当前位置:文档之家› 离子液体凝胶电解质的制备与电化学性能研究

离子液体凝胶电解质的制备与电化学性能研究

纳米凝胶的研究进展

纳米凝胶的研究进展 摘要:纳米凝胶是由亲水性或两亲性高分子链组成的三维网状结构,它能显著的溶胀于水但是不溶解于水,由于水和凝胶网络的亲和性,水可能以键合水、束缚水和自由水等形式存在于高分子网络中而失去流动性,因此纳米凝胶能够保持一定的形状。它们可以作为一种药物载体,而且也可以通过盐键,氢键或者疏水作用自发的结合一些生物活性分子。高分子电解质的纳米凝胶可以稳定地结合带相反电荷的小分子药物和生物大分子,比如寡或多聚核苷酸(siDNA,DNA)和蛋白质。目前的研究表明纳米凝胶在生物医药方面有很广阔的应用前景。关键词:纳米凝胶药物载体 前言 纳米凝胶通常指的是由物理或者化学交联的聚合物网络组成的水凝胶颗粒, 它是一种纳米尺度的水分散体。按形成的化学键,凝胶分为两种:一种是化学凝胶(聚合物凝胶),这种凝胶是由交联的共价键而形成的三维网络结构,比如PEG-cl-PEI。另一种是物理凝胶,是由非共价键形成的三维网络结构,比如甘露糖类,右旋糖酐等。按溶剂分,则一般分为有机凝胶和水凝胶。 纳米凝胶可以很好的作为药物运输载体是因为它们有很高的负载能力,高的稳定性,更重要的是相对于普通的药物纳米载体,它们对环境敏感,比如离子强度,pH和温度。至从2002年第一篇关于纳米凝胶的合成与应用的综述发表后,这类新颖的纳米结构材料在药物,大分子和显影剂运输方面受到人们越来越大的关注。这篇综述简单介绍了纳米凝胶的合成与应用,尤其是药剂学方面的应用。 没有负载的纳米凝胶含有大量的水而处于一种溶胀的状态。纳米凝胶可以通过生物活性因子与其多聚链基质之间的静电作用,范德华

力或者疏水作用自发的负载这些因子。因此,纳米凝胶塌陷而形成稳定的纳米粒子,生物活性因子负载其中。可以在其结构中加入分散的亲水性聚合物比如聚乙二醇来阻止纳米凝胶的聚集。在负载药物的纳米凝胶络合物塌陷的过程中,这类聚合物可以暴露在其表面并形成一个亲水的保护层从而阻止了相分离。纳米凝胶表面的官能团可以进一步的用各种不同的靶向基团修饰以达到靶向输送特定部位的目的。研究表明纳米凝胶可以将其负载送到细胞里面并穿过生物膜。这种纳米凝胶有很好的稳定性并且可以保护生物活性因子不被细胞内代谢系统降解。纳米凝胶在全身性药物输送及提高口服和脑部位的生物利用度方面表现出很大的潜能。 1 纳米凝胶的制备 目前报道的制备纳米凝胶的方法有以下几种:(1)聚合物之间的物理自组装;(2)均相或微小非均相环境下的单体聚合;(3)形成了的聚合物交联;(4)模板辅助。下面详细介绍这几种方法。 许多研究团队用聚合物之间的物理自组装制备了各种不同的纳米凝胶。这种方法通常包括控制亲水性聚合物之间通过疏水作用或者静电作用或者氢键导致的聚集。这种制备纳米凝胶的方法在温和条件和水介质中进行。亲水性聚合物相互作用将生物大分子包裹其中,并且对于制备负载蛋白质的纳米凝胶非常有用。比如Akiyoshi等人通过胆固醇修饰的淀粉之间的疏水作用制备了负载胰岛素的纳米凝胶(如图1a)【1】。这种纳米凝胶在一个窄的胆固醇∕糖比例(1:40-1:100)

高考中有关离子交换膜的电化学试题

高考中有关离子交换膜的电化学试题 离子交换膜是一种对溶液里的离子具有选择透过能力的高分子膜。因在应用时主要是利用它的离子选择透过性,又称为离子选择透过性膜.离子交换膜法在电化学工业中应用十分广泛。教材中并未专门介绍,一般是在讲解氯碱工业时介绍阳离子交换膜的应用,但在近年考试中涉及离子交换膜原理的考题屡见不鲜.一、交换膜的功能: 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、交换膜在中学电化学中的作用: 1.防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸)。 2.用于物质的制备、分离、提纯等。 三、离子交换膜的类型: 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 四、试题赏析: 1.某同学按如图所示装置进行试验,A、B为常见金属,它们的硫酸盐可溶于水。当K闭合时,SO42-从右向左通过阴离子交换膜移向A极.下列分析正确的是 A.溶液中c(A2+)减小 B.B极的电极反应:B-2e-= B2+ C.Y电极上有H2产生,发生还原反应

