响到熔融盐的工程应用;另一方面也使得高温混合熔融盐的筛选/制备过程缺乏定量化理论指导。国内外对熔融盐传热的研究也相对较少,目前已经开展了充分发展湍流和过渡流的管内熔融盐对流传热特性实验研究,但缺乏对熔融盐充分发展层流和紊流入口段、自然对流和混合对流的系统实验研究。

我国还没有一座建成的商业化太阳能热发电站。虽然在国家科技部“863”、“973”计划以及地方政府科技计划项目的支持下,太阳能热发电关键技术取得了一定的成果,但仍然缺乏更加系统深入的研究。因此,政府部门应尽快制定太阳能热发电和熔融盐蓄热相关产业的扶持和激励政策,尽快建立太阳能热发电和熔融盐蓄热的标准体系、发展规划和上网电价政策;同时,广泛开展太阳能热发电国际科技合作,与有关国际组织和国家建立合作机制,积极引进国外先进技术和管理经验,促进我国太阳能热发电技术的又好又快发展。

浅谈先进储能技术及其发展前景

Technological Development of Enterprise ■湖南省科学技术信息研究所胡丹 随着风能、太阳能等可再生能源的普及应用、新能源汽车产业的发展及智能电网的建设,各种储能技术成为万众瞩目的焦点。大规模储能技术作为支撑可再生能源普及的战略性新兴技术,得到世界各国政府和企业的广泛关注与高度重视。同时,储能技术由于其巨大的市场潜力,也迅速受到了风投基金的青睐。本文将对先进储能技术的现状和前景加以介绍。 迄今为止,人们已经开发出多种储能技术,主要分为机械储能、化学储能、电磁储能和相变储能4个大类。机械储能主要包括抽水储能、压缩空气储能、飞轮储能;化学储能主要包括铅酸电池、液流储能电池、镍氢电池、锂离子电池和钠硫电池;电磁储能主要包括超导储能和超级电容器储能,如超导电磁储能;相变储能主要是冰蓄冷技术。本文所研究的先进储能技术以新能源汽车与智能电网储能应用领域为划分基础,主要包括镍氢电池、锂离子电池、燃料电池、超级电容器与液流电池。 1镍氢电池 镍氢电池是目前镍系电池技术路线最先进的电池之一,由氢离子和金属镍合成。其优点在于电量储 备比镍镉电池多30%,比镍镉电池更轻,使用寿命更长,并且对环境无污染。镍氢电池的价格更贵,与镍氢电池相比,性能稍差。 近年来镍氢电池技术发展迅速,尤其是Ni-MH电池正极材料技术和Ni-MH电池负极储氢材料技术。 1.1Ni-MH电池正极材料技术 Ni-MH电池正极材料主要是镍电极,自1887年首次将镍电极运用于碱性电池以来,其发展经历了袋式镍电极、烧结式镍电极和泡沫式镍电极等形式。主要成分均为氢氧化镍,按照镍电极的晶体结构可以分为α-Ni(OH)2和β-Ni(OH)2,对应的充电态分别为γ-NiOOH和β-NiOOH。球形β-Ni(OH)2具有较高的储能导电性能,对于β-Ni(OH) 2 的改性技术主要包括引入钴、锂、镉、锌、稀土系元素进行掺杂,也可以通过纳米 材料与普通球形Ni(OH) 2 进行混合。 而正极材料的制备技术则主要包括烧结式氧化镍工艺、发泡镍填充工艺和纤维镍填充工艺。填充法一般制作简单,所需设备较少,制成的极板具有更高的比容量,但大量生产存在工艺性和性能均衡的问题;烧结式氧化镍基体浸渍活性物质的方法虽然需要 浅谈先进储能技术及其发展前景 透视

热储能在火电厂灵活性改造中的应用

热储能在火电厂灵活性改造中的应用 通过火电厂灵活性改造技术的比较分析,提高汽轮机供热能力、降低机组强迫出力的技术,如汽轮机旁路、低压缸零出力和高背压循环水供热技术等,增加了电厂低负荷运行能力,但高峰负荷时的顶负荷能力也随之降低,在新的辅助服务市场规则下,带来调峰收益损失;电极锅炉和电锅炉固体储热技术能够大幅增加调峰能力,改造成本高、运行费用高;热储能技术在火电厂的应用,既能增加机组调峰深度,也能增加顶负荷能力,投资和运行成本较低,具有明显优势,通过对熔盐、相变、热水和混凝土储热技术在火电厂的应用分析比较,熔盐和相变储热经济性较差,热水和混凝土储热具有较强的技术经济优势,而且混凝土储热密度更高,应用范围更广。 1、技术背景 在电力市场改革的背景下,清洁高效灵活运行已经成为火电行业转型发展的重要目标,火电厂灵活性改造技术得到了越来越多的关注。选择合适的灵活性改造技术是火电厂运营者最关心的问题,而这其中,灵活性改造成本,运行费用以及电力辅助服务市场规则下的调峰收益是选择最合适改造技术的关键。最近发布的《东北电力辅助服务市场运营规则(暂行)》,市场规则得到进一步完善升级,新规则设计了尖峰旋转备用市场日前竞价机制,实现辅助服务市场“压低谷、顶尖峰”全覆盖,明确“能上能下”的双向调峰机组才能获得全部辅助服务收益,向火电机组提出了完整的灵活性标准,能够激励和引导火电厂采取合适的灵活性改造技术,全面提升机组调峰能力。 2、灵活性改造技术比较 目前火电厂灵活性改造主要面对的是“三北”地区供热电厂在采暖季运行灵活性不足的问题,因此,提高供热机组的调峰能力是灵活性改造的主要内容。供热机组的灵活性改造主要分为三类,一是增加机组供热能力,在满足供热负荷的条件下降低锅炉出力,减小机组强迫出力,主要有汽轮机旁路供热技术,低压缸零出力供热技术和高背压循环水供热技术等;二是电热供暖调峰技术,将机组发出的电能转化为热能对外供暖,如电极锅炉技术和电锅炉固体储热技术;三是热储能调峰技术,将汽轮机内过剩的蒸汽热能转化为储能介质的热能存储起来,如应用较多的热水罐储能技术,相变储热技术以及潜在的熔盐热储能技术和混凝土储热技术等。

