当前位置:文档之家› 微乳液的性质与应用

微乳液的性质与应用

微乳液的性质与应用
微乳液的性质与应用

微乳液的性质与应用

应化1008 马亚强 2010016218

Abstract:I n this article , the conception , structure , properties and preparation of microemulsion have been summarized .In addition,the application of microemulsions in tertiary oil recovery,pharmaceutical, porous materials and cosmetics have been introduced.

Keywords:microemulsion ; surfactant ; cosurfactant ; surface tension ; HLB value

前言:

微乳液自1943年由Hour和Schulmant 发现以来,其理论和应用研究取得了很大进展,20世纪70年代发生世界石油危机后,由于微乳体系在3次采油技术中显示出巨大潜力而迎来了发展高潮。特别是20世纪90年代以来,微乳液的应用领域迅速拓展,除了3次采油技术外,目前已渗透到日用化工、精细化工、生物技术、环境科学和分析化学等领域;而且,现代高新技术和新型功能材料,如纳米材料、气敏材料、多孔材料等的制备与应用中,都与微乳液有密切关系。微乳液已成为当今国际上热门的具有巨大潜力的研究领域。

1.微乳液的性质和组成

1.1 微乳液的性质:微乳液明确定义是由水、油、表面活性剂及助表面活性剂四组份, 在适当比例下, 自发形成的透明或半透明的热力学稳定体系。分散相粒径在0.1μm以下。而普通乳状液分散相颗粒在0.2

μm∽50μm, 是热力学不稳定体系静置会发生分相,通常是乳色、不透明的。微乳液与普通乳状液相比具有许多优异性能,例如稳定性高, 分散颗粒小且均匀, 外观透明等。微乳液是水和烃类液体的分散系, 由于界面间有一层表面活性剂分子膜而稳定存在, 具有热力学稳定性及各向同性的光学特性, 根据表面活性剂性质和微乳液组成的不同, 微乳液可呈现为水包油和油包水的单分散性球状液滴( 直径50A ∽1000A) 。微乳液的微粒直径大于分子溶液和胶束溶液, 但小于乳状液和胶体溶液。微乳液和乳状液可通过透明性很容易区分开来(乳状液不透明),为了形成微乳液, 所选表面活性剂必须使水油间界面张力降至10- 3mN/m∽10- 5mN/m。

1.2 微乳液的组成:微乳液是由水(或盐水)、油、表面活性剂和助表面活性剂等组分在适当比例下,自发形成透明的或者半透明的稳定体系。表面活性剂是指在加入量很少时即能明显降低溶剂表面张力,改变系统的界面状态,能够产生润湿,乳化,起泡,增溶及分散等一系列作用,从而达到实际应用的要求的一类物质。表面活性剂可按离子类型分为:阴离子表面活性剂、阳离子表面活性剂和两性表面活性剂。助表面活性剂能改变表面活性剂的表面活性及亲水亲油平衡性,参与形成胶束,调整水和油的极性。助表面活性剂一般是醇类,水溶性醇可减小水的极性,油溶性醇可增加油的极性,从而影响体系的相态和相性质的微乳成分。例如,在配制微乳液时的助表面活性剂主要有乙醇、正丙醇、异丙醇、正丁醇、异丁醇、正戊醇、异戊醇、1-己醇、2-己醇、1-辛醇、2-辛醇、杂醇油、对壬基酚等。醇的存在对微乳液

的生成是非常重要的。

2.微乳液的形成机理

混合膜理论:Schulman和Prince认为微乳液是多相体系,它的形成是界面增加的过程。他们从表面活性剂和助表面活性剂在油水界面上吸附形成作为第三相的混合膜出发,认为混合吸附膜的存在使油水界面张力可降至超低值,甚至瞬间达负值。由于负的界面张力不能存在,从而体系自发扩大界面形成微乳,界面张力升至平衡的零或极小的正值。因此微乳形成的条件是γO/W-π<0(γ为微乳体系平衡界面张力;γO/W为纯水和纯油的界面张力;π为混合吸附膜的表面压)。但是油水界面张力一般约在50mN/m,吸附膜的表面压达到这一数值几乎不可能,因此应将上式中γO/W视为有助表面活性剂存在时的油水界面张力(γO/W)a,上式可变为(γO/W)a-π<0。助表面活性剂的作用是降低油水界面张力和增大混合吸附膜的表面压。此外,助表面活性剂参与形成混合膜,能提高界面柔性,使其易于弯曲形成微乳液混合膜作为第三相介于油和水相之间,膜的两侧面分别与油、水接触形成两个界面,各有其界面张力和表面压,总的界面张力或表面压为二者之和。当混合膜两侧表面压不相等时,膜将受到剪切力而弯曲,向膜压高的一侧形成W/O或O/W型的微乳液。

3.微乳液的结构

3.1 W/O 型结构:根据微乳液的伪相模型,W/O 型微乳液由油连续相、水核及表面活性剂与助表面活性剂组成的界面膜3相构成。W/O 型微观结构示意图如图1(1)所示。

3.2 O/W 型结构:O/W型微乳液由油核、水连续相及表面活性剂与助表面活性剂组成的界面膜三相构成。O/W 型微乳液的结构示意图如图1(2)所示。O/W型微乳液的拟相组成不能用稀释方法得到,除非用具有足够浓度的盐水屏蔽油滴间的静电排斥力。

3.3 双连续相结构:双连续相结构最早由Friberg 提出。在双连续的微乳液中,油和水同时作为连续相,双连续相结构具有W/O 和O/W 两种结构特性,没有明显的油滴或水滴,它的结构是类似于水管在油相中形成的网络,如图1(3)所示。