D.反应初期,X电极周围出现白色胶状沉淀,不久沉淀溶解 2.(2014·全国大纲版理综化学卷,T9)右图是在航天用高压氢镍电池基础上发展起来的一种金属氢化物镍电池(MH-Ni电池)。下列有关说法不正确的是 A.放电时正极反应为:NiOOH+H 2O+e-→Ni(OH) 2 +OH- B.电池的电解液可为KOH溶液 C.充电时负极反应为:MH+OH-→M+H 2 O+e- D.MH是一类储氢材料,其氢密度越大,电池的能量密度 越高 3.(2014·福建理综化学卷,T11)某原电池装置如右图所示,电池总反应为 2Ag+Cl 2 =2AgCl。下列说法正确的是 A.正极反应为AgCl +e-=Ag +Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移0.01 mol e-时,交换膜左侧溶液中约减少0.02 mol离子4.(2013·浙江高考·11)电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后, 蓝色逐渐变浅。已知:3I 2+6OH-=I+5I-+3H 2 O 下列说法不正确的是( ) A.右侧发生的电极反应式:2H 2O+2e-=H 2 ↑+2OH-

丙烯酸酯类凝胶聚合物电解质研究进展

第36卷第2期2008年2月化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S V ol 36N o 2 1 作者简介:校峰(1980-),硕士研究生,研究方向:新材料和环境科学。 综述与专论 丙烯酸酯类凝胶聚合物电解质研究进展 校 峰 赵旭东 (陕西省环境科学研究设计院,西安710061) 摘 要 聚合物锂离子电池的发展对聚合物电解质提出了更高的要求,促使人们开发性能优良的凝胶聚合物电解质。综述了近年来凝胶聚合物电解质的发展状况,主要论述了凝胶聚合物电解质的结构与性能以及几种典型的凝胶聚合物电解质的制备。 关键词 凝胶聚合电解质,丙烯酸酯类聚合物 The progress in study of acrylate gel polymer electrolytes Xiao Feng Zhao Xudo ng (Shaanxi Institute o f Env ir onm ental Science Research and Desig n,Xi an 710061) Abstract Po ly mer electro ly tes w ith better perfo rmance ar e demanded in the development of polymer lithium io n batter ies;t her efore many att entions have been paid to g el polymer elect rolytes.T her e a re many kinds o f gel polymer elec -t rolytes:conceptio n of g el polymer electro ly tes,hist or ical development,pr operties,structure and kinds of typical g el po ly -mer electro ly tes were r eview ed. Key words gel po ly mer electr olyte,acr ylate copolymer 聚合物电解质可分为两类,一类是干态聚合物电解质(DP E),此类电解质的室温离子电导率较低(10-4~10-5S/cm),目前仍难于在电池中使用;另一类就是凝胶聚合物电解质,它是由聚合物、增塑剂和锂盐通过一定的方法形成的具有合适微结构的聚合物网络,利用固定在微结构中的液态电解质分子实现离子传导,它的室温电导率一般在10-3S/cm 数量级,是最有希望应用于锂离子电池中的聚合物电解质。 1 聚合物电解质应具有的性能 聚合物锂离子电池的关键是制备聚合物电解质,其性能好坏直接影响锂离子电池的性能优化和提高。作为锂离子电池的聚合物电解质必须满足以下几个基本要求:(1)较高离子电导率。为了达到液态电解质锂离子电池mA/cm 2 数量级发电能力,聚合物电解质需要具有至少10-3S/cm 数量级的电导率。(2)较高的锂离子迁移数。大多数现有电解质体系(包括液态电解质和聚合物电解质)的迁移数都<0 5,即锂离子对电导率的贡献不足一半。(3)化学和电化学稳定性好。由于电解质膜插在正负极之间,因此,当电解质与电极直接接触时不希望发生化学副反应,这就需要聚合物电解质有一定的化学稳定性;另外,为了得到一个合适的实用温度范围,聚合物电解质必须要有良好的热稳定性;最后电解质还必须有一个相对于L i/L i +的0~4 5V 的电化学稳定窗口,以满足高电位电极材料充放电电压范围内电解质的电化学稳定性和电极反应的单一性。(4)有一定的机械强度。聚合物电解质在电池 中还起到了隔离正负极的作用,这就要求它具有足够的机械强度来支撑正负极片,防止电池内部短路。 2 几种典型的凝胶聚合物电解质 从1975年凝胶聚合物电解质(GP E)首次报道以来,有多种体系的凝胶聚合物电解质得到了开发和研究,其中研究的最为详尽的、也是性能最好的GP E 体系是聚环氧乙烷(P EO)、聚甲基丙烯酸甲酯(PM M A)、聚丙烯腈(PA N )和聚偏四氟乙烯(PV DF)四种聚合物及其衍生物体系凝胶型聚合物电解质。 2.1 PEO 体系GPE 为了提高P EO /锂盐性纯固态聚合物电解质的电导率,研 究人员尝试了多种改性方法。通过共混、共聚、接枝和交联等方法降低了聚合物的结晶度和玻璃化转变(T g )温度,从而使其电导率有所提高,但与实用化的要求还有一定的差距。增塑剂可以降低结晶度、提高链段的运动能力和锂盐的解离度。有研究通过添加有机溶剂对P EO/锂盐电解质进行增塑处理,发现其导电性能明显提高。Ito 等制备了用聚乙二醇(PEG )增塑的P EO -L iCF 3SO 3电解质,并测量了其离子电导率。发现随着P EG 浓度的增加,离子电导率也随之增加。电导率增加的主要原因是结晶度的降低和体系自由体积的增大。但同时,离子电导率的增大相反地伴随着差的界面性能的形成,这是由于末端羟基的存在[1]。为了解决这一问题,研究人员又用甲氧基取代了P EG 的末端羟基[2]。冠醚也可被作为增塑

高考化学复习 专题7-离子交换膜在电化学装置中的应用 (2)

