当前位置:文档之家› 外骨骼机器人研究发展综

外骨骼机器人研究发展综

外骨骼机器人研究发展综
外骨骼机器人研究发展综

外骨骼机器人研究发展综述

李罗川

摘要

外骨骼机器人又称可穿戴机器人,是一种结合了人的智能和机械动力装置的机械能量的机器人。外骨骼机器人融合了传感、控制、驱动、信息融合、移动计算等综合技术为作为操作者的人提供一种可穿戴的机械机构。本文介绍了外骨骼机器人的发展历史以及国内外研究现状,对外骨骼机器人的关键技术:机械结构设计,驱动单元,控制策略进行了研究,分析了其技术难点最后对其发展前景进行了说明。

关键词:外骨骼机器人关键技术

目录

引言 (4)

1.发展历史及现状 (5)

1.1国外发展历史现状 (5)

1.2国内发展历史现状 (9)

2.关键技术分析 (11)

2.1外骨骼机器人的结构设计 (11)

2.2外骨骼机器人驱动单元 (12)

2.3外骨骼机器人的控制策略 (13)

3.外骨骼机器人技术难点分析 (16)

4.前景展望 (18)

4.1 外骨骼机器人的研究方向 (18)

4.2外骨骼机器人技术的应用 (18)

引言

现代机器人所具有的机械动力装置使得机器人可以轻易地完成很多艰苦的任务,比如举起、搬运沉重的负载等。虽然现代机器人控制技术有了长足的发展,还远达不到人的智力水平,包括决策能力和对环境的感知能力。与此同时,人类所具有的智能是任何生物和机械装置所无法比拟的,人所能完成的任务不受人的智能的约束,而仅受人的体能的限制。因此,将人的智能与机器人所具有的强大的机械能量结合起来,综合为一个系统,将会带来前所未有的变化,这便是外骨骼机器人的设计思想。外骨骼机器人实质上是一种可穿戴机器人,穿戴在操作者的身体外部,为操作者提供了诸如保护、身体支撑等功能,同时又融合了传感、控制、驱动、信息融合等机器人技术,使得外骨骼能够在操作者的控制下完成一定的功能和任务。本文通过介绍外骨骼机器人的发展历史及研究现状进一步分析了外骨骼机器人的关键技术,并对其技术难点以及发展前景作了说明,以期在全面认识外骨骼机器人基础上对其开展进一步深入研究。

1.发展历史及现状

1.1国外发展历史现状

外骨骼系统的最早研究始于20世纪60年代。1962年,美国空军就要

求康奈尔航空实验室进行一项采用主从控制方式的人力放大器系统的可行

性研究。从1960年到1971年,美国通用电器公司开始研发一种基于主从

控制的外骨骼原型机,名字叫做“Hardiman”,如图1所示。

Hardiman采用电机驱动方式,可以像举起10磅那样来举起250磅的重物。但是,由于技术的限制,导致Hardiman的体积和重量过大,无法进行实际应用,慢慢停止了发展。同时期进行外骨骼研究的还有贝尔格莱德大学的Vukobratovic 等人,他们的研究主要用于辅助下肢瘫痪患者进行运动康复。尽管只实现了部分运动形式,但是研究过程中得到的平衡算法在双足步行机器人中得到了广泛应用。

随后尽管人体外骨骼机器人经历过一段时间的沉寂,但到20世纪末,由于

传感技术、材料技术和控制技术等技术的发展和各种军事、民用需求的凸显使得人体外骨骼机器人再次进入了蓬勃发展阶段,美国、日本和俄罗斯等国均针对人体外骨骼机器人开展了大量的研究工作。

2000年,美国国防高级研究计划局 (DARPA)在出资五千万美元用于资助对能够增强人体机能的外骨骼(EHPA )的研究与开发, 研制一种穿戴式的, 具有自适应能力的外骨骼系统,使士兵在穿着外骨骼后,行军能力大大提高。DARPA 的该项目资助了多家研究机构,主要有加利福尼亚大学伯克利分校机器人和人体工程实验室、Oak Ridge 国家实验室、盐湖城人体机能研究所、“千年喷气机”公司、SARCOS 公司等。其中伯克利分校、SARCOS 公司和麻省理工学院展示了实验样机,其他单位则在传感驱动人机界面生物力学人因测试等方面进行了分析与实验。

2 0 0 4年,伯克利分校研制出的下肢外骨骼机器人BLEEX 是DARPA 项目的

第一台带移动电源和能够负重的下肢外骨骼机器人。如图2所示

BLEEX 由一个用于负重的背包式外架、两条动力驱动的仿生金属腿及相应动图2 伯克利的BLEEX

力设备组成,使用背包中的液压传动系统和箱式微型空速传感仪作为液压泵的能量来源,以全面增强人体机能。BLEEX 的每条腿具有7个自由度(髋关节3个,膝关节1个,踝关节3个),在该装置中总共有40多个传感器以及液压驱动器,它们组成了一个类似人类神经系统的局域网。BLEEX的负重量能达到75kg,并以0.9m / s的速度行走,在没有负重的情况下,能以1.3m / s的速度行走。然而BLEEX由于结构复杂能量消耗大操作者长时间使用很不舒服因此未获得DARPA第二阶段的资助。BLEEX虽然未获得进一步的资助但是Kazerooni教授和他的学生成立了伯克利仿生公司争取吸引风险投资并对骨骼服技术进行市场化运作设计开发了更加轻便简洁实用的HULC(human universal load carrier)如图3所示:

图3 洛克希德马丁公司的HULC

HULC被著名的武器承包商洛克希德-马丁公司收购。HULC质量为24kg(不含电池)两块电池质量为3.6kg。士兵穿戴上HULC之后能够额外负重91kg,是BLEEX系统负重能力的3倍。电池可供以5km/h的速度连续行走3h。速度峰值可达到16km/h。可以说HULC是最接近实战应用的一款骨骼服。目前正在进行进一步的集成开发同时进行部队的演示验证实验。

雷神公司在收购了参与EHPA项目的SARCOS公司后,也推出了其研制的第一代全身型人体外骨骼机器人XOS。XOS能够在背负68 kg且手持23kg的负荷时以1.6 m /s的速度行进,并可实现弯腰下蹲和跪地等动作。2010年第二代XOS

机器人问世,如图4所示。

第二代XOS人体外骨骼机器人的能耗较第一代降低了一半,而且较第一代具有更强的负重能力,系统的灵敏度和响应速度进一步提升。但其缺陷在于能量消耗依旧较大,至今仍依赖地面供电。

总之美国的骨骼服以军事应用为背景资助力度大资助范围广对骨骼服各个方面的研究最为深入呈现百花齐放的状态,研究水平居世界前列。

日本是当仁不让的机器人技术强国,但是骨骼服的军事意义相当明显,因此日本主要从骨骼服的民事应用入手在助残护理劳动等应用领域对骨骼服展开了广泛的研究,成绩显著。日本筑波大学于2004年推出了世界上第一款商业人体

图4雷神公司的XOS-2

外骨骼机器人研究发展综

—-可编辑修改,可打印—— 别找了你想要的都有! 精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——

全力满足教学需求,真实规划教学环节 最新全面教学资源,打造完美教学模式 外骨骼机器人研究发展综述 李罗川

摘要 外骨骼机器人又称可穿戴机器人,是一种结合了人的智能和机械动力装置的机械能量的机器人。外骨骼机器人融合了传感、控制、驱动、信息融合、移动计算等综合技术为作为操作者的人提供一种可穿戴的机械机构。本文介绍了外骨骼机器人的发展历史以及国内外研究现状,对外骨骼机器人的关键技术:机械结构设计,驱动单元,控制策略进行了研究,分析了其技术难点最后对其发展前景进行了说明。 关键词:外骨骼机器人关键技术

引言 (5) 1.发展历史及现状 (6) 1.1国外发展历史现状 (6) 1.2国内发展历史现状 (9) 2.关键技术分析 (11) 2.1外骨骼机器人的结构设计 (11) 2.2外骨骼机器人驱动单元 (12) 2.3外骨骼机器人的控制策略 (12) 3.外骨骼机器人技术难点分析 (15) 4.前景展望 (17) 4.1 外骨骼机器人的研究方向 (17) 4.2外骨骼机器人技术的应用 (17)

现代机器人所具有的机械动力装置使得机器人可以轻易地完成很多艰苦的任务,比如举起、搬运沉重的负载等。虽然现代机器人控制技术有了长足的发展,还远达不到人的智力水平,包括决策能力和对环境的感知能力。与此同时,人类所具有的智能是任何生物和机械装置所无法比拟的,人所能完成的任务不受人的智能的约束,而仅受人的体能的限制。因此,将人的智能与机器人所具有的强大的机械能量结合起来,综合为一个系统,将会带来前所未有的变化,这便是外骨骼机器人的设计思想。外骨骼机器人实质上是一种可穿戴机器人,穿戴在操作者的身体外部,为操作者提供了诸如保护、身体支撑等功能,同时又融合了传感、控制、驱动、信息融合等机器人技术,使得外骨骼能够在操作者的控制下完成一定的功能和任务。本文通过介绍外骨骼机器人的发展历史及研究现状进一步分析了外骨骼机器人的关键技术,并对其技术难点以及发展前景作了说明,以期在全面认识外骨骼机器人基础上对其开展进一步深入研究。

外骨骼机器人设计、控制机理研究

第二十一届“冯如杯”学生课外学术科技作品竞赛项目论文 外骨骼机器人设计、控制机理研究 院(系)名称自动化科学与电气工程学院 专业名称自动化 学生姓名刘旭郑博文徐健伟 学号刘旭38030410 郑博文38030423 徐健伟38030518 指导教师刘正华副教授 2011年4月1日