4.微乳液的制备

4.1 制备原理:W/O型微乳液是由油连续相、水核及表面活性剂与助表面活性剂组成的界面三相构成,水核被表面活性剂与助表面活性剂组成的单分子层界面所包围,形成单一均匀的纳米级空间,所因此可以将其看作一个微型反应器。微乳液是热力学稳定体系,在一定条件下具有保持稳定尺寸自组装和自复制的能力,因此微乳液提供了制备均匀尺寸纳米微粒的理想微环境。用W/O微乳液制备纳米级微粒最直接的方法是将含有反应物A、B的两个组分完全相同的微乳液溶

液相混合,两种微乳液的液滴通过碰撞融合,在含不同反应物的微乳液滴之间进行物质交换,产生晶核,然后逐渐长大,形成纳米粒子。用W/O体系制备微粒时,微粒的形成一般有以下三种情况:(a)将两个分别增溶有反应物的微乳液混合,此时由于胶团颗粒间的碰撞、融合、分离和重组等,使两种反应物在胶束中互相交换、传递,引起核内化学反应;(b)一种反应物增溶在水核内,另一种反应物以水溶液形式与前者混合,后者在微乳液体相中扩散,透过表面活性剂膜层向微乳液滴内渗透,在微乳液滴内与前者反应,产生晶核并生长;(c)一种反应物增溶在水核内,另一种为气体,将气体通入液相中充分混合,使二者发生反应而制得纳米微粒。

4.2制备方法

4.2.1 HLB法:表面活性剂的HLB值(亲水亲油平衡值)对微乳液的形成至关重要。HLB为4~7的表面活性剂可形成W/O型微乳液。通常离子型表面活性剂HLB值很高,需要加人中等链长的醇或HLB低的非离子型表面活性剂进行复配,经过试验可以得到各种成分之间的最佳比例。对非离子型表面活性剂可根据其HLB值对温度很敏感的特点进行确定,即在低温下亲水性强、高温下亲油性强。含非离子型表面活性剂的体系随着温度的提高,会出现各种类型的微乳液。当温度恒定时,可通过调节非离子型表面活性剂的亲水基和亲油基比例达到所要求的HLB值。

4.2.2 盐度扫描法:当体系中油的成分、油一水体积比(通常为1)、表面活性剂与助表面活性剂的比例和浓度确定后,改变体系的盐度

(由低到高)往往可以得到3种状态的微乳液:O/W 型、双连续结构和W/O型。这是因为当体系的盐量增加时,水溶液中的表面活性剂和油受到“盐析”而析离,盐也压缩微乳液的双电层,斥力下降,液滴易接近,含盐量增加,使O/W型微乳液进一步增溶油的量,从而微乳液中油滴密度下降而上浮,进而导致形成新相。对于这种扫描法,若改变组成中其他成分也可以达到同样的效果。比如增加油的含碳数,可以获得从W/O到双连续结构到O/W 的转变;对于低分子量的醇,增加其含碳数也可以获得从W/O到双连续结构到O/W的转变;而对于高分子量的醇,增加其含碳数则将得到从O/W到双连续结构到W/O的转变。

5.微乳液的应用

由于微乳液是一种均匀透明、热力学稳定的体系,该体系所具有的超低界面张力是微乳液得到广泛应用的基础。自从微乳体系被人们认识以来,有关微乳的研究和应用探索一直是人们感兴趣的领域,尤其是20世纪90年代以来,微乳体系应用方面的研究有了更快的发展。

5.1 三次采油

一次采油是靠地下油藏自身的压力开采;二次采油是指用注气或注水等手段使油藏中局部增加压力;通常的注水驱油法虽然可以提高采油率,但由于地下沙岩的表面粘附了原油,不能为水所湿润,故残油不易被水驱出,现在大约30%的原油被1次和2次采油采出,另外大约20%的原油必须通过3次采油采出。在3次采油中多采用微乳液法,即按照适当的配方,加入表面活性剂和部分高分子化合物再注入

水进行驱油。表面活性剂水溶液注入油井后,与原油形成双连续相微乳液(中相微乳液),微乳液与过量的水和过量的油平衡共存,两相间的界面张力达到超低,明显地降低原油的黏度,增加其流动性,使残留于岩石中的原油流入油井,从而增加原油的采出率,达到深化采油的目的。

5.2 微乳剂型的药品

微乳液可以使水溶性或亲水性的物质,如药物或者酶,加溶在有机溶剂之中。这样所得的产物均匀稳定,通过注射或者内服使药物进入人体,可以使药物保质期延长,并且易于扩散和吸收。而且油包水型微

乳液可以保护水溶性药物,可以缓释和提高药物的生物活性;水包油型微乳可以增加药物的生物活性和亲脂性的药物的溶解性并使之缓释;双连续型微乳有利于制成同时还有油溶性和水溶性药物的制剂。