干热岩技术与熔盐储能技术结合互补供暖方案

干热岩技术与熔盐储能技术结合互补供暖方案 一、各供暖技术说明 1、干热岩供暖技术 干热岩是埋藏于距地表大约2~6k m深处、温度为150℃~650℃、没有水或蒸气的热岩体。干热岩的热能赋存于各种变质岩或 结晶岩类岩体中,较常见的岩石有黑云母片麻岩、花岗岩、花岗闪 长岩等。一般干热岩上覆盖有沉积岩或土等隔热。它所储存的热能 约为已探明的地热资源总量的30%。地壳中“干热岩”所蕴含的能 量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。 干热岩供暖的原理比较简单,根据地质情况打出两口深约 2000m至6000m的井,两井相距数百米至千余米。将两井用水力压 裂技术使地下裂隙连通。用高压注水泵向一井内注水,水通过干热 岩层,将干热岩中的热量吸收后,从另一口井中喷出,进入换热器 进行热量交换,换热后的温水再回到注水井中。这样就好象把一个 锅炉放在深部的地下,水在这个系统中不停的循环就可以取出热能 加以利用。 2、熔盐储能供暖技术 熔盐:熔盐也称作熔融盐,通常指无机盐的熔融体。广义的熔 融盐还包括氧化物熔体及熔融有机物。它是世界上公认的最佳高温 传热储热介质,具有储热密度大、价格低、放热工况稳定易调节等 优点。熔盐蓄热供热技术所用的是多种无机盐按不同比例配制而成。 熔盐蓄热:熔盐蓄热式电加热集中供热技术是一项具有自主知 识产权的创新专利技术。该技术利用弃风弃光或谷电加热,通过熔盐 蓄热实现全天的供热,是一种不烧煤不烧气的绿色供热技术,可实 现弃风弃光的就地消纳和电力削峰填谷。项目的核心是掌握熔盐技

术。该项目的工作原理是利用弃风弃光的电能或夜间廉价的低谷电,通过熔盐电加热器将冷盐罐抽出的低温熔盐加热,携带有大量热能 的高温熔盐储存在高温罐中。供热时,热盐泵将高温熔盐输送至熔 盐蒸汽发生器,高温熔盐将热量传递给循环热水,从而产生蒸汽, 蒸汽被送至板式热交换器,实现供暖。换热后的熔盐回流到低温罐,在下一个弃风弃光或低谷电时段经冷盐泵输送至熔盐电加热器进行 蓄热,并完成一个热循环。“尽管国外已经实现了熔盐蓄热在太阳 能热发电中的大规模应用,但将其用于电加热集中供热领域还未见 相关公开报道,我公司提供的“熔盐储能供热”属于国际首创。设 备组成:熔盐储能罐、换热器、自控系统、节能变频控制柜组成。 电能熔盐蓄热在电力低谷期全负荷运行,制得所需要的全部热量。在电力高峰期,热水机组不需要运行,所需热负荷全部由储热 槽来满足。 此策略适于空调使用期短但热负荷量大的场合,如体育场馆、 教堂、舞厅等。 3、干热岩供热和熔盐供热的优缺点比较

储能产业发展的几大技术方向

储能产业发展的几大技术方向 发表于:2018-06-01 09:32:58 来源:计鹏新能源作者:贾婧 目前全球和中国储能累计装机中,抽水蓄能最高,占比超过90%,熔融盐储热第二,电化学储能排名第三;从发展速度来看,电化学增长较快,截至2016 年底,全球电化学储能装机规模达1756.5MW,近 5 年复合增长率27.5%,其中以锂离子电池累计规模最大,超过50%以上。