摘要 外骨骼,类似某些动物的外壳,是一种能穿在人身上,提供额外的动力的机械装备,能够实现行动障碍人士的康复训练以及负重行走等功能。它主要分为三个部分:机械部分,软件部分,电气部分。其中机械部分的主要作用是承担负重,保证系统能实现运动的功能;软件部分主要用于整个系统的数据采集、控制信号的发出;电气部分主要用于给系统供电、完成信号采集、发送和运动的功能。我们设计制作了一种外骨骼机器人。本文针对此项作品主要介绍了当前外骨骼机器人的研究现状和本作品的制作背景,阐述了一种负重型外骨骼机器人的设计过程及相关结构。本文是对“外骨骼机器人设计、控制机理研究”作品的比较全面的介绍。 关键词外骨骼,机器人,PID控制,电机控制,虚拟样机 Abstract Exoskeletons, like the shells of some sorts of animals, are a kind of mechanical equipment that can help the disabled to learn to move normally and provide the users with extra strength to bear more than he can actually do walking or running. In general, it can be divided into three parts, mechanical part, software part and electrical t part. Among these, the mechanical part is used to bear the weight, the software part is to get state data and send out control signal and the electrical part is to power the system, pick signal and move. We have already made a sort of this, and with regard to it, this article is mainly about the previous studying condition and the background of this work. In addition, the procedure of our designing and working with the kind of exoskeletons is specifically described. This article is a comprehensive introduction to our work …The design of a sort of exoskeletons and study of how to control it?. Abstract Exoskeletons, Robort , PID Control, Motor control, Virtual prototype

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

外骨骼机器人发展

外骨骼技术研制始于1960 年代的美国,最早的研究成果是美国通用公司研发的Hardiman 外骨骼系统,其主要采用电机驱动控制,可以轻易举起重物。 1978 年,美国麻省理工学院研究出“被动式外骨骼助力机器人”。MIT的外骨骼下肢助力机器人能够在负载36公斤的情况下行走1m/s,其中80%的负重被传递到地面上。它的关节自由度配置包括髋关节有3 个自由度,膝关节 1 个自由度。穿戴者与机器人在肩膀、腕关节、大腿和脚部连接,机器人总重量是11.7Kg。驱动方式不采用电力驱动,只利用弹簧储能和变阻尼器驱动关节驱动。髋关节伸/屈运动时,伸运动时弹簧释放能量,屈运动时弹簧储存能量,膝关节利用磁流变阻尼器,踝关节利用碳纤维弹簧缓冲脚后跟对地面的冲力。传感器系统是由安装在外骨骼下肢助力机器人外壳的应变桥式应变片传感器和安装在膝关

节的电位计组成。 2004年,伯克利分校研制出的下肢外骨骼机器人BLEEX是DARPA项目的第一台带移动电源和能够负重的下肢外骨骼机器人。BLEEX由--个用于负重的背包式外架、两条动力驱动的仿生金属腿及相应动力设备组成,使用背包中的液压传动系统和箱式微型空速传感仪作为液压泵的能量来源,以全面增强人体机能。BLEEX的每条腿具有7个自由度(髋关节3个,膝关节1个,踝关节3个),在该装置中总共有40多个传感器以及液压驱动器,它们组成了一个类似人类神经系统的局域网。BLEEX的负重量能达至75kg,并以0.9m/s的速度行走,在没有负重的情况下,能以1.3m/s的速度行走。

目前,洛克希德·马丁公司和伯克利分校共同研制了新一代外骨骼机器人HULC 。这款新型外骨骼继承了BLEEX 的优点,对一些液压传动装置和结构进行了优化设计,不但能够直立行进,还可完成下蹲和匍匐等多种相对复杂的动作,穿上HULC 后能够明显降低人体对氧气的消耗量。在一次充满电后,HULC 可保证穿着者以4.8km /h 的速度背负90kg 重物持续行进一个小时。而穿着HULC 的冲刺速度则可达到16km /h 。HULC 穿戴起来也非常方便,士兵只需将腿伸进靴子下方的足床,然后用皮带绑住腿部、腰部以及肩部即可,完全脱下需30秒的时间。

外骨骼助力机器人研究

外骨骼助力机器人研究现状与关键技术 分析 王庆江 深圳第二高级技工学校广东深圳 518000 摘要:运用比较传统的运载方法以及在工具受到多方面因素的制约,在比较复杂的地形条件之下,传统运载工具不能够很好的工作,而外骨骼助力机器人有效地解决了这个问题,是一个非常明显的突破。因此,在当前世界各地,外骨骼助力机器人的研究有着非常好的前景。本文从不同方面分析外骨骼助力机器人的发展状况,主要分析了外骨骼助力机器人所涉及到的关键技术,并且作出深入的研究。 关键词:外骨骼助力机器人;研究现状;关键技术外骨骼助力机器人是一种全新的现代化装置,这种机器人融合多种信息,控制系统传感系统集于一身,并且为穿戴人员控制好功能和任务。外骨骼助力机器人是一种前沿技术装备,受到多方的关注并且取得了突出的效果。在我国,外骨骼助力机器人研究借鉴先进技术,并且不断地创新,主要研究外骨骼助力机器人在我国国内的发展现状以及其关键技术分析。 1.在国内外,外骨骼助力机器人的研究现状分析 随着时代的进步以及科技的不断发展,最新型的材料和技术充分应用在外骨骼助力机器人的发明上,促使外骨骼助

