当前位置:文档之家› 常用的浮选剂分三大类

常用的浮选剂分三大类

常用的浮选剂分三大类

常用的浮选剂分三大类:捕收剂,起泡剂,调整剂。捕收剂自然界中除煤、石墨、硫磺、滑石和辉钼矿等矿物颗粒表面疏水、具有天然的可浮性外,大多数矿物均是亲水的,加一种药剂能改变矿物颗粒的亲水性而产生疏水性使之可浮,这种药剂通常称之为捕收剂。捕收剂通常是极性捕收剂和非极性捕收剂。极性捕收剂由能与矿物颗粒表面发生作用的极性基团和起疏水作用的非极性基团两部分组成。当这类捕收剂吸附于矿粒表面时,其分子或离子呈定向排列,极性基团朝向矿物颗粒表面,非极性基团朝外形成疏水膜,从而使矿物具有可浮性。起泡剂,具有亲水基团和疏水基团的表面活性分子,定向吸附于水一空气界面,降低水溶液的表面张力,使充入水中的空气易于弥散成气泡和稳定气泡。起泡剂和捕收剂联合在一起吸附于矿物颗粒表面,使矿粒上浮。常用的起泡剂有:松树油,俗称二号油、酚酸混合脂肪醇,异构己醇或辛醉、醚醉类以及各种酯类等.调整剂调整剂可分为五类:(1)pH值调整剂。用它来调节矿浆的酸碱度,用以控制矿物表面特性、矿浆化学组成以及其他各种药剂的作用条件,从而改善浮选效果。在浮选过程中也同样要调节矿浆pH值的。常用的有石灰、碳酸钠、氢氧化钠和硫酸等。在铜矿浮选时,最常用的调节剂是石灰和硫酸。(2)活化剂。能增强矿物同捕收剂的作用能力,使难浮矿物受到活化而浮起。,然后用黄药等捕收剂浮选。(3)抑制剂.提高矿物的亲水性和阻止矿物同捕收剂作用,使其可浮性受到抑制。如在优先浮选过程中使用石灰抑制黄铁矿,用硫酸锌和氰化物抑制闪锌矿,用水玻璃抑制硅酸盐脉石矿物等、利用淀粉、拷胶(单宁)等有机物作抑制剂达到多金属分离浮选的目的。(4)絮凝剂。使矿物细颗粒聚集成大颗粒,以加快其在水中的沉降速度;利用选择性絮凝进行絮凝一脱泥及絮凝一浮选。常用的絮凝剂有聚丙烯酰胺和淀粉等。(5)分散剂。阻止细矿粒聚集,处于单体状态,其作用与絮凝剂恰恰相反,常用的有水玻璃、磷酸盐等。浮选剂的种类和用量随矿石性质和浮选条件及流程特点而各异,可用试验单位提供药方(或称药剂制度),在生产实践过程中也可根据上述各种条件的变化而加以改变。

空调常用制冷剂的特性

空调常用制冷剂的特性 目前我们所使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到 0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力

适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12 的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。

制冷剂的种类及特性

氨(R717)的特性 氨(R717、NH3)是中温制冷剂之一,其蒸发温度ts为-33.4℃,使用范围是+5℃到-70℃,当冷却水温度高达30℃时,冷凝器中的工作压力一般不超过1.5MPa。 氨的临界温度较高(tkr=132℃)。氨是汽化潜热大,在大气压力下为1164KJ/Kg,单位容积制冷量也大,氨压缩机之尺寸可以较小。 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。 氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。 氨在常温下不易燃烧,但加热至350℃时,则分解为氮和氢气,氢气于空气中的氧气混合后会发生爆炸。 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机,以适应不同制冷温度的要求。 氟里昂对水的溶解度小,制冷装置中进入水分后会产生酸性物质,并容易造成低温系统的“冰堵”,堵塞节流阀或管道。另外避免氟里昂与天然橡胶起作用,其装置应采用丁晴橡胶作垫片或密封圈。 常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。 氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。 氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用 R134a来代替。 氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,