5.3 制备多孔性材料

在多孔性材料制备中,如何控制孔径的大小及其形态是一个难以解决的问题。微乳液的液滴大小可通过调节微乳液体系配方来控制,所以可利用微乳液来生产多孔性材料。通过调节微乳液体系可精确控制孔的尺寸和形态,并可制得形态和孔结构均很规整的多孔性材料。

5.4 微乳液在膏霜乳液类化妆品中的应用

膏霜乳液类美容护肤产品是化妆品中产量最大的门类之一,常见的品种有雪花膏、护肤霜、祛斑霜、防皱霜、美白霜、防晒乳和洗面奶等。(1)乳化作用:加入表面活性剂后能使膏霜类产品形成W/O型

微乳液或O/W型微乳液,从而使水相或油相能良好的分散,并且能长时间地稳定存在。(2)润湿及渗透作用:膏霜类产品在皮肤上使用时,利用润湿作用改变液滴与皮肤之间的接触角,使产品能够顺利地在皮肤表面铺展开来形成均匀的油膜和水膜,发挥保护皮肤的作用或者修复作用。由于人体表面皮肤的毛孔直径只有60nm左右,养分只有在微乳液帮助下,才能通过毛孔渗透入深层的真皮组织,发挥其功效。6.小结

微乳液作为一种热力学稳定的体系,其所具有的超低界面张力和表面活性剂所具有的乳化、增溶、分散、起泡、润滑和柔软性等性能,使它不但在上述领域有着实际的和潜在的应用价值,而且在其他领域也有着广阔的应用前景。

参考文献:

[1].王军. 微乳液的制备及其应用,2011

[2].吴春江. 微乳液的形成和微乳液的制备原理,维普资讯,2002

[3].李干佐郭荣. 微乳液理论及其应用,1995(10)

[4].胡利利. 微乳液的研究进展及应用,日用化学品科学,第30卷第1期 2007(1)[5].白亚之. 微乳液的制备及其在化妆品中的应用,日用化学品科学,第31卷第4期

2008(4)

[6].王正平马晓晶陈兴娟. 微乳液的制备及应用,化学工程师,第101卷第2卷 2004(2) [7].[英]V贺哈布拉 ML弗里 PK坎 SE特鲁斯代尔 DO沙欣. 新型的微乳技术,日用化学品科学,第1期(总第104期) 1999(2)

Pickering乳液的制备及应用研究

西安科技大学 硕士学位论文Pickering乳液的制备及应用研究 姓名:刘登卫 申请学位级别:硕士 专业:化学工艺 指导教师:贺拥军 2011

论文题目:Pickering乳液的制备及应用研究 专 业:化学工艺 硕 士 生:刘登卫(签名) 指导教师:贺拥军(签名) 摘 要 Pickering乳液是以固体粒子替代传统化学乳化剂制得的热力学和动力学均稳定的分散体系。Pickering乳液由于其成本低、无毒和环保等特性,在食品、医药和化妆品等领域具有重要的应用价值。本文以固体粒子为乳化剂制备了稳定的Pickering乳液,考察了影响Pickering乳液形成和稳定性的因素,并研究了Pickering乳液作为分离介质的应用性能。 采用St?ber法制备了SiO2粒子,用直接沉淀法制备了ZnO粒子和MgO粒子,利用晶相生长逐层包覆的方法制备了SiO2/ZnO复合粒子,讨论了反应物浓度、滴加方式和滴加速度等因素对固体粒子形貌和分散性的影响。SEM测试表明,SiO2粒子分散性良好,平均粒径约为300 nm;ZnO粒子呈针状结构,平均直径为20 nm;ZnO在SiO2表面分布不均,改变锌盐溶液的浓度和滴加速度,可以得到ZnO组分含量不同的SiO2/ZnO复合粒子;MgO粒子有球形和立方晶形结构,平均粒径约为100 nm。FTIR检测表明,SiO2、ZnO、SiO2/ZnO和MgO粒子表面均有大量的羟基。XRD分析证明,MgO结晶度较高。 以SiO2、ZnO、SiO2/ZnO和MgO粒子为乳化剂,制备了O/W型Pickering乳液,考察了固体粒子种类、复合粒子组分含量、油水体积比、连续相中电解质和表面活性剂等因素对乳液稳定性的影响。以三氯甲烷为油相时,基于SiO2和ZnO制备的乳液很不稳定,而SiO2/ZnO和MgO均能得到稳定的乳液,且SiO2/ZnO中ZnO组分含量越高,乳液滴越小。在MgO稳定的三氯甲烷/水乳液中,增加油水体积比,乳液稳定性下降,但没有发生相转变。当连续相中电解质浓度增加时,乳液稳定性下降,且Na2CO3比NaCl 的作用强。给MgO稳定的三氯甲烷/水乳液中加入表面活性剂,乳液滴变小且更稳定;给表面活性剂稳定的三氯甲烷/水乳液中加入固体粒子,乳液滴平均直径增大而稳定性也增加。 以SiO2/ZnO稳定的三氯甲烷-苯乙烯/水乳液为介质,进行了静态和动态分离甲基紫的研究。在静态分离下,Pickering乳液在30 min内就趋于分离饱和,温度对分离效果的影响不大,而增加乳液量和增大甲基紫水溶液浓度可以提高乳液分离能力,分离前后乳液滴的形貌变化不大。在动态分离下,增加Pickering乳液量、降低甲基紫溶液进水