力机器人得到很好的发展。在一些发达国家,对外骨骼助力机器人进行改良,并且不断创新,经过努力,在我国国内对于外骨骼助力机器人的发明和创新也取得了很明显的成效。下面将归纳分析目前为止国内外外骨骼助力机器人的研究状况。 1.1国外对于外骨骼助力机器人的研究状况分析 表1 国外对于外骨骼助力机器人的研究表 1.2我国国内对于外骨骼助力机器人的研究状况分析 表2 国内对于外骨骼助力机器人的研究表 2.外骨骼助力机器人关键技术分析 2.1驱动技术 2.1.1液压驱动 通过运用液压驱动能够在很大程度上帮助外骨骼助力

仿生机器人的研究综述

仿生机器人的研究综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。 关键词:仿生机器人;机器人运动;发展趋势; Research review on bionic robot Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend. Key words: Bionic robot; robot movement; development trend; 1 机器人的研究现状 1.1 机器人国外研究现状 由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。 自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

发展外骨骼机器人的必要性

军队发展外骨骼机器人必要性外骨骼机器人技术是融合传感、控制、信息、融合、移动计算,为作为操作者的人提供一种可穿戴的机械机构的综合技术。他是指套在人体外面的机器人,也称“可穿戴的机器人”。人体外骨骼助力机器人起源于美国1966年的哈德曼助力机器人的设想及研发,到今天整体仍处于研发阶段,能源供给装置以及高度符合人体动作敏捷及准确程度要求的控制系统和力的传递装置都有待大力投入研发和试验尝试。他是是一种模仿人体结构特点设计的外穿型机械骨骼,内部配备有液压传动装置和可像关节一样弯曲的结构设计,不但能够直立行进,还可完成下蹲和匍匐等多种相对复杂的动作。他把重量通过电池驱动的金属骨骼转移到地面上。先进的便携式微型计算机可以使得这种外骨骼与人的运动保持协调一致。他成倍的增加人类 的体能。 一必要性1:不堪重负的士兵 这是美军陆军的标准装备。 注意,这只是标准装备,事实上,执行具体任务时,负重远比这多。例如机枪手要携重得多的m249轻机枪,和大量的机枪弹。还有士兵要背负沉重的火箭筒,甚至野战

时携带睡袋等装备。这都是沉重的负担。许多士兵已经换上各种疾病。例如颈椎病,。极大地体力消耗和精神压力困扰绝大多数士兵。而外骨骼可以是这一切轻松解决。 他可以使士兵轻松背负七八十公斤的中午而没有疲劳之感,外骨骼承担了负重的任务。健康问题极大得到了解决。 二必要性2:超级战士

以美军HULC为例,HULC动力源为两块总重量3.6千克的锂聚合物电池。在一次充满电后,HULC可保证穿着者以4.8公里/小时的速度背负90千克重物持续行进一个小时。而穿着HULC的冲刺速度则可达到16公里/小时。士兵配备他以后,就可以负载重型防弹衣长途跋涉而不觉疲惫,而防弹衣对士兵生命尤为重要,他可给士兵全方位。有重点的防护,真正做到刀枪不入。而且士兵再也不会为永远不足的弹药发愁了。几十公斤的负重可以保证足够的弹药,甚至可以携带迫击炮等较强的火力。在遭到围攻时,极大的奔跑速度让敌人望尘莫及。这是真正的超级战士。 现在,建设高效的军队成为世界主流,这要求用尽可能少的士兵去执行更多的任务,完全使用机器人在现阶段不现实,而外骨骼正好填补了这个缺口。美国的HULC1已经接近实用化。 现在战争更多集中在反恐领域,这就使大规模战争成为历史。特种部队被更多使用。他们执行的大多是高危高风险的任务。队员素质要求高,一般从侦察部队和空降部队中挑选体格健壮、机智勇敢、文化程度高、具有献身精神和有一定作战经验的人员。执行渗透,侦查,抓获,斩首等价值极高的任务。他们抵达战区必须隐蔽,往往经过丛林等荒无人烟的地带,装备外骨骼后,他们抵达战区仍然精力旺盛,成功率提高。充足的是保持战斗力的关键。 对于炮弹装填手,意义非凡。他们可以毫不费力的举起几十公斤的炮弹,而不会得腰肌劳损。迫击炮手可以更灵活的移动。一名士兵

外骨骼机器人研究发展综

外骨骼机器人研究发展综述 李罗川

摘要 外骨骼机器人又称可穿戴机器人,是一种结合了人的智能和机械动力装置的机械能量的机器人。外骨骼机器人融合了传感、控制、驱动、信息融合、移动计算等综合技术为作为操作者的人提供一种可穿戴的机械机构。本文介绍了外骨骼机器人的发展历史以及国内外研究现状,对外骨骼机器人的关键技术:机械结构设计,驱动单元,控制策略进行了研究,分析了其技术难点最后对其发展前景进行了说明。 关键词:外骨骼机器人关键技术

目录 引言 (4) 1.发展历史及现状 (5) 1.1国外发展历史现状 (5) 1.2国内发展历史现状 (9) 2.关键技术分析 ...................................................................................................................... 1..1 . 2.1外骨骼机器人的结构设计..................................................................................... 1..1... 2.2外骨骼机器人驱动单元.......................................................................................... 1..2... 2.3外骨骼机器人的控制策略..................................................................................... 1.. 3... 3............................................................................................................ 外骨骼机器人技术难点分析................................................................................................................. 1..6... 4............................................................................................................ 前景展望 ........................................................................................................................................................ 1..8 . 4.1外骨骼机器人的研究方向..................................................................................... 1..8... 4.2外骨骼机器人技术的应用 .................................................................................. 1...8..