电化学储能具有设备机动性好、响应速度快、能量密度高和循环效率高等优势,是当前储能产业发展和研究的热点,主要应用在电网辅助服务、可再生能源并网、电力输配、分布式发电及微网领域。从我国已投运的电化学储能项目来看,分布式发电及微网领域的装机规模最大,其余依次为可再生能源并网领域、电力辅助服务领域和电力输配领域。 从技术方向来分类,主流电化学储能技术包括先进铅酸电池、锂离子电池、液流电池和钠硫电池等。 传统铅酸蓄电池凭借其安全可靠、容量大、性价比高等优点,在储能领域仍具有稳固的地位。特别近年来,以铅炭电池为代表的新兴铅酸技术的出现,大大弥补了传统铅酸电池比能量低、寿命短等缺点,使其在大规模储能领域的应用成为可能。 锂离子电池由正负电极、隔膜、电解液组成,具有能量密度大、工作温度范围宽、无记忆效应、可快速充放电、环境友好等诸多优点,目前在国内已广泛应用于各类电子产品、新能源车和电化学储能等领域。特别受下游新能源车动力电池需求增长拉动,产业规模和技术发展加速,技术和产业链正在进一步成熟。 液流电池具有充放电性能好、循环寿命长的特点,适合大规模储能应用。目前较为成熟的液流电池体系有全钒、锌溴、铬铁、多硫化钠-溴等双液体系,目前应用和研究最广的为全钒液流电池,但由于成本过高、体积密度低等原因,产业还处于起步阶段。锌溴、铬铁、多硫化钠等电池的技术或被垄断、或处于研发阶段,未能实现产业化。 钠硫电池以单质硫和金属钠为正负极,β-氧化铝陶瓷为电解质和隔膜,其工作温度在300-350 摄氏度之间,具有能量密度高、功率特性好、循环寿命长、成本相对低等优点,其规模约占全球电化学储能总装机量的30-40%,仅次于锂离子电池。但由于技术垄断,目前在国内无法大规模推广。 从技术成熟度、经济性、安全环保性等来看,锂电池是我国发展较快、有望率先带动储能商业化的电化学储能技术。

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

熔盐储能技术项目可行性研究报告(_案例模板)

https://www.doczj.com/doc/a610067350.html, 熔盐储能技术项目可行性研究报告 (用途:发改委甲级资质、立项、审批、备案、申请资金、节能评估等) 版权归属:中国项目工程咨询网 https://www.doczj.com/doc/a610067350.html, 编制工程师:范兆文 【微信公众号】:中国项目工程咨询网或 xmkxxbg

《项目可行性研究报告》简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 项目可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。 《熔盐储能技术项目可行性研究报告》主要是通过对熔盐储能技术项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对熔盐储能技术项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该熔盐储能技术项目是否值得投资和如何进行建设的咨询意见,为熔盐储能技术项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。 《熔盐储能技术项目可行性研究报告》是确定建设熔盐储能技术项目前具有决定性意义的工作,是在投资决策之前,对拟建熔盐储能技术项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建熔盐储能技术项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 北京国宇祥国际经济信息咨询有限公司是一家专业编写可行性研究报告的投资咨询公司,我们拥有国家发展和改革委员会工程咨询资格、我单位编写的可行性报告以质量高、速度快、分析详细、财务预测准确、服务好而享有盛誉,已经累计完成6000多个项目可行性研究报告、项目申请报告、资金申请报告编写,可以出具如下行业工程咨询资格,为企业快速推动投资项目提供专业服务。

储能技术研究进展

储能技术研究进展 能源短缺和环境恶化是全球性问题,开发可再生能源,实现能源优化配置, 发展低碳经济,是世界各国的共同选择。但是,可再生能源受天气及时间段的影响较大,具有明显的不稳定、不连续和不可控性。需要开发配套的电能储存装置,来保证发电、供电的连续性和稳定性。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全。但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并人常规电网。 现有的储能技术主要包括物理储能、电化学储能、电磁储能、氢储能、相变 储能和热化学储能等类型。其中,物理储能、电化学储能、电磁储能和氢储能主 要储存电能,物理储能包括抽水储能、压缩空气储能级飞轮储能等;电化学储能包括铅酸、锂离子、镍镉、液流和钠硫等电池储能;电磁储能包括超导储能和超 级电容储能;为了实现氢储能完整的转换链,就要从氢气的制取、储存、发电等 方面整体规划,在关键技术上进一步突破。而相变储能和热化学储能主要储存热能或由电能转化的热能,相变储能按材料的组成成分可分为无机类、有机类(包括高分子类)以及复合类储能材料;热化学储能基于热化学反应,而热化学反应体系主要包括金属氢化物体系、氧化还原体系、有机体系、无机氢氧化物体系以及氨分解体系。 1. 物理储能 物理储能一般用于大规模储能领域,主要包括抽水储能、压缩空气储能、飞轮储能等,其中抽水储能是主要的储能方式。物理储能是利用天然的资源来实现的一种储能方式,因此更加环保、绿色,而且具有规模大、循环奉命长和运行费 用低等优点。缺点是建设局限性较大,其储能实施的地理条件和场地有特殊要求。而且因为其一次性投资较高,一般不适用于小规模且较小功率的离网发电系统。1.1 抽水储能 目前在电力系统中应用最广泛的一种物理储能技术,即为抽水储能。它是一种间接的储能方式,用来解决电网高峰与低谷之间的供需矛盾。水库中的水被下半夜过剩的电力驱动水从下水库抽到上水库储存起来,然后在第二天白天和前半夜将水闸打开,放出的水用来发电,并流入到下水库。即使在转化间会有一部分能量因此而流失,但在低谷时压荷、停机等情况下,使用抽水储能电站仍然比增建煤电发电设备来满足高峰用电而来得便宜,具有更佳的效果。除此以外,抽水