交联剂的各种用途一

交联剂的各种用途一 交联剂交联剂交联剂 项目指标 工业品优级品精品粉剂 外观微黄色液体或结晶体微黄色液体或结晶体无色透明液体或晶体白色粉末 含量≥95% ≥98% ≥99% ≥70% 酸值≤1.0mgKOH/g 物理性质:分子量:249.27 形状:室温(25℃)为无色液体或结晶体性状:室温下为无色或微黄色液体或六方片状晶体。比重:1.155(30℃)比热:0.6(40℃)熔点:23℃—26℃(纯品)17℃—21℃(工业级)闪点:355℃粘度:86±3厘泊(30℃)沸点:144℃/3mmHg;297℃/N2760mmHg 溶解性:溶于芳烃、卤化烃、环烷烃、丙酮、多种醇等微溶于烷烃不

溶于水。化学性质:在常温下性能十分稳定可长期在室温下贮存。TAIC 的功能团为三个烯丙基具有脂肪族烯烃的一般通性如多种加成反应、均聚和共聚反应、rins反应等。在过氧化物引发下TAIC较其他烯丙基更易发生聚合反应在空气中加热到140℃以上即发生自聚反应成为透明、质硬的均聚物。 毒性:小鼠(口服)LD59=666mg/kg(近于无毒)。TAIC的均聚物和乙烯类单体以及由TAIC交联的热塑塑料为无毒品。 用途: 1、多种热塑塑料(聚乙烯、聚氯乙烯、氯化聚乙烯、EVA、聚苯乙烯等)的交联和改性。热交联一般添加量为1-3%另加过氧化二异丙苯(DC)为0.2-1%;辐照交联添加量为0.5-2%可不再加DC。交联后可显著提高制品的耐热性、阻燃性、耐溶剂性、机械强度及电性能等。它比单独采用过氧化物体系交联要显著地提高产品质量且无异味。典型用于聚乙烯、聚乙烯/氯化聚乙烯、聚乙烯/EVA交联电缆和聚乙烯高、低发泡制品。 2、乙丙橡胶、各种氟橡胶、CE等特种橡胶的助硫化(与DC并用一般用量为0.5-4%), 可显著地缩短硫化时间、提高强度、耐磨性、耐溶剂和耐腐蚀性。

常见制冷剂标号含义

制冷剂r22是什么意思-常见制冷剂标号含义 时间:2010-01-25 10:36来源:未知作者:影东-black 点击:次 ※ R-22(二氟一氯甲烷)制冷剂物化性质:R22( Freon22,二氟一氯甲烷Chlorodifuoromethane),分子式CHClF2,分子量86.47。R-22在常温下为无色,近似无味的气体,不燃烧、无腐蚀、毒性极微,加压可液化为无色透明的液体,为 HCFC 型制冷剂。主要用途:氟 我们经常在加汽车制冷剂的时候听汽车维修店的维修人员说R-134a啊R-12啊等等。这些标号到底是什么意思呢 R-12制冷剂 别名R12、氟利昂12、F-12、CFC-12、二氟二氯甲烷,商品名称有Freon 12等,中文名称二氟二氯甲烷,英文名称Dichlorodifluoromethane,分子式CCl2F2。由于R-12属于CFC类物质(第一批受限的ODS物质Class I Ozone-depleting Substances)——对臭氧层有破坏、并且存在温室效应,因此在发达国家和部分发展中国家,已经停止了在新空调、制冷设备上的初装或旧设备上的再添加;中国2007年已停止了R12制冷剂的生产、以及在新制冷空调设备上的初装。 R-12主要用途 作为使用最广泛的中低温制冷剂,R-12主要应用于冰箱、冷柜、饮水机、汽车空调、商用空调、冷库、商业制冷、冷冻冷凝机组等制冷设备中。二氟二氯甲烷同时还可应用于气雾推进剂、物理发泡剂、配医用消毒剂、杀虫药发射剂等。 R-134a制冷剂 别名R134a、HFC134a、HFC-134a、四氟乙烷,商品名称有SUVA 134a、Genetron 134a、KLEA 134a等,中文名称四氟乙烷,英文名称1,1,1,2-tetrafluoroethane,化学名1,1,1,2-- 四氟乙烷,分子式CH2FCF3。由于R-134a属于HFC类物质(非ODS物质Ozone-depleting Substances)——因此完全不破坏臭氧层,是当前世界绝大多数国家认可并推荐使用的环保制冷剂,也是目前主流的环保制冷剂,广泛用于新制冷空调设备上的初装和维修过程中的再添加。 R-134a主要用途 R-134a作为使用最广泛的中低温环保制冷剂,由于HFC-134a 良好的综合性能,使其成为一种非常有效和安全的CFC-12的替代品,主要应用于在使用 R-12 (R12、氟利昂12、F-12、CFC-12、Freon 12、二氯二氟甲烷)制冷剂的多数领域,包括:冰箱、冷柜、饮水机、汽车空调、中央空调、除湿机、冷库、商业制冷、冰水机、冰淇淋机、冷冻冷凝机组等制冷设备中,同时还可应用于气雾推进剂、医用气雾剂、杀虫药抛射剂、聚合物(塑料)物理发泡剂,以及镁合金保护