一年半超过Cyberdyne:这家公司要用大家电的价格卖外骨骼机器人

一年半超过Cyberdyne:这家公司要用大家电的价格卖外骨 骼机器人 讲外骨骼机器人的故事,一般有两种方式,一种是“超级英雄”:机甲战衣令你成为托尼·斯塔克。另一种故事角度就是“拯救”:外骨骼机器人能增强人的肌肉和行动能力,令很多下肢行动不便甚至瘫痪的人群重获行走能力。无论是从哪个角度说,外骨骼产品都是“酷”的,不管是关于变得强大的梦想,还是关于重获健康的渴望。在11 月17 日深圳高交会上,雷锋网见到了一款国内的外骨骼机器人设备S1 (Scream One,尖叫1 号),其开发者是上海尖叫智能科技公司,这是他们的第一代量产机型。这次高交会,尖叫科技举办了一场小型技术交流会,讲述的就是关于“拯救”的故事。加入了人工智能技术的“随动派”我们熟知的外骨骼机器人公司,有以色列Rewalk 和日本公司Cyberdyne,但是两家产品有很大不一样。Rewalk 是“拐杖派”,是机器带着人走,所以为了保持上肢的平衡,需要患者拄着拐杖。患者适应机器的步伐,需要很长的一段时间。Cyberdyne 是“随动派”,人的行走意志处于主导地位,它们家的产品HAL 通过搜集人体表面的肌肉电信号,来对机器人传达行走的意志,从而帮助人行走。(左图:Rewalk,右图:HAL)但二者有一个共同点,那就是在软件方面使用的是纯编程的技术。缺

点也正是这里:代码写得再好,也无法完全适应人体步态的变化。而尖叫科技的外骨骼产品,则属于加入了人工智能技术的“随动派”,S1 号不用拐杖,能实时与人体交互,获得最贴合的移动方式。(样机行动图)本次所展示的S1 号机型,有12 个传感器分布在腰部、腿部两侧、脚底等部位,每一天用户使用的过程中,传感器搜集人体不同维度的信息,包括肌肉电、光栅、肌肉表面舒张压力等。这些信息传到位于腰部的本地CPU,当设备连上WIFI 之后,CPU 数据上传到云端,云端的深度学习网络会对新的数据进行学习,从而“定制化”地为每一个用户调整行走模型。2 个月迭代一次,单机为一台大家电的价格尖叫科技是2015 年初成立的,几乎每2 个月就迭代一次产品,S1 是其第六代产品。S1 大约重10kg ,针对不同人群有不同的尺码,类似于商场里卖的衣服,分S、M、L号。被问及产品的价格时,CTO 李牧然表示:“我们希望三年内能达到一台大家电的价格,当然这不是初始定价,但这是我们努力的方向。”这就意味着,尖叫的外骨骼产品的未来定价大约会在几万人民币,这在交流会的现场引发一阵不小慨叹声。因为Rewalk 和Cyberdyne 公司的产品,售价分别高达约7 万美金和20 多万美金。这样低的价格,很大程度上得益于其研发周期短,这与大环境的时代优势密不可分。首先是前辈们的技术积累:Rewalk 研发了7 年,Cyberdyne 研发了十几年时间,这些公司虽

仿生机器人概述

仿生机器人概述 一、仿生机器人的定义 简单来说,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。从本质上来讲,所谓“仿生机器人”就是指利用各种机、电、液、光等各种无机元器件和有机功能体相配合所组建起来的在运动机理和行为方式、感知模式和信息处理、控制协调和计算推理、能量代谢和材料结构等多方面具有高级生命形态特征从而可以在未知的非结构化环境下精确地、灵活地、可靠地、高效地完成各种复杂任务的机器人系统.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 二、对仿生机器人的理解 仿生机器人是一个很宏大的概念,字面上讲任何模仿自然界生物的机器都可以称之为仿生机器人。但是根据诸多文献的定义,现在人们倾向于将第四代及之后的机器人称之为仿生机器人,也就是2000年之后产生的机器人。我认为这样界定的根据在于第四代机器人具有了完备的感知能力和面对简单问题时的处理能力,如现在的两足机器人能够根据地形的变化自行调整行走模式,从容的绕开障碍物并且保持重心平衡,而这是以前的机器人所无法实现的。所以我们认为这时的机器人初步具有了人的智力,可以与生物的智能相比拟,是仿生机器人。 三、仿生机器人的产生前提与发展动力 生物在经过了千百万年的进化之后,由于遗传和变异的原因,已经形成了从执行方式、感知方式、控制方式,一直到信息加工处理方式、组织方式等诸多方面的优势和长处.仿生机器人这门学科产生和存在的前提就在于,生物经过了长期的自然选择进化而来,在结构、功能执行、信息处理、环境适应、自主学习等多方面具有高度的合理性、科学性和进步性.而非结构化的、未知的工作环境、复杂的精巧的高难度的工作任务和对于高精确度、高灵活性、高可靠性、高鲁棒性、高智能性的目标需求则是仿生机器人提出和发展的客观动力.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 生物在漫长的进化过程中演变出的无比精巧、合理的结构,是目前人类所有的理论和技术都无法达到的。任何由人类设计的堪称完美的结构,放到自然界的生物面前,都相形见绌。因此,研究现成的最优化、最完美的生物体就成为人类设计机械最廉价、最可靠的范本,由此诞生了仿生学这一专门的学科,而仿生机器人则是机械与仿生学两者结合的最佳产物。这也是仿生机器人产生的前提与发展的动力。 四、仿生机器人的现状