全球储能技术发展现状与应用情况

全球储能技术发展现状与应用情况 一、储能技术分类、技术原理、主要特征 针对电储能的储能技术主要分为三类:电化学储能(如钠硫电池、液流电池、铅酸电池、锂离子电池、镍镉电池、超级电容器等) 、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)。 也可以分为功率型和能量型,功率型的特点是功率密度大、充放电次数多、响应速度快、能量密度小的特点,例如飞轮、超级电容、超导;能量型的特点是能量密度大、响应时间长、充放电次数少、功率密度低等特点。例如蓄电池。 从目前的情况来看,两种储能设备混用会产生更大的效果,混用比单一使用更有利于降低成本。(最近的一篇论文介绍的模型计算结果是在微网中使用超级电容和蓄电池两种混合储能成本是单一储能成本的33.8%。) (一)电化学储能技术 1、钠硫电池 钠硫电池的正极活性物质是液态的硫(S);负极活性物质是液态金属钠(Na),中间是多孔性瓷隔板。它利用熔融状态的金属钠和硫磺在300℃以上高温条件下,进行氧化-还原反应,完成充放电过程。 钠硫电池的主要特点是能量密度大(是铅蓄电池的3倍)、充电效率高(可达到80%)、可大电流、高功率放电、循环寿命比铅蓄电

池长。然而钠硫电池在工作过程中需要保持高温,有一定安全隐患。由于钠硫电池中所用的储能介质金属钠和硫磺均为易燃、易爆物质,对电池材料要求十分苛刻,目前只有日本(NGK)公司实现产品的产业化生产。 图1 钠硫电池储能系统原理 (来源:美国储能协会) 2、液流电池 液流氧化还原电池(Redox flow cell energy storage systems),简称液流蓄电站或液流电池,与通常蓄电池活性物质包含在阳极和阴极不同,液流电池作为氧化-还原电对的活性物质分别溶解于装在两个大储液罐中的溶液里,各用一个泵使溶液流经液流电池堆中高选择性离子交换膜的两侧,在其多孔炭毡电极上发生还原和氧化反应。电池堆通过双极板串联,结构类似于燃料电池。目前还发展有在一个或两个电极上发生金属离子(及非金属离子)溶解/沉积反应的液流电池。 由于液流电池的储能容量由储存槽中的电解液容积决定,而输出功率取决于电池的反应面积,通过调整电池堆中单电池的串连数量和电极面积,能够满足额定放电功率要求。两者可以独立设计,因此系

写给储能投资人:这些数据应该细看

写给储能投资人:这些数据应该细看 5月22-24日,中关村储能产业技术联盟(简称“CNESA”)举办了它的第6届年度盛会“储能国际峰会暨展 览会2017”,并在会上发布了2017年版的《储能产业研究 白皮书》。在白皮书前言里,CNESA 用“波澜不惊、春和景明”概括了当前中国储能行业的发展现状,比去年的“水面初 平云脚低”所描绘的早春状态,有了更加喜人的发展态势。如果说政策和产业的发展是相互促进的过程,今年3月份,我国首个直接指导储能产业发展的综合性政策——《关于促进储能技术与产业发展的指导意见》征求意见稿中,已经将当前业界最关心的补偿以及市场价格机制提上了议程,包括可再生能源场站中储能的补偿机制、储能参与辅助服务市场及容量市场的补偿机制以及支持用户侧储能通过市场化方式 参与电能交易或辅助服务的政策,并鼓励多元化储能在横纵向互联互补的综合能源体系中体现多种价值,储能的商业化前景跃然纸上。国家能源局能源节约和科技装备司副司长修炳林在此次峰会上还称,该指导意见已经完成意见征求过程,目前正在进行修改完善,并争取尽快发布。该意见征求稿同时还明确了几类具有产业化潜力的储能技术方向,提出针对不同应用场景和需求,要开发分别适用于长时间大容量、短时间大容量、分布式以及高功率等模式应用的储能技术装备。