浮选—起泡剂的作用机理及常用起泡剂

书山有路勤为径,学海无涯苦作舟 浮选—起泡剂的作用机理及常用起泡剂 常用的起泡剂是异极性的表面活性物质,分子的一端是非极性的烃基,而另一端是亲水性较强的极性基,如图6-21 所示。在矿浆中起泡剂分子以一不定期的取向吸附于气-液界面上,非极性基朝向空气,亦即指向气泡内部。极性基朝向水,并吸引着水分子(极性端被水化)。所以起泡剂分子能够降低泡壁间水层流动速度及蒸发速度,这样就防止了泡壁的破裂。 起泡剂分子在气泡表面定向排列以后,当两个气泡接触碰撞时,中间垫着两层起泡剂分子及它们极性基的水化层,因此气泡较难兼并,小气泡容易保存下来,而小气泡比大气泡更能经受外力的振动,其稳定性更强。 起泡剂可使气泡稳定的另一个主要原因是起泡剂使气泡表面具有弹性,如同具有弹性的橡皮薄膜一样。当气泡受到振动或受到外力作用时,气泡突然变形. 如果气泡表面没有起泡剂分子,则会使气泡壁减薄以致破裂。但是,气泡表面有起泡剂分子时,由于起泡剂分子的定向排列降低了表面张力,气泡受到外力作用变形时,泡壁界面也增大,就引起气泡表面层泡剂分子浓度降低,如图6- 22 所示。而气-液界面的表面张力则显著增加,这种表面张力的增大一方面有利于约束气泡内气体分子向外冲出,另一方面使气泡产生较大的缩力,克服了使气泡发生破裂的外力。 气泡因吸附起泡剂分子而具有弹性的大小,取决于起泡剂分子的活性、溶解度及浓度。当溶液浓度与气-液界面浓度由于界面扩大而发生不平衡时,分子由溶液吸附到界面的速度太快或太慢,都会使气泡的弹性减弱。因此,要选用活性和溶解度适当的起泡剂,尤其用量要适当控制。 由上述可知,起泡剂的作用有助于气泡的形成并增强了泡沫的稳定性。在漂浮选矿过程中,由于矿粒向气泡附着,使气泡形成矿化泡沫。两相泡沫经矿化

制冷剂 基础知识(DOC)

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。 3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。 (3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁

交联剂的配方

交联剂的配方 型号粉剂 品牌华***润 外观白色粉末PH值6 有效物质含量70(%)浊点21 质量指标: 项目指标粉剂 外观白色粉末 含量≥70% 酸值—— 物理性质: 分子量:249.27 形状:室温(25℃)为无色液体或结晶体 性状:室温下为无色或微黄色液体或六方片状晶体。 比重:1.155(30℃) 比热:0.6(40℃) 熔点:23℃—26℃(纯品)17℃—21℃(工业级) 闪点:355℃ 粘度:86±3厘泊(30℃) 沸点:144℃/3mmHg;297℃/N2,760mmHg 溶解性:溶于芳烃、卤化烃、环烷烃、丙酮、多种醇等,微溶于烷烃,不溶于水。