仿生机器人现状

仿生机器人现状

仿生机器人现状 1.仿生学Bionics 研究生物系统的结构和性质以为工程技术提供新的设计思想及工作原理的科学。仿生学一词是1960年由美国JE斯蒂尔根据拉丁字“bios”(“生命方式”的意思)和字尾“nic”(“具有……的性质”的意思)构成的。他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”。尽管人类在文明进化中不断从生物界受到新的启示,但仿生学的诞生,一般以1960年全美第一届仿生学讨论会的召开为标志。 仿生学的研究范围主要包括﹕ 1.力学仿生,研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体 各组成部分在体内相对运动和生物体在环境中运动的动力学性质。例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。 2.分子仿生,研究与模拟生物体中脢的催化作用、生物膜的选择性、通透性、生 物大分子或其类似物的分析和合成等。例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫。 3.能量仿生,研究与模仿生物电器官、生物发光、肌肉直接把化学能转换成机械 能等生物体中的能量转换过程。 4.信息与控制仿生,研究与模拟感觉器官、神经元与神经网络、以及高级中枢的 智能活动等方面生物体中的信息处理过程。例如根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的一些装置。此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。 5.某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控 制仿生的部分内容称为神经仿生。 仿生学的范围很广,信息与控制仿生是一个主要领域。一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。人工智能和智能机器人研究的仿生学方面──生物模式识别的研究,大

发展中的外骨骼机器人及其关键技术

2018年11月 第46卷第21期 机床与液压 MACHINETOOL&HYDRAULICS Nov 2018 Vol 46No 21 DOI:10.3969/j issn 1001-3881 2018 21 015 收稿日期:2017-06-20 作者简介:石晓博(1991 ),男,硕士研究生,主要研究方向为下肢外骨骼康复机器人步态规划研究三E-mail:547363992@ qq com三 通信作者:郭士杰,E-mail:308681982@qq com三 发展中的外骨骼机器人及其关键技术 石晓博,郭士杰,李军强,赵海文 (河北工业大学机械工程学院,天津300130) 摘要:外骨骼助力机器人是一种可穿戴的机械装置,应用人机工程学二仿生学等相关知识将人的智力和机器人的体力完美地结合在了一起,拥有巨大的发展潜力三为了更好地了解外骨骼助力机器人的发展成果及现阶段存在的问题,现将其发展分为蒸汽时代二电气时代二信息时代三大部分进行介绍,并从机械结构技术二驱动技术二控制技术二人机交互技术以及安全性技术等外骨骼助力机器人关键技术入手,找出现阶段面临的问题,并指明未来的发展方向三 关键词:外骨骼;关键技术;助力机器人;科技时代 中图分类号:TP24一一文献标志码:A一一文章编号:1001-3881(2018)21-070-7 DevelopingExoskeletonRobotsandKeyTechnologies SHIXiaobo,GUOShijie,LIJunqiang,ZHAOHaiwen (CollegeofMechanicalEngineering,HebeiUniversityofTechnology,Tianjin300130,China) Abstract:Exoskeletonpowermechanismisakindofwearableassistedrobots,appliedergonomics,bionicsandotherrelated knowledgetoperson sintelligenceandrobotphysicalperfectiontogether,hashugedevelopmentpotential.Inordertobetterunderstandtheexoskeletonassistedrobotdevelopmentachievementsandexistingproblemsatpresentstage,itsdevelopmentwasdividedintosteam age,theageofelectricity,andtheinformationageofthreemainparts,andintroduced.Andstartedfromthemechanicalstructure, drivetechnology,controltechnology,thehuman?computerinteractiontechnology,andsecuritytechnology,asexoskeletonspowerkeytechnologiesoftheassistedrobot,thepresentproblemsconfrontedarefound,andpointedoutthefuturedevelopmentdirection. Keywords:Exoskeleton;Keytechnology;Assistedrobot;Eraofscienceandtechnology 0一前言 外骨骼(Exoskeleton)这一名词来源于生物学中昆虫和壳类动物的坚硬外壳,其作用在于支撑二运动二防护三项功能紧密结合[1]三与此对应,外骨骼助力机器人是模仿生物界外骨骼而提出的一种新型机电一体化装置 [2] ,结合机械结构二控制二驱动方式二人 机交互等关键技术,在为穿戴者提供诸如保护二协同动作等功能的基础上,还能够在穿戴者的控制下完成人类自身无法完成的任务三 文中将外骨骼助力机器人的发展分为3个阶段,即蒸汽时代二电气时代二信息时代三通过介绍每个时代外骨骼主力机器人的发展情况,从而指出现阶段存在的问题,然后从外骨骼助力机器人相关关键技术入手,从根本上分析出现问题的原因,并寻求高效的解决方案三 1一外骨骼助力机器人的发展 外骨骼助力机器人从出现到发展至今,大概分为 3个阶段,即蒸汽时代二电气时代二信息时代三 1 1一蒸汽时代 19世纪中后期,人类完成了第一次技术革命, 开启了以蒸汽机代替人力的时代三人类萌生了用蒸汽机驱动人体运动的想法,但由于蒸汽机存在体积过大二容易烫伤等缺点,同时受材料匮乏二工艺落后的 制约,使这一时期的外骨骼仅仅停留在概念设计上三如1830年英国著名插画师RobertSEYMOUR所绘的‘WalkingBySteam“中提到的穿戴在人体上的蒸汽机行走机,如图1所示三这一阶段提出的外骨骼由于技术发展的限制没有实际应用的价值,但还是为后来的外骨骼设计拓宽了思路三