展开剩余82% 而在此次CNESA公布的白皮书里,一些数据也印证了行业引导政策。分布式和微网储能增长最强劲白皮书显示,2016年中国新增投运储能项目中,用户侧(即分布式发电及微网领域)的装机规模增速最大,为727%(超7倍),与全球的698%(近7倍)的节奏基本保持一致。我国用户侧储能的市场驱动力多来自工商业领域的电费节省 以及在弱电地区与新能源组合对昂贵的柴油发电的替代。不同于国外,发达国家的居民电价普遍高于工商业电价,因此居民应用是发达国家的“光伏+储能”方案的应用主流。阳光三星成为了2016年中国储能企业中最突出的一位,新增装机规模最大,同时代表了一种市场(阳光电源逆变器)和技术(三星SDI电池)优势互补的企业合资典范。早在2002年国家“送电到乡”工程中,阳光电源上万套光伏控制逆变一体机就应用于西北、西南区无电区。而类似的规律还表现在,国内的光伏企业依托海外光伏营销渠道优势积极进入德国、澳大利亚等国家的户用光储和分布式微网等用户侧市场,例如全球光伏电站装机规模第二的协鑫就成立了自己的储能 公司,并提出了在用户侧“光伏+储能+运维”的一体化发展模式。多位专家在此次峰会上表示,借助“一带一路”的历史性机遇,通过参与到电力基础设施落后国家或地区的供电可靠性改善过程中,我国的光储企业在全球市场中的地位将更值得期待。铅炭电池储能或将率先实现大规模盈利因为经济性

太阳能储能熔盐项目可行性研究报告

太阳能储能熔盐项目 可行性研究报告 xxx(集团)有限公司

第一章项目总论 一、项目概况 (一)项目名称 太阳能储能熔盐项目 (二)项目选址 xxx产业示范基地 对各种设施用地进行统筹安排,提高土地综合利用效率,同时,采用先进的工艺技术和设备,达到“节约能源、节约土地资源”的目的。 (三)项目用地规模 项目总用地面积26459.89平方米(折合约39.67亩)。 (四)项目用地控制指标 该工程规划建筑系数68.85%,建筑容积率1.14,建设区域绿化覆盖率5.68%,固定资产投资强度191.51万元/亩。 (五)土建工程指标 项目净用地面积26459.89平方米,建筑物基底占地面积18217.63平方米,总建筑面积30164.27平方米,其中:规划建设主体工程18171.57平方米,项目规划绿化面积1714.27平方米。 (六)设备选型方案 项目计划购置设备共计111台(套),设备购置费2781.16万元。

(七)节能分析 1、项目年用电量1257348.80千瓦时,折合154.53吨标准煤。 2、项目年总用水量8997.01立方米,折合0.77吨标准煤。 3、“太阳能储能熔盐项目投资建设项目”,年用电量1257348.80千 瓦时,年总用水量8997.01立方米,项目年综合总耗能量(当量值) 155.30吨标准煤/年。达产年综合节能量63.43吨标准煤/年,项目总节能 率23.41%,能源利用效果良好。 (八)环境保护 项目符合xxx产业示范基地发展规划,符合xxx产业示范基地产业结 构调整规划和国家的产业发展政策;对产生的各类污染物都采取了切实可 行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域 生态环境产生明显的影响。 (九)项目总投资及资金构成 项目预计总投资8883.94万元,其中:固定资产投资7597.20万元, 占项目总投资的85.52%;流动资金1286.74万元,占项目总投资的14.48%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标 预期达产年营业收入12147.00万元,总成本费用9498.62万元,税金 及附加149.67万元,利润总额2648.38万元,利税总额3163.34万元,税

新能源储能系统发展现状及未来发展趋势

新能源储能系统发展现状及未来发展趋势 目录 第一章新能源储能系统相关论述 (1) 新能源相关论述 (1) 新能源定义 (1) 新能源分类 (1) 储能技术相关论述 (1) 储能技术的定义 (1) 储能技术的分类 (1) 第二章国内外新能源储能系统的发展动态分析 (2) 日本新能源储能系统的发展动态分析 (2) 新能源储能电池的发展现状及未来发展趋势 (2) 新能源储能系统的未来发展趋势 (3) 新能源储能系统在实际中的应用 (3) 美国在新能源储能系统的应用中漫漫求索 (4) 政策与投资力度 (4) 储能技术的经济性瓶颈 (5) 我国新能源储能系统的现状 (5) 储能是构建智能电网的关键环节 (6) 商业模式不成熟制约储能发展 (6) 第三章国内外在相关新能源储能技术上的发展现状 (8) 新能源储能系统的实际应用 (8) 创能、节能与储能的完美搭配 (9) 国内新能源储能技术瓶颈解析 (10) 新能源科技发展的核心—储能技术 (10) 新能源无"仓库储能"的尴尬 (10) 储能技术的突破效应 (11) "不能等肚子饿了才去种麦子" (12) 第四章新能源储能系统的发展趋势 (13) 日本新能源储能系统的发展趋势 (13) 储能电池的发展趋势 (13) 我国新能源储能系统的发展趋势 (13) 我国智能电网带动储能产业发展态势研究分析 (13) 新能源并网储能市场发展前景预测分析 (14)

第一章新能源储能系统相关论述 新能源相关论述 新能源定义 新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、海洋能、地热能和氢能。 新能源分类 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、水能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能、等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。 储能技术相关论述 储能技术的定义 储能技术是将电力转化成其他形式的能量储存起来,并在需要的时候以电的形式释放。 储能技术的分类 目前全球储能技术主要有物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。