专题7 离子交换膜在电化学装置中的应用 日期:2019年11月10日 学号姓名 1.(2018年11月浙江选考17题)最近,科学家研发了“全氢电池”,其工作原理如图所示。 下列说法不正确 ...的是() A.右边吸附层中发生了还原反应 B.负极的电极反应是H2-2e-+2OH-=2H2O C.电池的总反应是2H2 +O2=2H2O D.电解质溶液中Na+向右移动,ClO4-向左移动 2.(2019年高考天津卷6题)我国科学家研制了一种新型的高比能量锌--碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。下列叙述不正确的是 A.放电时,a电极反应为I2Br-+ 2e-=2I-+ Br- B.放电时,溶液中离子的数目增大

C.充电时,b 电极每增重0.65 g ,溶液中有0.02mol I - 被氧化 D.充电时,a 电极接外电源负极 3.(2019 年全国卷 I 12) 利用生物燃料电池原理研究室温下氨的合成,电池工作时MV 2+/MV +在电极与酶之间传递电子,下列说法错误的是 A .相比现有工业合成氨,该方法条件温和,同时还可提供电能 B .阴极区,在氢化酶作用下发生反应H 2 + 2MV 2+ = 2H + + 2MV + C .正极区,固氮酶为催化剂,N 2发生还原反应生成NH 3 D .电池工作时,质子通过交换膜由负极区向正极区移动 4.(2016年全国卷 I 11)三室式电渗析法处理含 Na 2SO 4 废水的原理如图3所示,采用惰性电极,ab 、cd 均为离子交换膜,在直流电场的作用下,两膜中间的Na +和SO 42- 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室.下列叙述正确的是(B ) A .通电后中间隔室的SO 42-向正极迁移,正极区溶液pH 增大 B .该法在处理含Na 2SO 4。废水时可以得到NaOH 和H 2SO 4产品 C .负极反应为2H 2O - 4e - = O 2+ 4H +,负极区溶液pH 降低 D .当电路中通过1mol 电子的电量时,会有0.5 mol 的O 2生成 5.(2018年全国卷Ⅰ 27节选)焦亚硫酸钠(Na 2S 2O 5)在医药、橡胶、印染、食品等方面应有广泛,加答下列问题: MV + MV 2+ N 2 NH 3 H 2 H + MV + MV 2+ 电 极 电 极 氢化酶 固氮酶 2SO 4负极区正极区 浓Na 2SO 4溶液a b c d +-

提高凝胶电解质电导率的最新研究进展

综述专论 化工科技,2011,19(3):62~65 SCI ENCE &T ECH N OL OG Y IN CH EM ICA L IN DU ST RY 收稿日期:2011-01-04 作者简介:张有文(1986-),河南信阳人,辽宁石油化工大学硕士研究生,研究方向为应用电化学。**通讯联系人。 *基金项目:辽宁省自然科学基金项目(20082187)。 提高凝胶电解质电导率的最新研究进展* 张有文,李 琪,乔庆东** (辽宁石油化工大学石油化工学院,辽宁抚顺113001) 摘 要:综述了一种新型功能高分子材料)))凝胶电解质近几年来的研究进展。说明了凝胶电解质的类型:固态聚合物电解质、凝胶聚合物电解质、复合凝胶聚合物电解质。重点阐述了提高凝胶电解质导电性能的方法。主要包括:采用电导率高和化学稳定性高的锂盐,采用交联、共聚和共混等方法对分子结构进行改性,降低结晶性能,添加增塑剂,添加无机填料等。并预测了凝胶电解质的发展前景。 关键词:凝胶电解质;锂离子电池;改性;离子电导率;增塑剂 中图分类号:T Q 317 文献标识码:A 文章编号:1008-0511(2011)03-0062-04 凝胶电解质是一种新型的功能高分子材料, 可做为聚合物锂离子电池中的隔膜和电解质材料,属于固体电解质,可使电池薄形化,最薄可达0.5m m,从而提高了电池造型设计的灵活性。另外聚合物锂离子电池的能量密度比液态锂离子电池提高近50%,充放电特性、安全性、工作温度范围、循环寿命及环保性能等都比液态锂离子电池好[1] 。目前已有多种形式的聚合物锂离子电池诞生,发展前景很好。近年来,人们通过在聚合物中加入不同的添加剂对凝胶电解质进行改性,取得了很好的效果,有些还在实验阶段,有些已经工业化。 与传统的液体电解质相比较,凝胶电解质有非常明显的优势:(1)凝胶电解质能抑制晶枝的生长;(2)避免了液体泄漏,从而提高了电池的安全性;(3)电池形状的适应性提高,可通过涂布、层压工艺等对电池进行改造,从而使电池变得更薄、更轻、更小型,使其应用范围更为广泛。另外用凝胶作为电池的电解质,还能增加电池的容量、增长电池的使用寿命、扩大使用范围,这些优势使锂离子电池凝胶电解质的研究成为新时代电源的热门之一。 凝胶电解质的研制是开发全固态聚合物二次锂电池的主要方向。凝胶电解质代替有机液体电解质有许多优势:电池不易燃烧爆炸;凝胶电解质可以和金属锂电极配合,实现能量密度的最大化; 凝胶电解质本身可以替代昂贵的电池隔膜,而且不需要严格的密封,制造成本大大降低,这相当于 是二次锂电池产业的第三次革命[2] 。 1 凝胶电解质的分类 固体电解质的发展可分为3个阶段:纯固态聚合物电解质(SPE)阶段;凝胶聚合物电解质(GPE)阶段;复合凝胶聚合物电解质(CGPE)阶段。 SPE 是不含任何有机液体,仅仅以聚合物为固体溶剂,室温离子电导率只有10-8S/cm 数量级,所以在锂离子电池中的应用受到了限制。 GPE 是由聚合物、小分子溶剂(增塑剂)和锂盐组成,聚集了固体的柔韧性与液体易扩散的特点,应用比较广泛。GPE 克服了液体电解质易在电极表面生成易燃物质及漏液的缺点,使电池的 设计更自由[3] 。首次合成的GPE 是聚氧化乙烯(PEO)和碱金属盐双组分复合物,这种复合物呈固态,具有一定的离子导电性,从而提出了聚合物电解质的概念[4,5],也使聚合物电解质的研究进 入一个崭新的阶段[6] 。 CGPE 是选用不同的聚合物和不同的电解质盐进行复合,并加人适量的小分子有机溶剂改进聚合物与电解质盐的复合形式,这种由聚合物、电解质盐、小分子有机溶剂三组分复合而成的凝胶 型体系,被称为复合凝胶聚合物电解质[7] 。这种凝胶电解质具有较高的离子电导率[8],并具有优良的机械加工性能和成膜性能,是制做电双层电容器和微型锂离子二次电池的理想电解质材料。 到目前为止,人们开发出的聚合物电解质有