化学性质: 在常温下性能十分稳定,可长期在室温下贮存。TAIC的功能团为三个烯丙基,具有脂肪族烯烃的一般通性,如多种加成反应、均聚和共聚反应、Prins反应等。在过氧化物引发下,TAIC较其他烯丙基更易发生聚合反应,在空气中加热到140℃以上即发生自聚反应,成为透明、质硬的均聚物。 用途: 1、多种热塑塑料(聚乙烯、聚氯乙烯、氯化聚乙烯、EVA、聚苯乙烯等)的交联和改性。热交联一般添加量为1-3%,另加过氧化二异丙苯(DCP)为0.2-1%;辐照交联添加量为0.5-2%,可不再加DCP。交联后可显著提高制品的耐热性、阻燃性、耐溶剂性、机械强度及电性能等。它比单独采用过氧化物体系交联要显著地提高产品质量,且无异味。典型用于聚乙烯、聚乙烯/氯化聚乙烯、聚乙烯/EVA交联电缆和聚乙烯高、低发泡制品。 2、乙丙橡胶、各种氟橡胶、CPE等特种橡胶的助硫化(与DCP并用,一般用量为0.5-4%), 可显著地缩短硫化时间、提高强度、耐磨性、耐溶剂和耐腐蚀性。 3、丙烯酸、苯乙烯型离子交换树脂的交联。它比二乙烯苯交联剂用量少、质量高、可制备抗污、强度大、大孔径、耐热、耐酸碱、抗氧化等性能极佳的离子交换树酯。这是国内外新近开发的,前景极好的新型离子交换树酯。 4、聚丙烯酸酯、聚烷基丙烯酸酯等的改性。可显著地提高耐热性、光学性能和工艺加工性能等。典型用于普通有机玻璃的耐热改性。 5、环氧树酯、DAP(聚苯二甲酸二烯丙酯)树酯的改性。可提高耐热性、粘合性、机械强度和尺寸稳定性。典型用于环氧灌封料和包封料的改性。 6、不饱和聚酯和热塑聚酯的交联和改性。可显著提高耐热性、抗化学腐蚀性、尺寸稳定性、耐候性和机械性能等。典型用于提高热压性不饱和聚酯玻璃钢制品耐热性,改性后的制品使用温度可达180℃以上。

几种常见的低温制冷剂

超低温制冷剂R14。R-14制冷剂,别名R14、 氟利昂14、PFC-14,商品名称有Freon 14 等,中文名称四氟化碳、全氟化碳,英文名 称Carbon Tetrafluoride or Tetrafluoromethane,分子式CF4。R-14属 于fc类物质——对臭氧层没有破坏、但存在 温室效应;目前对于R14制冷剂的生产、销 售以及在新制冷设备上的初装、售后设备上 的再添加均没有限制。 主要用途:R-14作为一款特种超低温制冷 剂,主要应用于要求温度非常低的深冷设备中(包括科研制冷、医用制冷等),R14同时也是超低温配合冷媒的重要组分。 R-13制冷剂,别名R13、氟利昂13、F13、 F-13、CFC13、CFC-13、三氟一氯甲烷,商 品名称有Freon 13等,中文名称三氟一氯甲 烷,英文名称Chlorotrifluoromethane,化学 式CClF3。由于R-13属于CFC类物质(第 一批受限的ODS物质Class I Ozone-depleting Substances)——对臭氧层 有破坏、并且存在温室效应,因此在发达国 家和部分发展中国家,已经停止了在新制冷 设备上的初装或旧设备上的再添加;中国 2007年已停止了R13制冷剂的生产、以及在 新制冷空调设备上的初装。 R-13主要用途:R-13作为广泛使用的超低温制冷剂,主要应用于超低温冰箱或冷柜、血库冰箱、冻干机/冷冻干燥机、环境试验箱/设备(冷热冲击试验机)、生化试验箱等深冷设备中(包括科研制冷、医用制冷等),多见用于这些复叠式制冷系统的低温段。三氟一氯甲烷同时还可用作灭火剂等。