全球储能技术的发展现状及前景分析

全球储能技术的发展现状及前景分析 北极星储能网讯:一直以来,储能技术的研究和发展备受各国能源、交通、电力、电讯等部门的高度关注,尤其对发展新能源产业具有重大意义。受 环境约束,各国纷纷大力提倡发展新能源,然而由于新能源发电具有不稳定性 和间歇性,大规模开发和利用将使供需矛盾更加突出,全球弃风、弃光问题普遍存在,严重制约了新能源的发展。因此,储能技术的突破和创新就成为新能源能 否顺利发展的关键。从某种意义上说,储能技术应用的程度将决定新能源的发 展水平。 (一)全球各储能技术装机情况 近年来,储能市场一直保持较快增长。据美国能源部全球储能数据库(DOEGlobalEnergyStorageDatabase)2016 年8 月16 日的更新数据显示,全球累计运行的储能项目装机规模167.24GW(共1227 个在运项目),其中抽水蓄能161.23GW(316 个在运项目)、储热3.05GW(190 个在运项目)、其他机械储能1.57GW(49 个在运项目)、电化学储能1.38GW(665 个在运项目)、储氢 0.01GW(7 个在运项目),具体见全球累计运行的储能项目装机量以抽水蓄能占 比最大,约占全球的96%。按照总装机量,中国成为装机位列第一的国家,日 本和美国次之,三国装机分别为32.1GW、28.5GW 和24.1GW,共占全球装机 总量的50%。全球累计运行储能项目装机排名前十的主要是亚洲和欧洲国家, 详见表1。 (二)全球储能技术区域分布情况 全球的储能项目装机主要分布在亚洲、欧洲和北美,见按照储能技术类 型分布来看,抽水蓄能装机占比最大,主要分布在中国、日本和美国。与2014

水导热油熔盐储能介质对比

我国北方广大城镇地区采暖季采用分散燃煤小锅炉、小火炉采暖,造成严重的冬季空气污染,另一方面,这些地区的可再生能源却由于消纳不足,面临着严重的“弃风弃光问题”,因此利用可再生能源开展北方地区电储热供暖具有重要的意义。 北方地区能否顺利推广电储热供暖项目,电采暖项目能否被供热市场接受,最关键的问题就是电储热采暖项目的经济性,本文从电储热供暖项目的投资成本,运行费用入手,针对当前的电价政策,供热价格,分析电储热供暖项目的经济可行性和存在的问题,并给出促进电储热供暖发展的建议。 2、电储热技术

电储热供暖项目是利用电网中的过剩可再生能源,或低谷电价时的电能,通过电加热设备,将电能转化为热能,存储在储热设备中,当需要对外供热时,将存储的热能通过换热器释放,转化为热风、热水、蒸汽等形式对外输出,可满足民用供暖需求,也能够满足工业用热,如下图1所示。 图:电储热供暖项目示意图 根据储热设备的载热材料不同,储热技术主要可分为水储热,固体储热和熔盐储热。 (1)水储热技术就是将热能以热水的形式存储起来,根据存储热水的温度和压力,水储热又可分为常压储热和承压储热;常压储热的温度利用范围一般在35℃~85℃,特点是储热设备投资成本低,无需换热设备,适用于对供热温度要求不高的民用采暖领域,缺点是储能密度小,占地面积大;承压水储热的温度一般在120℃~150℃,优点是储能密度提高,可对外提供蒸汽供热,主要问题是需要承压容器,存在一定安全风险,设备成本较高。下图2是丹麦Aved?re热电厂用于满足地区供热的热水储能罐,容积为2x24,000m3,储热温度为120℃,热水压力10bar。

储能行业发展分析报告

特变电工新疆新能源股份有限公司 储能行业发展分析报告 市场管理部 二零一五年八月十八日 目录 一、储能产业发展状况 (3) (一)国外储能产业发展情况 (3) (二)中国储能产业发展情况 (5) 二、储能市场分析 (8) (一)全球市场 (8) (二)国内市场 (9) 三、政策支持 (10) (一)国内现有政策分析 (10) (二)国外政策经验借鉴 (12) 四、存在的问题和挑战 (13) (一)产业政策和行业标准缺失问题亟待解决 (13) (二)自主技术有待工程应用验证和进一步完善 (14) (三)产品成本过高,推广力度不足 (14) (四)商业模式模糊 (15) 五、国内主要储能变流器生产企业分析 (15)