高中化学 第八章电解质溶液及电化学系统

第八章电解质溶液及电化学系统 主要内容 1.电解质溶液及电化学系统研究的内容和方法 2.电解质溶液的热力学性质 3.电解质溶液的导电性质 4.电化学系统的热力学 重点 1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念; 2.重点掌握离子氛的概念和德拜—休克尔极限定律; 3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算; 难点 1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律; 3.原电池电动势与热力学函数的关系;能斯特方程及其计算 教学方式 1. 采用CAI课件与黑板讲授相结合的教学方式。 2. 合理运用问题教学或项目教学的教学方法。 教学过程 第8.1节电解质溶液及电化学系统研究的内容和方法

一、电解质溶液及电化学系统研究的内容 1、电解质溶液 ①电解质溶液的热力学性质 电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。 思考:理想稀薄溶液所遵从的热力学规律是什么? ②电解质溶液的导电性质 高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。 2、电化学系统 在两相或数相间存在电势差的系统称为电化学系统。 ①电化学系统的热力学性质 电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。 ②电化学系统的动力学 电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。 二、电化学研究的对象 第8.2节电解质溶液的热力学性质 一、电解质的类型 1、电解质的分类 电解质的定义: 解离:电解质在溶剂中解离成正、负离子的现象。 强电解质: 弱电解质: 强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。如

固体电解质

来源:仲恺农业工程学院绿色化工研究所作者:黄金辉等 提要:介绍了聚合物锂离子电池的关键材料聚合物电解质。叙述了聚合物电解质的发展、组成、分类,离子在聚合物中的传导机理以及国内外的研究进展和今后的研究重点及方向。信息、能源和环保是21 世纪人类社会关心的主要课题。二次电池对3 个问题的解决都起着关键作用。锂离子电池是最新型的二次电池,近10年来得到迅速发展。到2008 年,全球锂离子电池的销售额已远远超过镉镍(Ni-Cd)和氢镍电池(Ni-MH)。锂离子电池以其他电池所不可比拟的优势迅速占领了许多领域,从信息产业(移动电话、PDA、笔记本电脑)到能源交通(电网调峰、电动车辆),从太空(卫星、飞船)到水下(潜艇、水下机器人),锂离子电池在本世纪作为主要的二次电池,进入了人类社会的各个领域,为人类造福。 电解质作为锂离子电池的关键材料影响甚至决定着电池的比能量、寿命、安全性能、充放电性能和高低温性能等多种宏观电化学性质。现在的电解质已经从以前的液态电解发展到固态电解质也就是聚合物电解质。以聚合物电解质取代液态电解质,是锂离子电池发展的一个重大进步,其显著特点就是提高了电池的安全性能,易于加工成膜,可以做成全塑结构,从而可制造超薄和各种形状的电池;能够很好的适应电池冲放电过程中电极的体积变化,同时又有较好的化学和电化学稳定性能。因此在新型高能锂电池及电化学的应用上显示出很大的优越性。 1 聚合物电解质 聚合物电解质也就是高分子电解质,它是由极性聚合物和金属盐络合形成的一类在固态下具有离子导电性的功能高分子材料,实际上就是锂盐的聚合物溶液,广义的说是指具有离子传导性的导电聚合物材料,即在外加电场驱动力作用下,负载电荷的离子定向移动来实现导电过程的聚合物,它的溶剂无论是液体高分子还是固体高分子都具有能够和锂离子配位的基团,而且这些基团与锂离子配位能力越强,锂盐在聚合物中的溶解度就越大,相应的聚合物电解质电性能就越强。 作为各种电池等需要化学能与电能转换场合中的离子导电介质,它在工业和科研工作中的各种电解和电分析过程中有重要的用途,在锂离子电池中它作为锂离子的传输介质必须具备这些条件:工作温度下的电导率较高,一般要大于1 mS/cm,以保证组装成的电池电阻降较低;锂离子迁移数大,以防止产生浓差极化;对电子传输几乎绝缘,因而能够有效地隔离正负电极,以防止电池内部短路;对锂电极的化学和电化学稳定性高,以保证电解质-Li 界面性质稳定性良好;制造成本低廉,以利于市场开发;温和的化学成分,不会污染环境。基于对这种新型电解质的这些特点与要求,许多科研工作者进行了不懈地努力。从最开始的导电聚合物,到有机聚合物再到无机聚合物,再到有机-无机共混聚合物等等,进行了大量的理化性质、常温下的导电率和成膜强度的研究和测试。 电解质的发展到今,已形成了一定的体系,可以分成不同的类型。标准不同其分类也不同,根据导电离子不同,可分为单离子和双离子聚合物电解质;根据聚合形态不同,可分为固体