R-23作为广泛使用的超低温制冷剂, 由于HFC-23 良好的综合性能,使其成为一 种非常有效和安全的CFC-13(R13、R-13、 Freon 13、氟利昂-13)和R-503的替代品。 主要用途:R-23制冷剂,别名R23、氟利 昂23、F23、F-23、HFC23、HFC-23。由于R-23属于HFC类物质(非ODS 物质Ozone-depleting Substances)——因此完全不破坏臭氧层,是世界绝大多数国家认可并推荐使用的环保制冷剂,也是主流的环保制冷剂之一。 R-508B(SUVA 95)环保制冷剂R-508B 制冷剂,别名R508B,商品名称有SUVA 95、Genetron 508B等。R-508B是属于完 全不含破坏臭氧层的CFC、HCFC物质的 环保型共沸制冷剂,得到目前世界绝大多数 国家的认可并推荐的主流超低温环保制冷 剂,广泛用于新冷冻设备(超低温、深冷) 上的初装和维修过程中的再添加。符合美国 环保组织EPA、SNAP和UL的标准,符合 美国采暖、制冷空调工程师协会(ASHRAE) 的A1安全等级类别(这是最高的级别,对 人身体无害)。 R-508B主要用途 R-508B(SUVA 95)作为广泛使用的超低温制冷剂,由于R-508B良好的综合性能,使其成为一种非常有效和安全的CFC-13(R13、R-13、Freon 13、氟利昂-13)、R-503和HFC-23(R23、R-23、Freon 23、氟利昂-23)的替代品,主要应用于环境试验箱/设备(冷热冲击试验机)、冻干机/冷冻干燥机、超低温冰箱或冷柜、血库冰箱、生化试验箱等深冷设备中(包括科研制冷、医用制冷等),多见用于这些复叠式制冷系统的低温级。R508B制冷温度可降至-80℃甚至更低,是符合工业标准的R-13,R-503和R-23的长期替代品,它完全适应R-503的工作环境。

常用起泡剂起泡性能的研究

常用起泡剂起泡性能的研究 0 引言 矿物的可浮性取决于两个因素[1]。一是内因,即决定于矿物的组成和结构,有些矿物由于本身的组成和结构的亲水性大,天然可浮性小,如石英、云母等;有些矿物亲水性小天然可浮性大,如石墨、辉钼矿、自然硫等。仅利用矿物天然可浮性的差别是难于达到分选目的的。另一个因素是外因,是人为的创造条件改变矿物表面的物理化学性质,调整其可浮性,从而达到分选目的。使用浮选药剂的目的是改变矿物的物理化学性质,调节矿物的可浮性,浮选药剂对矿物分选起着重要的作用。 起泡剂在矿物浮选所用的浮选药剂中起着很大的作用[2],不仅影响起泡的数量和质量,也影响矿物颗粒之间的接触。细小、丰富的气泡能够促使体系中的疏水性颗粒更多粘附于气泡上,达到与体系中亲水颗粒有效分离的目的。硫化矿的分选过程中,旋流—静态微泡浮选柱与浮选机相比,具有流程短、占用面积小、操作简单等优点,但柱内的高紊流矿化浮选对起泡剂提出了新要求。由于起泡剂性能的优劣直接影响到浮选的各项指标,为配合浮选柱在硫化矿分选的使用,亟待开发一种稳定性较好,寿命较长的硫化矿长效起泡。 1 实验部分 1.1 仪器和药品 德国 KRUSS 张力仪K100;可调充氧泵;秒表;正丁醇(AR),上海凌峰化学试剂有限公司;正己醇(AR),天津市福晨化学试剂厂;正辛醇(AR),无锡市亚盛化工有限公司;仲辛醇(CP),国药集团化学试剂有限公司;松节油透醇(CP),国药集团化学试剂有限公司; 730 系列起泡剂,云南大红山矿山。 1.2 实验评价系统设计 1.2.1 泡沫性能评价指标的确定 采用理化性能指标的测试方法进行评价和选优。运用表面张力测定仪进行表面张力的测量;用在给定条件下溶液的发泡高度与泡沫寿命—半衰期(充气束后秒表测定泡沫高度减半所用的时间)的对比来评估泡沫的稳定性和可维持的泡沫厚度。 1.2.2 评价系统(设备)的建立 选择了选矿实验室中最接近工业条件的大型浮选柱(高3 m,直径0.8 m),模拟现场浮选柱的高紊流状态,在固定气含率,固定泵压等固定的情况下进行实验,有利于各个起泡剂性能的比较。 1.2.3 实验条件的选择 起泡剂的性能与起泡剂的浓度有关。经过对现场资料的仔细研究,起泡剂在浮选过程的用量范围是30~100 g/t ,因此本次实验在这个范围内取出由大到小的6 个值,以便对起泡剂的性能与浓度的关系进行研究。 目前常用的浮选起泡剂主要是醇类化合物,因为其起泡效果好,几乎没有捕收能力,是一种良好的起泡剂。本实验研究了浮选中常用的醇类起泡剂的起泡性能以期指导以后新型起泡剂的合成。 2 结果与讨论 目前在浮选工业中认为常见的C6~C8 醇具有起泡能力。因此,根据现有条件,分别选用了几种醇进行研究,并与二号油的主要成分松油醇进行了比较,为新型起泡剂的开发奠定实验基础。实验结果如所示。 由可以看出正辛醇降低表面张力的能力最大,其次是仲辛醇和松油醇,最差的是正丁醇。