(一)北京能高 (15) (二)四方继保 (16) (三)索英电气 (17) (四)中船鹏力 (18) 储能是指通过介质或者设备,利用化学或者物理的方法把能量存储起来,根据应用的需求以特定能量形式释放的过程,通常说的储能是指针对电能的储能。储能技术应用广泛,随着电力系统、新能源发电(风能、太阳能等)、清洁能源动力汽车等行业的飞速发展,对储能技术尤其大规模储能技术提出了更高的要求,储能技术已成为该类产业发展不可或缺的关键环节。特别是储能技术在电力系统中的应用将成为智能电网发展的一个必然趋势,是储能产业未来发展的重中之重。当前,储能领域正处于由技术积累向产业化迈进的关键时期。 随着我国社会和经济的发展对能源的消耗越来越多,煤炭的大量消耗的结果造成了我国严重的大气污染,严重影响人民的身体健康。因此,普及应用可再生能源、提高其在能源消耗中的比重是实现社会可持续发展的必然选择。由于风能、太阳能等可再生能源发电具有不连续、不稳定、不可控的特性,可再生能源大规模并入电网会给电网的安全稳定运行带来严重的冲击,而大规模储能系统可有效实现可再生能源发电的调幅调频、平滑输出、跟踪计划发电,从而减小可再生能源发电并网对电网的冲击,提高电网对可再生能源发电的消纳能力,解决弃风、弃光问题。因此,大规模储能技术是解决可再生能源发电不连续、不稳定特性,推进可再生能源的普及应用,实现节能减排重大国策的关键核心技术,是国家实现能源安全、经济可持续发展

熔盐储能项目简介修订稿

熔盐储能项目简介公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

熔盐储能项目简介 近几年风力发电、光伏发电的兴起,为我们的工业发展提供了廉价的能源、降低了化石能源的消耗、减少了排放对环境的污染。但是;太阳能电厂、风力发电厂发电时段无法控制,近年来国家电网弃电给太阳能、风能电厂带来巨大的损失,导致大量的绿色能源不能充分利用。根据国家能源局统计数据,2015年上半年全国风电平均弃风电率已高达%,造成经济损失接近87亿元。由于受自然条件的的制约限制,风、光发电的利用率还很低,导致资源大量的浪费。 为解决电力供需平衡,充分发挥资源利用、合理调配电力资源;国家电网,近期加大了抽水蓄能电站的布局建设,以期达到智能调配国家电网的供需平衡。目前建设抽水蓄能电站,受到地理条件、水资源的限制,抽水蓄能电站建设周期长、投资巨大、转换效率不足60%,而且具有发生地质灾害的安全隐患。 利用熔盐储能发电、在我国是一项新兴技术,国内正在实验中的熔盐实验发电系统为:高温盐罐、低温盐罐、熔盐换热系统、熔盐循环系统、熔盐循环系统伴热保温系统(因为当熔盐液体低于150℃时会导致熔盐液体凝固使整个系统报废)等复杂的换热流程,由于高温熔盐液体的流动、会带来极大的安全隐患,由于循环熔盐高温液体,对整个系统的要求极高,投资巨大,而且转换效率不足60%。

我公司研发的熔盐储能项目,具有多项专利技术;其专有技术为单罐加热储能,高温熔盐液体不需流动换热、热量损失小,设备简单造价低、安全可靠、无污染。热转换效率可达75%以上。如采用熔盐储能技术、建立大型熔盐储能电站,投资小、见效快,据测算;熔盐储能电站转换效率可在75%以上,而且不受地理条件限制,总体投资比建抽水蓄能电站还要低很多。而且安全可靠、对环境无污染,其副产品可用来制造化肥,切实做到环保节能、综合利用。几年来;我公司在熔盐加热、储能、换热进行了上百次的实验探索,取得了丰富的经验,经试验证明;我公司研发的熔盐储能发电,与目前应用的其它电力储能技术相比,具有无可比拟的诸多优点。 一、我公司研发的熔盐储能项目应用: 1.可广泛应用于光伏电场、风电场用于国家电网弃电时的电能储存,建立熔盐储能电站、采用弃电时的电能加热熔盐液体,在电网需要时由熔盐换热器产生蒸汽推动汽轮发电机为电网提供电能,这样大量的风、光资源即可得到充分的利用。 2.可方便的用于工业集中用电地区,建立蓄能调峰电站,比建设抽水蓄能电站,投资小见效快,不受地理条件限制、安全可靠,蓄能转换效率高,熔盐储能电站利用夜间低谷电力加热熔盐液体,储存能量、白天用电高峰时;由熔盐换热器产生蒸汽推动汽轮发电机发电、就近为电网蓄能调峰,达到智能控制电网电力的供需平衡。