水下仿生机器人研究综述

·24· NO.20 2018 ( Cumulativety NO.32 ) 中国高新科技 China High-tech 2018年第20期(总第32期) 1 引言 目前,随着社会的发展,工业和生活中对智能化和精细化的要求越来越高,机器人研究和设计成为研究热点。机器人的应用可以优化日常生活,满足人们日益增长的物质需求,同时在工业生产中也可以完成一些复杂和危险的任务,如机械装配、野外探险等。 近年来,海洋的战略地位越来越重要,水下机器人获得了极大的发展。海洋环境复杂多变,如何设计结构简单灵巧且适应性强的水下机器人成为机器人研究中的重点。科学家通过将仿生学和机器人两大学科相结合,提出了新的想法:水下仿生机器人。水下仿生机器人根据海洋生物的外形结构和运动方式进行设计。由于海洋生物经过了亿万年的进化演绎,其生物体模型对海洋环境的适应性强,所以水下仿生机器人将会更容易完成指定的工作,从而使人们在不破坏海洋生态系统的前提下更好地了解海洋、运用海洋。本文主要针对水下仿生机器人的发展现状进行综述。 2 机械结构设计 美国麻省理工学院(MIT)作为第一个研究机器鱼的科研机构,开启了水下仿生机器人研究的先河。研究人员在1994年研制成功了第一条仿生机械鱼,他们的主要着重点就是通过提高机器鱼在水下运转的高效性和灵活程度以模拟鱼类的运动形式。紧接着,英国塞克斯大学(Essex)就以鱼类结构 为模板,按照鱼类的运动方式来解决和优化机器人在水下活动的直线运动和转向的问题。而美国海洋学中心则是把对生物模仿进行得更加彻底,研制出与龙虾外形极为相似的“机器龙虾”。该“机器龙虾”按照龙虾的每个身体部分来设计相关功能,大大提高了其在水下的稳定性与灵活性。 目前,我国的一些研究机构也开始了针对水下仿生机器人的研究和探索。北京航天航空大学作为最早开始研究此领域的机构,已研制出可在水下连续工作2~3小时的仿生机器鱼。此后,国防科技大学、哈尔滨工程大学、中科院自动化研究所等也开展了不同程度的研究。 3 材料应用 水下环境复杂,因此对水下仿生机器人的材料要求十分严格。目前运用较为广泛的有如下几种材料: (1)高分子聚合物-金属复合材料。其重要特点是结合了高分子聚合物和金属材料的优点。高分子聚合物在大部分环境下都能承受一定程度上的变形,对外部环境的影响能够做出良好的调整,同时质量较轻,而金属材料则硬度较大。采用该复合材料能使机器人更加适应水下环境。 (2)镁合金材料。作为一种价格适中的材料,其主要特点是质量轻,非常适合用做机器人的外部轮廓,同时该材料硬度大,不易损坏。 (3)介电弹性材料。该材料在机器人驱动器上应用很广泛。作为一种柔软度较好的材料,其突 水下仿生机器人研究综述 蒲欣岩 (成都七中高新校区,四川 成都 610041) 摘要:随着海洋探索技术的不断发展,水下仿生机器人日益引起关注。针对水下仿生机器人的研究现状,文章从机械结构设计、材料应用和控制方法3个方面进行综述,并基于对水下仿生机器人的深入了解,对其未来的发展趋势进行分析。 关键词:水下仿生机器人;机械结构;控制方法 文献标识码:A 中图分类号:TP242文章编号:2096-4137(2018)20-024-02 DOI:10.13535/https://www.doczj.com/doc/a512506394.html,ki.10-1507/n.2018.20.08 收稿日期:2018-07-12 作者简介:蒲欣岩(2000-),女,四川成都人,成都七中高新校区学生,研究方向:自动化控制、机器人。

外骨骼机器人研究发展综教学提纲

外骨骼机器人研究发 展综

外骨骼机器人研究发展综述 李罗川

摘要 外骨骼机器人又称可穿戴机器人,是一种结合了人的智能和机械动力装置的机械能量的机器人。外骨骼机器人融合了传感、控制、驱动、信息融合、移动计算等综合技术为作为操作者的人提供一种可穿戴的机械机构。本文介绍了外骨骼机器人的发展历史以及国内外研究现状,对外骨骼机器人的关键技术:机械结构设计,驱动单元,控制策略进行了研究,分析了其技术难点最后对其发展前景进行了说明。 关键词:外骨骼机器人关键技术