高考化学专项突破 离子交换膜在电化学装置中的应用

高考化学专项突破----离子交换膜在电化学装置中的应用 一、离子交换膜的功能:使离子有选择性的定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、离子交换膜在电化学中的作用 (1)能将两极区隔离,阻止两极区产生的物质接触。 防止副反应的发生,避免影响所制取产品的质量; 防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的Cl2进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的H2混合发生爆炸)。 (2)能选择性地通过离子,起到平衡电荷、形成闭合回路的作用。 (3)用于物质的制备、分离、提纯等。 三、离子交换膜的类型 根据透过的微粒,离子交换膜可以分为多种,在高考试题中主要出现阳离子交换膜、阴离子交换膜和质子交换膜三种。阳离子交换膜,简称阳膜,只允许阳离子通过,阻止阴离子和气体通过;阴离子交换膜,简称阴膜,只允许阴离子通过,质子交换膜只允许质子(H+)通过,不允许其他阳离子和阴离子通过。可见离子交换膜的功能在于选择性地通过某些离子和阻止某些离子来隔离某些物质。 注意:①反应物相同,不同的交换膜,迁移的离子种类不同。②同种交换膜,转移相同的电子数,如果离子所带电荷数不同,迁移离子数不同。③离子迁移依据电荷平衡,而离子数目变化量可能不相等。 四、离子交换膜类型的判断

根据电解质溶液呈中性的原则,判断膜的类型。判断时首先写出阴、阳两极上的电极反应,依据电极反应式确定该电极附近哪种离子剩余,因该电极附近溶液呈电中性,从而判断出离子移动的方向,进而确定离子交换膜的类型,如电解饱和食盐水时,阴极反应式为2H++2e-=H2↑,则阴极区域破坏水的电离平衡,OH-有剩余,阳极区域的Na+穿过离子交换膜进入阴极室,与OH-结合生成NaOH,故电解食盐水中的离子交换膜是阳离子交换膜。 五、真题再现 1、(2019·全国卷Ⅰ)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+ 在电极与酶之间传递电子,示意图如下所示。下列说法错误的是 A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应H 2+2MV2+2H++2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【答案】B 【解析】 【分析】由生物燃料电池的示意图可知,左室电极为燃料电池的负极,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+?e?= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+;右室电极为燃料电池

电化学--电解质溶液

电化学――电解质溶液王振山 电化学是研究电能与化学能之间相互转化及转化过程中的有关现象的科学。 电化学发展历史如下: 1600年,吉尔伯特Gilbert(英)观察到毛皮擦过的琥珀能吸引微小物体,即后来称为摩擦生电的现象。 1799年,伏打Alessandro Volta(意大利)制得了银锌交替叠堆的可产生火花的 直流电源(即原电池),创制了第一个原电池,有了直流电。为电化学研究提供了 条件。 1807年,戴维Davy(英)用电解法成功从K,Na的氢氧化物中分离出金属K,Na。电解了水,电解制出了碱金属。 1833年,法拉第Faraday(英)据实验结果归纳出著名的法拉第定律,为电化学的定量研究奠定了理论基础。 1870年,爱迪生Edison(美)发明了发电机,电解才被广泛应用于工业生产中。1879年亥姆霍兹Helmholtz (德),电极界面双电层理论。 1884年,阿伦尼乌斯Arrhenius(瑞典),电离学说 1900年,能斯特Nernst(德)据热力学理论提出了Nernst方程。 1905年,塔菲尔Tafel(德)注意到电极反应的不可逆性,提出了半经验的Tafel 公式,以描述电流密度与氢超电势间的关系。 1923年,德拜Debey(荷兰)-休克尔Huckel(德))离子互吸理论。 20世纪40年代,弗鲁姆金A. H. Frumkin(苏联)以电极反应速率及其影响因素为主要研究对象,逐步形成了电极反应动力学。因电极上发生反应时,电子的跃迁距离小于1nm,利用固体物理理论和量子力学方法研究电极和溶液界面上进行反应的机理,更能反映出问题的实质,这是研究界面电化学反应的崭新领域, 称为量子电化学。今天电化工业已经成为国民经济中的重要组成部分;有色金属、稀有金属的冶炼和精炼采用电解,一些化工产品的制备(氢氧化钠、氯酸钾等),在医药领域,人们采用电化学分析手段在临床与科研方向发挥了重要作用。 *相关链接:伽伐尼(意大利Aloisio Galvani,Luigi Galvani,1737~1798),1780年发现蛙腿剧烈地痉挛,同时出现电火花。他还把这种电叫做“动物电”。火花放电或雷雨闪电能使青蛙腿肌肉收缩。伏达为了纪念伽伐尼,尊重伽伐尼的先驱性工作,在自己的著作中,总是把伏打电池叫做伽伐尼电池。 一、原电池和电解池 1、导体:能导电的物体称为导电体,简称导体。大致可分为两类: ⑴、第一类导体(电子导体):靠自由电子定向运动而传导电流的物质。又称电子导体,如金属、石墨等。