微格教学教案硝酸的制备性质及用途

微格教学教案 硝酸的性质、制法及应用 学生姓名:—————— 学号:—————— 考号:—————— 完成时间:2019年2月8日

【教学内容】 硝酸的性质、制法及用途 【教学目标】 1、知识与技能目标: (1)复习巩固氨和铵盐的性质。 (2)了解硝酸的物理性质及化学性质。 (3)了解硝酸的用途。 2、过程与方法目标: 培养学生根据硝酸的性质解决日常生活中见到的现象、学以致用,学会解决生活中的实际问题。 3、情感态度与价值观目标: 通过对硝酸性质的探究,激发学生学习化学的兴趣。 通过学习硝酸的性质和用途相联系,培养学生将化学知识和生产生活实践相结合的意识。 【教材分析】 本节先通过观察总结出纯硝酸和浓硝酸的物理性质、硝酸的不稳定性,然后在实验的基础上总结出硝酸的氧化性和酸性。 氧化性是本节的重难点,教材通过稀、浓两种不同浓度的硝酸和铜反应做对比,引导学生总结出硝酸的氧化性,加深了同学们对硝酸氧化性的认识和对反应产物的记忆。 【教学重点】 硝酸的化学性质(不稳定性,氧化性,酸性) 【教学难点】 硝酸的氧化性 【教学过程】 一、复习引入: 1、教师引入:通过前面的学习,大家知道了哪些制备氨气的方法?实验室和工业上又分别用什么方法制备?为什么呢? 2、学生回答。 3、教师讲解:制取氨气的方法有很多种,比如加热铵盐,铵盐和碱反应,化合反应合成氨等。铵盐的方法虽简单但制得的氨气不纯,氮气和氢气化合反应的反应条件要求较高,要高温高压催化剂,但因为反应物易制得且成本低所以适用于工业大量制氨气,实验室一般用氯化铵和熟石灰也就是氢氧化钙加热制取少量氨气。 4、板书:氨气的实验室制法2NH4Cl+Ca(OH)2=加热=2NH3↑+CaCl2+2H2O 氨气的工业制法N2+3H2=高温高压催化剂=2NH3 5、教师讲解:在学习了前面几个重要的含氮化合物之后,又将向大家介绍一工业巨头就是化工重要基础原料三酸两碱中的含氮酸——硝酸。 6、板书:硝酸 二、发现历史: 1、教师讲解:人类最早关于硝酸的记录是公元八世纪炼金术士贾比尔·伊本·哈扬在干馏硝石时发现并制得的硝酸,同时他也是硫酸和王水的发现者。而中国第一座能合成氨的工厂则是由中国著名的化学家侯德榜建成的,但因为硝酸可以用来制取炸药,所以在开工后不久就被侵略者摧毁了。

专题13 圆的基本性质(解析版)

专题13 圆的基本性质 考纲要求: 1.理解圆、弧、弦、圆心角、圆周角的概念;了解等圆、等弧的概念. 2.了解弧、弦、圆心角的关系;理解圆周角与圆心角及其所对弧的关系. 3.能利用圆的有关概念、垂径定理、圆周角定理及其推论解决有关简单问题. 基础知识回顾: 知识点一:圆的有关概念 1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的 圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦. (3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角. (5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角. (6)弦心距:圆心到弦的距离. 知识点二:垂径定理及其推论 2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧. 延伸 根据圆的对称性,如图所示,在以下五条结论中:

① 弧AC=弧AD; ②弧BC=弧BD ; ③CE=DE; ④AB ⊥CD;⑤AB 是直径. 只要满足其中两个,另外三个结论一定成立,即推二知三. 知识点三 :圆心角、弧、弦的关系 3.圆心角、 弧、弦 的关 系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 知识点四 :圆周角定理及其推论 4.圆周 角定 理及其推论 (1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A= 12∠O. 图a 图b 图c ( 2 )推论: ① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A=∠C. ② 直径所对的圆周角是直角.如图c ,∠C=90°. 圆内接四边形的对角互补.如图a ,∠A+∠C=180°,∠ABC+∠ADC=180°. 应用举例: 招数一、垂径定理及其推论 【例1】13的O 中,弦AB 与CD 交于点E ,75DEB ∠=?,6AB =,1AE =,则CD 的长是( )