目录 引言 (5) 1.发展历史及现状 (6) 1.1国外发展历史现状 (6) 1.2国内发展历史现状 (10) 2.关键技术分析 (12) 2.1外骨骼机器人的结构设计 (12) 2.2外骨骼机器人驱动单元 (13) 2.3外骨骼机器人的控制策略 (14) 3.外骨骼机器人技术难点分析 (17) 4.前景展望 (19) 4.1 外骨骼机器人的研究方向 (19) 4.2外骨骼机器人技术的应用 (19)

引言 现代机器人所具有的机械动力装置使得机器人可以轻易地完成很多艰苦的任务,比如举起、搬运沉重的负载等。虽然现代机器人控制技术有了长足的发展,还远达不到人的智力水平,包括决策能力和对环境的感知能力。与此同时,人类所具有的智能是任何生物和机械装置所无法比拟的,人所能完成的任务不受人的智能的约束,而仅受人的体能的限制。因此,将人的智能与机器人所具有的强大的机械能量结合起来,综合为一个系统,将会带来前所未有的变化,这便是外骨骼机器人的设计思想。外骨骼机器人实质上是一种可穿戴机器人,穿戴在操作者的身体外部,为操作者提供了诸如保护、身体支撑等功能,同时又融合了传感、控制、驱动、信息融合等机器人技术,使得外骨骼能够在操作者的控制下完成一定的功能和任务。本文通过介绍外骨骼机器人的发展历史及研究现状进一步分析了外骨骼机器人的关键技术,并对其技术难点以及发展前景作了说明,以期在全面认识外骨骼机器人基础上对其开展进一步深入研究。

外骨骼机器人研究综述

外骨骼机器人研究综述 摘要 外骨骼机器人(Exoskeleton Robot)实质上是一种可穿戴机器人,即穿戴在操作者身体外部的一种机械机构,同时又融合了传感、控制、信息耦合、移动计算等机器人技术,在为操作者提供了诸如保护、身体支撑等功能的基础上,还能够在操作者的控制下完成一定的功能和任务。本文简要介绍外骨骼机器人的研究现状以及发展趋势。 需求分析 随着社会的发展,老龄化加重,已超过人口总数的10%。老年人普遍存在体力不支,行动不便,力量、耐力不足等情况,研发一种可穿戴舒适的外骨骼机器人,助老年人行走、上下楼梯、适当负重等十分必要,同时,可穿戴式外骨骼机器人也适用于残疾人或身体机能薄弱者,这将会大大减少照顾老弱病残者的人力资源,减轻社会与家庭的压力,具有社会与经济价值。 传统的交通工具是远行与负重的主要方式,但存在对路面要求高,不适应于军事、消防营救等领域,士兵与消防人员需长距离行走、背负重物、野外作业等,这些特殊活动交通工具都没法完成,且对运动者的身体素质要求非常高。研制一种可穿戴外骨骼机构,可以提供充足的能量和耐力来增强长时间行走和负重等能力,从而完成一些特殊任务。 可穿戴式外骨骼机器人由于自身的商用与军事应用价值,已经成为近年来国内外学者的一个重点研究方向。理想外骨骼机器人有能够在操作者需要的时候及时提供帮助但永远不妨碍其行动的自动化机器人装置替代他的手足,能承受货物背负任务且与人体完全结合,准确预判佩戴者的意图,具有防护并增强操作者负重和运动能力的作用。理想外骨骼机器人的研制困难可想而知。 研究现状 早期人类为减少人员伤亡所制作的盔甲其实已经属于外骨骼的雏形,提高了士兵的个人防护能力,但其存在自重与被动阻力,极大消耗了使用者的体力。 1960年,通用电气公司研制一种名为“哈曼迪1”的可佩戴单兵装备,采用液压驱动。该公司第一个提出并开展增强人体机能的主动助力型外骨骼机器研究。其外骨骼体积巨大且笨重,安全性能低,也只能取代单只手功能。 1978年,麻省理工学院研究了“增强人体机能的外骨骼”,负重问题有所改善,其驱动能源与便携式问题尚未解决,没有完整的成果。 1991年,日本神纳川理工学院开发了一套独立的可穿助力外套(如图1所示),使用肌肉压力传感器,分析佩戴者的运动情况,通过微型气泵、便携式镍镉电池及嵌入式微处理器,提供足够的助力。该开发产品是专为护士研制,可使人的力量增加0.5~1倍。

外骨骼机器人

This article was downloaded by: [Shanghai University] On: 02 November 2013, At: 23:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Advanced Robotics Publication details, including instructions for authors and subscription information: https://www.doczj.com/doc/a512506394.html,/loi/tadr20 Exoskeletal meal assistance system (EMAS II) for patients with progressive muscular disease Yasuhisa Hasegawa a, Saori Oura a & Junji T akahashi a a Graduate School of Systems and Information Engineering, University of T sukuba 1-1-1 T ennodai, 305-8573, T sukuba, Japan. Published online: 09 Oct 2013. PLEASE SCROLL DOWN FOR ARTICLE

相关主题
文本预览
相关文档 最新文档