固体电化学

固体电化学 任何一个电化学装置都是由电介质和两个电极相互连接组成的。或用于传感器,或用于化学电源。为提高其性能就要对这三部分及他们之间的相互作用进行研究。 这不仅应对固体电解质本身的电学性质(电导率、离子电导率及与环境的关系、使用条件)进行研究;并且还要研究电介质与电极间的相互作用。本章将介绍电化学的有关基本知识。 第一节固体电解质的电导和极化 一电导和极化 固体电解质中存在离子的大量空位,在电场作用下,离子可以迁移,离子在迁移过程中受到的阻力是电阻,我们常用电阻(欧姆)的倒数电导(1/欧姆)来表示离子导体样品的导电能力。 ⒈、离子迁移率和离子电导率 离子的移动速度为V(cm/s ), 与电场强度E(V/cm )成正比.(E= dφ/dx; 电压梯度V/cm) V= U E 其中U是离子的迁移率:单位电场强度作用下载流子的迁移速度。单位:(cm2/Vs)。 载流子产生的电流密度I 与导电粒子浓度C、粒子带电量(q = Z e)及粒子的迁移速度U 成正比:I = C q V 具有多种电荷载体的固体电解质在电场中产生的总电流密度I

等于各种载流子产生的分电流密度之和: I =∑I =I i +I e +I h I = ∑C k q k V k = ∑C k q k U k E k 固体电解质中载流子的电导率 σ :单位长度单位截面电介质的电阻的倒数,或:当长度为1厘米的1立方厘米物体两端加1伏电压时,通过的电流安培数: 因为: I =∑σk E k σ = ∑ σk = ∑ C k q k U k 如果是混合导体,σi 为离子电导率,σe 为电子电导率;σ 为固体电解质的总电导率。 3、离子迁移数和电子迁移数 固体电解质中离子及电子迁移数是导电离子及电子的电导率在固体电解质总电导率中所占的比例。可用下式表示: t i i i =∑σσ σσ e e t = t I = 1 - t e 对于少量缺陷的固体电解质材料(电导率比较低),根据热力学理想溶液特性,其电导率与温度的关系为:???? ??-=kT E o o T exp σσ 固体电解质的电导率均随温度的升高而增大。以lg(σT)∽(1/T)作图,从图中曲线的斜率可得活化能 E 0。 但是,对于高电导率的固体电解质材料,其导电机理不能用稀释点缺陷理论来解释,现在还没有得出理论推导的关系式;可按Arrhenius 方程式进行处理,离子晶体的电导率与温度的关系可以表示 为: σσ=-?? ???o E kT o exp

电化学中的离子交换膜

高三化学训练——电化学中的离子交换膜 2016年6月18日1.(2015津)锌铜原电池装置如图所示,其中阳离子交换膜只允许阳离子和水分子通过,下列有关叙述正确的是 A.铜电极上发生氧化反应 B.电池工作一段时间后,甲池的c(SO42-)减小 C.电池工作一段时间后,乙池溶液的总质量增加 D.阴阳离子离子分别通过交换膜向负极和正极移动,保持溶液中电荷平衡 2.(2015沪)氯碱工业以电解精制饱和食盐水的方法制取氯气、氢气、 烧碱和氯的含氧酸盐等系列化工产品。下图是离子交换膜法电解食盐 水的示意图,图中的离子交换膜只允许阳离子通过。完成下列填空: (1)写出电解饱和食盐水的离子方程式。 (2)离子交换膜的作用为:、。 (3)精制饱和食盐水从图中位置补充,氢氧化钠溶液从 图中位置流出。(选填“a”、“b”、“c”或“d”) 3.如果模拟工业上离子交换膜法制烧碱的方法,那么可以设想用如图装置电解硫酸钾溶液来制取氢气、氧气、硫酸和氢氧化钾(电解槽内的阳离子交换膜只允许阳离 子通过,阴离子交换膜只允许阴离子通过)。 ①该电解槽的阳极反应式为 ,单位时间内通过阴离子交换膜的离子数与通 过阳离子交换膜的离子数的比值为。 ②从出口D导出的溶液是(填化学式)。 4.海洋资源的开发与利用具有广阔的前景。海水的pH一般在 ~之间。某地海水中主要离子的含量如下表: 成分Na+K+Ca2+Mg2+Cl-SO42-HCO3- 含量/mg?L-19360831601100160001200118(1)海水显弱碱性的原因是(用离子方程式表示),该海水中Ca2+的物质的量浓度为__________mol/L。 (2)电渗析法是近年发展起来的一种较好的海水淡化技术,其原理如下图所示。其中阴(阳)离子交换膜只允许阴(阳)离子通过,电极均为惰性电极。 ① 开始时阳极的电极反应式为。 ② 电解一段时间,极(填“阴”或“阳”)会产生水垢,其成份为(填化学式)。