熔融盐储能技术及应用现状讲解

熔融盐储能技术及应用现状 随着全球新能源产业的快速发展,风力发电与太阳能等随机性和间歇性很强的发电方式对电网的正常运行管理提出了相当高的挑战,相应地,各类储能(储热)技术也逐渐纳入了人们的视角。熔融盐储能技术是利用硝酸盐等原料作为传热介质,通过新能源发出的热能与熔盐的内能转换来存储或发出能量,一般与太阳能光热发电系统结合,使光热发电系统具备储能和夜间发电能力,满足电网调峰需要,具有很强的经济优势,已经在西班牙、意大利等欧洲地区和部分北美地区等发达国家得到了实际的商业化应用。 一、熔融盐介绍 1.1 熔融盐的特性 熔融盐是盐的熔融态液体,通常说的熔融盐是指无机盐的熔融体,广义上的熔融盐还包括氧化物熔体及熔融有机物。除了单一无机盐外,将同一类熔融盐按照一定比例混合,或者将不同种类的熔融盐按照一定的配方混合,可以形成多种新型混合共晶熔融盐。这些混合熔融盐可以根据成分配比的不同,获得各种熔点和使用温区的熔融盐工质,能够避免硝酸盐使用温度低、氯化盐熔点温度高等缺点,同时保留熔融盐热稳定性和化学稳定性好、饱和蒸汽压低、比热容大等一系列优点,因此在工业上获得了广泛应用。目前,寻找性能优越的混合熔融盐成为熔融盐传热蓄热研究的主要方向之一。 熔融盐有不同于水溶液的诸多性质,主要包括:①熔融盐为离子熔体,通常由阳离子和阴离子组成,具有良好的导电性能,其导电率比电解质溶液高1个数量级;②具有广泛的使用温度范围,通常的熔融盐使用温度在300~1000℃之间,新研发的低熔点混合熔融盐使用温度更是扩大到了60~1000℃;③饱和蒸汽压低,保证了高温下熔融盐设备的安全性;④热容量大;⑤对物质有较高的溶解能力;⑥低粘度;⑦化学稳定性好;⑧原料易获得,价格低廉,与常见的高温传热蓄热介质——导热油和液态金属相比,绝大多数熔融盐的价格都非常低廉,且容易获得。这些优异的特性使熔融盐被广泛用作热介质、化学反应介质以及核反应介质,尤其近些年来在太阳能热发电系统中,熔融盐得到了广泛的应用。

新型相变储能技术的应用与发展

0引言 能源是人类赖以生存的基础。目前,随着全球工 业的高速发展,全球能源也日益短缺。矿物能源的枯竭性危机和环境污染问题越来越受到世人关注,提高能源使用效率和开发可再生能源是人类面临的重要课题。 上世纪末相变储热(LTES)的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起并得到不断发展。材料科学、太阳能、航天技术、工程热物理、建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为LTES研究和应用创造了条件。LTES具有储热密度高,储热放热近似等温,过程易控制的特点。潜热储热是有效利用新能源利节能的重要途径。提高储热系统的相变速率,热效率,储热密度和长期稳定型是目前面临的重要课题。研究潜热储热的核心就是研究材料的相变传热过程[1]。 相变储能控温是提高能源利用效率和保护环境的重要技术,常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式,在太阳能的利用、电力的“移峰填谷”、废热和余热的回收利用,以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。利用相变材料的相变潜热来实现能量的储存和利用,有助于提高能效和开发可再生能源,是近年来能源科学和材料科学领 域中一个十分活跃的前沿研究方向。 1相变储能控温材料的机理及发展现状 1.1相变储能控温材料的机理 相变储能控温材料是指在其物相变化过程中,可以与外界环境进行能量交换(从外界环境吸收热量或者向外界环境放出热量),从而达到控制环境温度和能量利用的目的的材料。与显热储能相比,相变储能控温具有储能密度高、体积小巧、温度控制恒定、节能效果显著、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑和极端环境服装等众多领域具有重要的应用价值和广阔的前景。 相变材料从液态向固态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时,产生了一个宽的温度平台。该温度平台的出现,体现了恒温时间的延长,并可与显热和绝缘材料区分开来(绝缘材料只提供热温度变化梯度)。相变材料在热循环时,储存或释放显热。 相变材料在熔化或凝固过程中虽然温度不变,但吸收或释放的潜热却相当大。目前已知的天然和合成 新型相变储能技术的应用与发展 尚燕1,张雄2 (1.江苏省建筑科学研究院,江苏 南京 210008;2.同济大学材料科学与工程学院,上海 200092) 摘要:概括和评述了相变储能复合材料的制备方法及其研究进展,介绍了相变材料在建筑方面的应用,最后,指出当前存在问题以及 目前值得深入研究的课题。 关键词:相变材料;储能;复合材料;应用中图分类号:TU599 文献标志码:A 文章编号:1673-7237(2006)02-0021-06 ApplicationandDevelopmentontheTechnologyofPhaseChangeEnergyStorage SHANGYan1,ZHANGXiong2 (1.JiangsuInstituteofBuildingScience,Nanjing210008,China; 2.DepartmentofMaterialsScience&Engineering,TongjiUniversity,Shanghai200092,China) Abstract:Thepreparationmethodofcompositephasechangematerialsandtheirresearchdevelopmentarereviewed.Theapplicationsofphasechangematerialsinarchitecturearealsodiscussed.Atlast,theexistingproblemsandsubjectsdeservingtofurtherstudyareindicated. Key words:phasechangematerials;energystorage;compositematerials;application ■节能技术 ENERGY-SAVINGTECHNOLOGY 建筑节能 2006年第2期(总第34卷第190期) No.2in2006(TotalNo.190,Vol.34) 21

相关主题
文本预览
相关文档 最新文档