热塑性淀粉的制备_性质及应用研究进展_杨晋辉

热塑性淀粉的制备、性质及应用研究进展 杨晋辉,于九皋*,马骁飞 (天津大学理学院化学系,天津 300072) 摘要:淀粉由于可降解、来源广泛、价格低廉、可再生而被认为是最具发展前景的生物降解材料之一,因此, 热塑性淀粉材料的研究与开发备受关注。本文综述了近年来热塑性淀粉材料的研究进展情况,内容主要涉及 了热塑性淀粉的制备、性质和应用。 关键词:热塑性淀粉;生物降解材料;制备;性质;应用 引言 进入21世纪后,社会的可持续发展及其涉及的环境、资源和经济问题愈来愈受到人们的关注。来源于石油产品的传统塑料正面临石油日益枯竭的资源问题和塑料废弃物对环境的污染问题,严重时还会影响到地球的生态平衡,因此可生物降解材料替代传统塑料已经提到日程上来。据估计[1],地球上每年可以产生170×109t生物质,但仅有约3.5%的生物质被人类所利用,在所利用生物质中大概有62%用于人类的食品,而用于非食品领域(比如说化工领域)的生物质材料仅占到了5%。由以上可知,天然聚合物数量巨大,可再生且再生周期较短,但被人类利用有限,所以对天然聚合物进行的研究开发还有巨大的空间,对此方面的研究不仅可以缓解资源问题,而且可以解决环境污染问题,如此则可实现人类的可持续发展。淀粉是一种来源广泛、价格低廉、再生周期短且可生物降解的生物质,是最具发展潜力的天然生物可降解材料之一。 1 热塑性淀粉 1.1 热塑性淀粉 淀粉由直链淀粉和支链淀粉组成,天然淀粉微观形貌表现为颗粒状。淀粉结构单元上存在大量的分子内和分子间氢键,因此,淀粉一般存在有15%~45%的结晶,由于其玻璃化转变温度与分解温度非常接近[2],所以淀粉本身不具有可塑性。 向淀粉中加入小分子塑化剂,淀粉分子间和分子内氢键被塑化剂与淀粉之间较强的氢键作用所取代,淀粉分子活动能力得到提高,玻璃化转变温度降低,淀粉表现出热可塑性,在高温剪切力(挤出,模压及注塑等)作用下,即可制得热塑性淀粉材料。 多种淀粉可以用于热塑性淀粉的制备,包括天然淀粉和由天然淀粉通过化学反应制备的改性淀粉。由于玉米淀粉价廉易得,在热塑性淀粉的研究中应用较多。 塑化剂一般含有能与淀粉中羟基形成氢键的基团,如羟基、氨基或酰胺基。常用塑化剂包括甘油、乙二醇、葡萄糖、山梨醇、木糖醇,乙醇胺、尿素、甲酰胺等。其中以甘油为塑化剂的研究较多。 1.2 热塑性淀粉与原淀粉的区别 淀粉塑化后,淀粉分子间和分子内氢键减弱,淀粉颗粒破坏,结晶形态改变,以上各种变化可通过红外谱图、扫描电境谱图以及X衍射谱图作出分析判断。 作者简介:杨晋辉(1977-),男,博士生,主要从事淀粉基生物降解材料的研究; *通讯联系人:E-mail:jhhcooi@https://www.doczj.com/doc/a511818853.html,.

学而思中考数学同步圆的基本性质

第六章 圆的有关性质 本章进步目标 ★★★★☆☆ Level 4 通过对本节课的学习,你能够: 1.对圆的有关概念及垂径定理达到【初级运用】级别; 2.对弧、弦、圆心角关系达到【初级运用】级别; 3.对圆周角定理达到【初级运用】级别。 VISIBLE PROGRESS SYSTEM 进步可视化教学体系 73 VISIBLE PROGRESS SYSTEM

74 VISIBLE PROGRESS SYSTEM

第一关圆的有关概念及垂径定理 ★★★★☆☆Level 4 本关进步目标 ★★☆☆☆☆你能够掌握圆有关的概念及性质; ★★★★☆☆你能够理解垂径定理,会根据垂径定理解决运用问题。 75 VISIBLE PROGRESS SYSTEM

76 VISIBLE PROGRESS SYSTEM 学习重点:掌握与圆有关的概念以及性质. 1.(1)弦是直径( ) (2)半圆是弧( ) (3)过圆心的线段是直径( ) (4)过圆心的直线是直径( ) (5)半圆是最长的弧( ) (6)直径是最长的弦( ) (7)圆心相同,半径相等的两个圆是同心圆( ) (8)半径相等的两个圆是等圆( ) (9)等弧就是拉直以后长度相等的弧( ) 2.下列说法正确的是( ) A .长度相等的弧是等弧 B .优弧大于劣弧 C .直径是一个圆中最长的弦 D .同圆或等圆中的弦一定相等 圆的有关概念【初级理解】 知道与圆有关的概念 会识别并区分相关概念 关卡1-1 圆的有关概念 过关指南 Tips 笔记 ★★☆☆☆☆ 初级理解 例题

77 VISIBLE PROGRESS SYSTEM 下列命题正确的有( ) ①半径是弦;②直径是最长的弦;③在同一平面内,到定点距离等于定长的点都在同一个圆上。 A .0个 B .1个 C .2个 D .3个. 下列说法中正确的序号是_________________. ①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分成两条弧,这两条弧不可能是等弧. 下列说法正确的是( ) A .弦是圆上两点间的部分 B .弧比弦大 C .劣弧比半圆小 D ..弧是半圆 过关练习 错题记录 Exercise 2 错题记录 Exercise 1 错题记录 Exercise 3

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

微乳液法制备纳米材料

微乳液法制备纳米材料 仇乐乐 摘要:本文介绍了使用微乳液法制备纳米材料的一些基本理论和应用。从微乳液的定义、形成和稳定性理论方面简单的介绍了微乳液。又从微乳液制备纳米材料的原理和制备出的纳米粒子的特点方面介绍了微乳液法的一些基本知识。接着又着重讲述了从微乳液法制备纳米材料的影响因素和应用。最后对微乳液法制备纳米材料做了总结和展望。 关键词:微乳液,纳米材料,影响因素,应用 一、引言 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等方面得到了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。实验装置简单,操作容易,已引起人们的重视。 二、微乳液内超细颗粒的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合,由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 三、微乳液的形成和稳定性理论 描述微乳液形成的一个简单形式是把分散相部分考虑成很小的液滴构型熵发生变化,ΔS conf 可近似的表示为: 其中n 为分散相的液滴数,k B 为Boltzmann 常数,φ是分散相的体积分数。缔合自由能的改 变可表示为增加的新界面面积所需的自由能ΔA γ12,和构型熵之和: 其中,ΔA 是界面面积A 的改变量 (半径为r 的液滴面积为4πr 2 ),γ12 是在温度T (Kelvin)的1 相和2相(如油相和水相)之间界面张力。 分散时小液滴数增加且ΔS conf 是正值,如果表面活性