离子交换膜电化学中的应用

1.如图所示阴阳膜组合电解装置用于循环脱硫,用NaOH溶液在反应池 中吸收尾气中的二氧化硫,将得到的Na2SO3溶液进行电解又制得 NaOH。其中a、b离子交换膜将电解槽分为三个区域,电极材料为石 墨,产品C为H2SO4溶液。下列说法正确的是() A. b为只允许阳离子通过的离子交换膜 B. 阴极区中B最初充入稀NaOH溶液,产品E为氧气 C. 反应池采用气、液逆流方式,目的是使反应更充分 D. 阳极的电极反应式为 2.如图是利用一种微生物将废水中的有机物(如淀粉)和废气NO的化学能直接转化为电 能,下列说法中一定正确的是() A.质子透过阳离子交换膜由右向左移动 B. 电子流动方向为 C. M电极反应式: D. 当M电极微生物将废水中 g淀粉转化掉时,N电极产生 L 标况下 3.三室式电渗析法处理含Na2SO4废水的原理如图所示,采用惰性电极,ab、cd均为离子 交换膜,在直流电场的作用下,两膜中间的Na+和SO42-可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室。下列叙述正确的是() A. 通电后中间隔室的离子向正极迁移,正极区溶液pH增大 B. 该法在处理含废水时可以得到NaOH和产品 C. 负极反应为,负极区溶液pH降低 D. 当电路中通过1mol电子的电量时,会有的生成 4.某电源装置如图所示,电池总反应为2Ag+Cl2=2AgCl.下列说法正确的是() A. 正极反应为 B. 放电时,交换膜右侧溶液中有大量白色沉淀生成 C. 若用NaCl溶液代替盐酸,则电池总反应随之改变 D. 当电路中转移时,交换膜左侧溶液中约减少离子 5.科学家用氮化镓(GaN)材料与铜作电极组装如图所示的人工光合系统,成功地实现了

电化学及电解有机合成

电化学及电解有机合成 电化学的定于与研究内容: 电池由两个电极和电极之间的电解质 构成,因而电化学的研究内容应包括两个方 面:一是电解质的研究,即电解质学,其中 包括电解质的导电性质、离子的传输性质、 参与反应离子的平衡性质等,其中电解质溶 液的物理化学研究常称作电解质溶液理论; 另一方面是电极的研究,即电极学,其中包 括电极的平衡性质和通电后的极化性质,也就是电极和电解质界面上的电化学行为。电解质学和电极学的研究都会涉及到化学热力学、化学动力学和物质结构。 电池由两个电极和电极之间的电解质构成,因而电化学的研究内容应包括两个方面:一是电解质的研究,即电解质学,其中包括电解质的导电性质、离子的传输性质、参与反应离子的平衡性质等,其中电解质溶液的物理化学研究常称作电解质溶液理论;另一方面是电极的研究,即电极学,其中包括电极的平衡性质和通电后的极化性质,也就是电极和电解质界面上的电化学行为。电解质学和电极学的研究都会涉及到化学热力学、化学动力学和物质结构。 电化学的应用分为以下几个方面:①电解工业,其中的氯碱工业是仅次于合成氨和硫酸的无机物基础工业、耐纶66的中间单体己二腈是通过电解合成的;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;②机械工业要用电镀、电抛光、电泳涂漆等来完成部件的表面精整;③环境保护可用电渗析的方法除去氰离子、铬离子等污染物;④化学电源;⑤金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题; ⑥许多生命现象如肌肉运动、神经的信息传递都涉及到电化学机理;⑦应用电化学原理发展起来的各种电化学分析法已成为实验室和工业监控的不可缺少的手段。 现在我们主要是讨论第一个电解工业的应用及有机合成。电化学有机合成是利用电化学氧化或还原方法合成有机物的技术。它的发展历史: 1849年,Kolbe通过实验发现羧酸的电解氧化可生成较长链的烷烃。 1850至1960年,实验研究阶段。 1960年代的工业化时代。 1964年,Nalco公司建成1.8万t/a四乙基铅的电合成工厂。 1965年,Mansanto公司建成1.5万t/a己二腈的电合成工厂。 1980年以来,由于原料价格上涨、对环境保护的重视,电化学有机合成作为一种绿色合成技术,又开始重视并进行了较活跃的的研究与开发。2000年将召开第6届全国电化学有机合成会议。 电化学有机合成的特点: ?电极反应可在常温、常压下进行,较为安全。 ?不使用氧化还原试剂,不产生废弃物,无环境污染。 ?通过调节电位和电流,可方便地改变电极反应方向和速度。 ?消耗较多的电能。 ?反应器结构复杂,电极活性不易维持。 电合成反应过程与机理

离子交换膜高考题Word版

(2014福建)11.某原电池装置如右图所示,电池总反应为2Ag+Cl2=2AgCl。下列说法正确的是 A.正极反应为AgCl +e-=Ag +Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移0.01 mol e-时,交换膜左侧溶液中约减少0.02 mol离子 (2014新课标I)27、(15分) 次磷酸(H3PO2)是一种精细化工产品,具有较强还原性,回答下列问题: (1)H3PO2是一元中强酸,写出其电离方程 式: (2)H3PO2及NaH2PO2)均可将溶液中的银离子还原为银单质,从而可用于化学镀银。 ①(H3PO2)中,磷元素的化合价为 ②利用(H3PO2)进行化学镀银反应中,氧化剂与还原剂的物质的量之比为4 ︰1,则氧化产物为: (填化学式) ③NaH2PO2是正盐还是酸式 盐?其溶液 显性(填弱酸性、中性、或者弱碱性)(3)(H3PO2)的工业制法是:将白磷(P4)与氢氧化钡溶液反应生成PH3气体和 Ba(H2PO2),后者再与硫酸反应,写出白磷与氢氧化钡溶液反应的化学方程 式: (4)(H3PO2)也可以通过电解的方法制备。工作原理如图所示(阳膜和阴膜分别只允许阳离子、阴离子通过):