对数性凸函数的性质及应用解读

对数性凸函数的性质及应用 王传坚 (楚雄师范学院数学系2003级1班) 指导老师郎开禄 摘要:在本文中,得到了对数性凸函数的四个性质,并讨论了对数性凸函数的性质的应用。 关键词:凸函数;.对数性凸函数; 基本性质; 应用. The research and application on some properties of logarithmatic convex function Wang Chuanjian (Department of Math, Chu Xiong Normal University, Chu Xiong,Yun Nan ,675000) Abstract: In this paper, the author gives some properties of logarithmatic convex function by studying the fundamental properties, and give some application about the properties of logarithmatic. Key Words:Convex Function; Logarithmatic Convex Function; Fundamental Property; Application. 导师评语: 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用.在文[1]( [1] 刘芳园,田宏 根. 对数性凸函数的一些性质[J].《新疆师范大学学报》,2006,25(3):22-25.)中,刘芳园,田宏根 引入对数性凸函数的概念,研究获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数基本性 质的一些应用. 受文[1]的启发,在文[1]的基础上,王传坚同学的毕业论文<<对数性凸函数的性性质及其应用>>进一步研究了对数性凸函数性质,获得了对数性凸函数的两个性质(推论1,推论2)和四个基本结果(定理3, 定理4, 定理5, 定理6),并讨论了对数性凸函数的性质及其应用. 王传坚同学的毕业论文<<对数性凸函数的性质及其应用>>选题具有理论与实 际意义,通过研究所获结果具有理论与实际意义.该论文的完成需要较好的数学分析基础,主要结果 的证明有一定的技巧,论文的完成有一定的难度,是一篇创新型的毕业论文.论文语言流畅,打印行文 规范.该同学在撰写论文过程中,悟性好,独立性强.

微乳液法制备纳米材料的研究进展

微乳液法制备纳米材料的研究进展 201200110038 李吉相 摘要:综述了微乳液法制备纳米材料的基本原理和影响因索,回顾了微乳液在金属、金属卤化物、金属硫化物、金属碳酸盐、金属和非金属氧化物等纳米微粒制备中的应用,展望了这一领域的发展方向。 关键词:微乳液;纳米微粒;制备 纳米材料是指由极细晶粒组成,特征纬度尺寸在纳米数量级(~100nm)的固体材料【1】。其制备方法多种多样【2】,一般来说,制备较大量的纳米晶固体的方法有三种,这些方法简单而又经济,且都保证了粒子的小尺寸和窄的分布。它们是:1) 用脉冲电子沉积法制备金属或合金的纳米晶: 2) 在微乳液中运用沉淀法制备氟化物的纳米晶,如在反相(w /O)微乳液中合成NH.M nF。; 3) 在微乳液中运用溶胶一凝胶水解法制得金属氧化物的纳米晶,其中后两种方法都使用了微乳液制备法。这也说明微乳液法在纳米材料制备科学中占有极为重要的地位。在合成时使用微乳液法,在纳米微粒的表面有一层表面活性剂膜,故在制作电镜样品的抽真空、蒸发溶剂的过程中,纳米微粒保持分散状态而不发生凝聚。微乳液通常是由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)组成的透明的、各相同性的热力学稳定体系【3】。微乳液中,微小的“水池”被表面活性剂和助表面活性剂所组成的单分子层界面所包围而形成微乳颗粒,其大小可控制在几十至几百个之间。微小的“水池,尺度小且彼此分离,因而构不成水相【4】,通常称之为“准相”。微乳液是热力学稳定体系,其水核是一个“微型反应器”,这个“微型反应器”拥有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。微乳液的水核尺寸是由增溶水的量决定的,随增溶水量的增加而增大。因此,在水核内进行化学反应制备超细颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受到水核大小的控制。 微乳液用来作为合成纳米微粒的介质,是因为它能提供一个特定的水核,水溶性反应物在水核中发生化学反应可以得到所要制备的纳米微粒。影响纳米微粒制备的因素主要有以下三方面: (1)微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,水核半径是由W一[HzO]/E表面活性剂]决定的。微乳液组成的变化将导致水核的增大或减小,水核的大小直接决定超细颗粒的尺寸。一般说来,超细颗粒的直径要比水核直径稍大,这可能是由于胶团间快速的物质交换而导致不同水核内沉淀物的聚集所致。 (2)反应物浓度的影响 适当调节反应物的浓度,可使制取粒子的大小受到控制。Pileni等在AOT/异辛烷/H O 反胶团体系中制备CdS粒子时,发现超细颗粒的直径受X 一[cd ]/[s 一]的影响,当反应物之一过量时,生成较小的CdS粒子。这是由于当反应物之一过剩时,结晶过程比等量反应要快,生成的超细颗粒粒径也就偏小。 (3)微乳液界面膜的影响 选择合适的表面活性剂是进行超细颗粒合成的第一步。为了保证形成的微乳液颗粒在反应过程中不发生进一步聚集,选择的表面活性剂成膜性能要合适,否则在微乳液颗粒碰撞时表面活性剂所形成的界面膜易被打开,导致不同水核内的固体核或超细颗粒之间的物质交换,这样就难