①写出阳极的电极反应 式 ②分析产品室可得到H3PO2的原因 ③早期采用“三室电渗析法”制备H3PO2,将“四室电渗析法”中阳极室的稀 硫酸用H3PO2稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳 极室与产品室,其缺点是杂质。该杂 质产生的原因 是: 27.(15分) (1) (2) ①+1 ② ③正盐弱碱性 (3) (4)① ②阳极室的穿过阳膜扩散至产品室,原料室的穿过阴膜扩散至产品室、二者反应生成 ③或被氧化

高中化学离子交换膜在电化学中的应用学案

I II III a b + - 离子交换膜在电化学中的应用 新洲一中阳逻校区高二化学组 在近几年高考中,涉及离子交换膜的试题比较多,且常考常新。离子交换膜是一种含有离子基团的、对溶液中的离子具有选择透过能力的高分子膜,也称为离子选择透过性膜。 1.常见的离子交换膜: 根据透过的微粒,离子交换膜可以分为多种,在高中试题中主要出现阳离子交换膜、阴离子交换膜和质子交换膜三种,阳离子交换膜只允许阳离子通过,阻止阴离子和气体通过,阴离子交换膜只允许阴离子通过,质子交换膜 只允许质子(H +)通过。 2.交换膜的功能 使离子选择性定向迁移(目的是平衡整个溶液的_______________________)。 例题1:下图电解装置可用于制备烧碱,a 、b 均为离子交换膜,Ⅱ区加入NaCl 溶液,则下列叙述中错误的是( ) A.NaOH 、H 2均在Ⅰ区产生 B.图中a 为阴离子交换膜 C.使用离子交换膜可以有效地隔离NaOH 和Cl 2,阻止二者之间的反应 D.电解时往Ⅲ区的溶液中滴加几滴甲基橙,溶液先变红后褪色 例2:现有阳离子交换膜、阴离子交换膜、石墨电极,请用氯碱 工业中的膜技术原理,回答下列问题. 请利用交换膜技术,根据上图框架,设计一个电解Na 2SO 4溶液制 取NaOH 和H 2SO 4的装置,标出下列物质的化学式(已知E 为Na 2SO 4 溶液): A G ; B C ; 膜a 为 离子交换膜(填“阳”或“阴”). 例题:3:加碘食盐中含有碘酸钾(KIO 3),现以电解法制备碘酸钾,实验装置 如图所示。先将一定量的碘溶于过量氢氧化钾溶液,发生反应: 3I 2+6KOH=5KI+KIO 3+3H 2O ,将反应后的溶液加入阳极区,另将氢氧化钾溶液加 入阴极区,开始电解。下列说法中正确的是( ) A .电解过程中OH -从a 极区通过离子交换膜c 进入b 极区 B .c 为阳离子交换膜 C .a 电极反应式:I --6e -+6OH -= IO 3-+3H 2O ,a 极区的KI 最终转变为KIO 3 D .当阳极有0.1mol I -放电时,阴极生成6.72LH 2 例题4: H 3PO 2可用电渗析法制备,“四室电渗析法”工作原理如图所示(阳膜 和阴膜分别只允许阳离子、阴离子通过): ①写出阳极的电极反应式__________________。 ②分析产品室可得到H 3PO 2的原因是_________________________________________________________________ ________________________________________________________________________________________________。

高考总复习 化学 (新人教版)--核心素养提升21 电化学中的介质与交换膜--(附解析及答案)

素养说明:在近几年高考中,涉及离子交换膜的应用及电解液介质对电极反应的影响的试题比较多,且常出常新,离子交换膜的功能在于选择性地通过某些离子和阻止某些离子来隔离某些物质,电解液介质主要对电极反应产物进行二次反应。 1.电化学中的交换膜 (1)交换膜的功能 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。(2)交换膜在中学电化学中的作用 ①防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸。 ②用于物质的制备、分离、提纯等。 (3)离子交换膜的类型 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 2.电化学中的介质

电化学中常见的五大介质(以CH3OH 、O2燃料电池为例) 介质一:K2SO4中性溶液 总反应式:2CH3OH+3O2===2CO2+4H2O (-)负极:2CH3OH-12e-+2H2O===2CO2+12H+ (+)正极:3O2+12e-+6H2O===12OH- 介质二:KOH碱性介质 总反应式:2CH3OH+3O2+4OH-=== 2CO2-3+6H2O (-)负极:2CH3OH-12e-+16OH-===2CO2-3+12H2O (+)正极:3O2+12e-+6H2O===12OH- 介质三:H2SO4溶液酸性 总反应式:2CH3OH+3O2===2CO2+4H2O (-)负极:2CH3OH-12e-+2H2O===2CO2+12H+ (+)正极:3O2+12e-+12H+===6H2O 介质四:熔融盐介质,如熔融的K2CO3 总反应:2CH3OH+3O2===2CO2+4H2O (-)负极:2CH3OH-12e-+6CO2-3===8CO2+4H2O (+)正极:3O2+12e-+6CO2===6CO2-3 介质五:掺杂Y2O3的ZrO3固体电解质,在高温下能传导正极生成的O2-

相关主题
文本预览
相关文档 最新文档