《圆的基本性质复习课》教案

《圆的基本性质复习课》教案 潮阳区华阳初级中学陈朝鸿 复习目标 1、使学生理解圆及其有关概念,圆的性质; 2、使学生掌握垂径定理及推论的应用;掌握圆心角、弧、弦、弦心距的关系;理解圆周角定理及其推论,圆内接四边形的性质定理; 3、使学生理解圆的对称性(轴对称和中心对称); 复习重点 1、垂径定理及推论; 2、圆心角、弧、弦、弦心距之间的关系; 3、圆周角的定理及其推论; 4、与性质相关的计算。 复习难点 1、垂径定理及推论; 2、圆心角与圆周角之间的关系以及圆周角的相关性质; 3、圆心角、弧、弦、弦心距之间的关系。 4、与性质相关的综合计算 目标分析 新课程标准的总体目标,即:知识与技能,过程与方法,情感、态度与价值观三位一体的目标,它们对人的成长、素养的形成与发展都具有十分重要的作用。过程与方法和情感、态度与价值观的发展离不开知识与技能的学习,同时,知识与技能的学习培养必须要以有利于其他目标的实现为前提。 教学过程 教学环节教师活动学生活动设计意图 (一)课前反馈用多媒体小试卷的形式: 展示自主学习案习题:1.在一个平面内,线段OA绕的一个端 点O旋转一周,所形成的图形叫做圆,固定的叫做, 线段叫做。 2.连接圆上任意两点的线段叫;经过圆心的弦叫 ; 圆上任意两点间的部分叫 ;大于半圆的弧叫 ;小于 半圆的弧叫。 3.外接圆的圆心是三角形三条垂直平分线的交点,叫三角形的外 心,锐角三角形的外心在三角形的,钝角三角形的外心在 三角形的,直角三角形的外心在三角形。 4. 圆是一个特殊的图形,它既是一个对称图形,又是一个对 称图形。 5.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两 条弧; 6.推论:(1)平分弦(非直径)的直径垂直于弦,并且平分弦所 对的弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对 的另一条弧;(4)圆的两条平行弦所夹的弧相等。 参与习 题的解 答。 使学生 对所学的 圆的性质 有一个较 系统的回 顾。

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 https://www.doczj.com/doc/a511818853.html,work Information Technology Company.2020YEAR

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式 最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).

硅丙乳液的合成及应用

硅-丙乳液的合成及应用 摘要 随着社会的不断发展,建筑行业对乳液的性能要求不断提高,合成一种高性能的外墙乳液已成为研究热点。丙烯酸乳液原料来源丰富、成膜性好、粘结性强、强度高,用有机硅改性的丙烯酸乳液,不仅可以解决丙烯酸乳液成膜时热粘冷脆的不足,并且形成的Si-0-Si为大分子的主链,具有无机化合物和有机聚合物优良性能,如耐候性、疏水性、透气性、抗沾污性和耐磨性等。通过有机硅改性丙烯酸乳液,可得到兼有有机硅和丙烯酸的高性能乳液,硅-丙高性能乳胶漆具有优异的耐候性、耐水性、耐碱性、耐沾污性和耐擦洗性等性能。本文综述了乳液合成的进展、特点、机理,并阐述了硅-丙乳液合成方法及应用。 关键词:改性;硅-丙乳液;合成;应用

The Synthesis and Application of Silicone - Acrylic Emulsion Abstract With the development of society, the requirement of emulsion properties was boosting, it has been the focus to compound high-performance exterior emulsion. Acrylic emulsion possesses advantages of much material, good film-forming, strong bonding and high strength. Acrylic emulsion modified by organic silicone can not only solve the shortages of thermo-viscoelasticity and cold brittleness, but also form the Si-O-Si as macromolecular main chain, which has the excellent properties of inorganic compounds and organic polymer, such as weather resistance, hydrophobic, permeability, contamination resistance and wearability. Acrylic emulsion modified by organic silicone has high performance both silicone and acrylic emulsion. Silicone-acrylic emulsion paint has excellent property of weatherability, water resistance, alkali resistance, stain resistance and scrub resistance etc. The mechanism, advantage and study progress of preparing emulsions were reviewed and synthesis method and application of silicone - acrylic emulsion were expounded.

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

实验方案微乳液法制备 MYb3+,Er3+

微乳液法制备 M:Yb3+,Er3+ (M= BaF2,LaF3,YF3) (BaF2为立方相,其折射率为 1.47) 实验试剂 十六烷基三甲基溴化铵(A.R)中国医药上海化学试剂公司;氟化铵(A.R)中国医药上海化学试剂公司;硝酸钡(A.R)北京红星化工厂生产; 正丁醇(A.R)天津市科密欧化学试剂开发中心;正辛烷(A.R)天津市科密欧化学试剂开发中心;二氯甲烷(A.R)天津市科密欧化学试剂开发中心;甲醇(A.R)长春市试剂厂; La(NO3)3自制,浓度为 0.5mol/L; Yb(NO3)3自制,浓度为 0.5mol/L; Er(NO3)3自制,浓度为 0.5mol/L;

实验方法 1、按质量比为ω(CTAB)=19.04%, ω(正丁醇)=15.24%, ω(正辛烷)=51.40%的比例各取等量有机物两份,将三种有机化合物混合,得到Ⅰ、Ⅱ两体系 2、室温下,进行磁力搅拌 3、按化学计量比配置 C(NH4F)=0.5mol/L、 C(Ba(NO3)2)=0.5mol/L 阴阳离子溶液各 7.8m L(其ω(盐)=14.29%) 4、向阳离子溶液中滴加物质的量之比为1:1 的Yb(NO3)3和Er(NO3)3溶液。 5、待Ⅰ、Ⅱ两体系混合均匀,在搅拌过程中向其中一份逐滴加入阴离子(NH4F),另一份中加入阳离子(Yb(NO3)3和 Er(NO3)3组成的混合液)。 6、Ⅰ、Ⅱ两体系继续搅拌 50min。 7、将ⅠⅡ两体系迅速混合,室温下快速搅拌,反应 70min,反应所得产物以 15000rpm 离心 15min 8、产物再以甲醇和二氯甲烷混合液(体积比 1:1)清洗、离心 5 次,以去除纳米粒子表面残余的有机相和表面活性剂 9、在红外灯下干燥,然后用玛瑙研钵研磨, 10、于 450℃下氮气保护灼烧 30min 以去除残余的水分和其他有机杂质,最后得到白色粉末状样品 11、以同样的方法,Yb3+和 Er3+比例为 3:1,制备 YF3: Yb3+,Er3+纳米粒子。

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

微乳液法制备纳米微粒

纳米材料 ——微乳液法制备纳米微粒 微乳液法的概述: 微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,从乳液中析出固相从而制备出一定粒径的纳米粉体。但相对于细乳液和普通乳液而言的,微乳液颗粒直径约为l0~lOOnm,细乳液颗粒直径约为lO0~400nm,普通乳液颗粒直径一般在几百纳米到上千纳米。一般情况下,将两种互补相溶的液体在表面活性剂作用下所形成的热力学稳定、各项同性、外观透明或半透明、粒径l~lOOnm 的分散体系称为微乳液。相应的把制备微乳液的技术称为微乳化技术(MET)。1982年Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合肼或者氢气还原在w/0型微乳液水合中的贵金属盐,得到了分散的Pt、Pd、Ru、Ir 金属颗粒(3~40nm)。从此以后,微乳液理论的研究获得了飞速发展,尤其是2O世纪9O年代以来,微乳液应用研究更快,在许多领域如3次采油、污水治理、萃取分离、催化、食品、生物医药、化妆品、材料制备、化学反应介质,涂料等领域均具有潜在的应用前景。微乳液法是一种简单易行而又具有智能化特点的新方法,是目前研究的热点。运用微乳液法制备纳米粉体是一个非常重要的领域。运用微乳液法制备的纳米颗粒主要有以下几类。:(1)金属,如Pt、Pd、Rh、Ir、Au、Ag、Cu等;(2)硫化物CdS、PbS、CuS等;(3)Ni、Co、Fe等与B的化合物;(4)氯化物AgC1、AuC1 等;(5)碱土金属碳酸盐,如CaCO3、BaCO3、Sr—CO3;(6)氧化物Eu2O 、Fe2O。、Bi2O 及氢氧化物如Al(0H)3 等。 1 微乳反应器原理 在微乳体系中,用来制备纳米粒子的一般都是W/O型体系,该体系一般由有机溶剂、水溶液、活性剂,助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般为A0T(2一乙基己基磺基琥珀酸钠)、SDS(十二烷基硫酸钠)阴离子表面活性剂、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。微乳液中,微小的“水池”为由表面活性剂和助表面活性剂所构成的单分子层包围成的微乳颗粒,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”,它拥有很大的界面,有利于化学反应。与其它化学法相比,微乳液法制备的离子不易聚结,大小可控,分散性好。 W/O型微乳液中的水核可以看作微型反应器(Microreactir)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接的关系,若令W=[H2O/表面活性剂],则由微乳液制备的纳米粒子的尺寸将会受到w 的影响。 一般地,将两种反应物分别溶于组成完全相同的两份微乳液中,然后在一定条件下混合。两种反应物通过物质交换而发生反应,当微乳液界面强度较大时,反应物的生长受到限制。如微乳液颗粒大小控制在几个纳米,则反应物以纳米颗粒的形式分散在不同的微乳液中。研究表明:纳米颗粒可在微乳液中稳定存在,通过超速离心或将水和丙酮的混合物加入反应后生成的微乳液中使纳米颗粒与微乳液分离,用有机溶剂清洗以去除附着在微粒表面的油和表面活性剂,最后在一定温度下进行干燥,即可得到纳米颗粒。 2 微乳液的形成和结构 与普通乳液相比,尽管在分散类型方面微乳液和普通乳液有相似之处,即有o/w 和w/o型,其中w/O可以作为纳米粒子制备的反应器,但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴颗粒可控,实验装

相关主题
文本预览
相关文档 最新文档