浮选药剂的分类及用途分析

浮选药剂的分类及用途分析 在浮游选矿过程中,为有效地选分有用矿物与脉石矿物,或分离各种不同的有用矿物,常需添加某些药剂,以改变矿物表面的物理化学性质及介质的性质,这些药剂统称浮选药剂。浮选药剂按其用途可分为五类:捕收剂、起泡剂、活化剂、抑制剂、调整剂 一、捕收剂,改变矿物表面疏水性,使浮游的矿粒黏附于气泡上的浮选药剂。 捕收剂的种类很多,按其离子性质可分为阴离子型、阳离子型、两性型和非离子型;按其应用范围可分为硫化矿捕收剂、氧化矿捕收剂、非极性矿物捕收剂和沉积金属的捕收剂。 常用的硫化矿捕收剂有黄药、黄药衍生物、黑药、白药、苯并噻唑硫醇、苯并咪唑硫醇、苯并嗯唑硫醇等。 氧化矿捕收剂主要有脂肪酸及其钠皂、烷基磺酸盐、烷基硫酸盐、磷酸酯、砷酸酯、脂肪胺及其盐、松香胺、季铵盐、二胺及多胺类化合物、两性表面活性剂等。 油类捕收剂,如煤油、柴油等。 捕收剂在矿物表面的作用有物理吸附、化学吸附和表面化学反应。捕收剂的吸附与矿物浮选行为有密切关系。在一定的捕收剂浓度范围内,随着药剂浓度提高,吸附量增大,浮选回收率显著上升;浓度达到相当值后,回收率随浓度及吸附量提高的幅度变小;捕收剂浓度过高时,吸附量还可继续增大,但浮选回收率却不再升高,甚至反而下降。因此,在浮选过程中要正确掌握捕收剂的用量,以获得最佳效益。 二、起泡剂:浮选矿浆中气泡的形成,主要依赖于浮选设备中各种类型的充气搅拌装置,以及向矿浆中添加适量的起泡剂(frothers)。 起泡剂一般均为表面活性剂,其分子结构由非极性的亲油(疏水)基团和极性的亲水(疏油)基团构成,形成既有亲水性又有亲油型的所谓的“双亲结构”分子。亲油基可以是脂肪族烃基、脂环族烃基和芳香族烃基或带O、N等原子的脂肪族烃基、脂环族烃基和芳香族烃基;亲水基一般为羧酸基、烃基、磺酸基、硫酸基、膦酸基、氨基、腈基、硫醇基、卤基、醚基等。 起泡剂加到水中,亲水基插入水相而亲油基插入油相或竖立在空气中,形成在界面层或表面上的定向排列,从而使界面张力或表面张力降低。一般而言,含极少量起泡剂的水溶液即具有起泡性。 常见的起泡剂有羟基化合物类,醚及醚醇类,吡啶类和酮类。 起泡剂(W-101) 三、活化剂:活化作用大致可分为:1、自发活化作用;2、预先活化作用;3、复活作用;4、硫化作用。 1、自发活化作用: 处理有色多金属矿石时,在磨矿过程中矿物表面与一些可溶性盐离子自发进行的作用,例如闪锌矿与硫化铜矿物共生时,在矿石开采出来以后的氧化作用总有少量硫化铜矿物被氧化成为硫酸铜,在矿浆中Cu 2+离子与闪锌矿表面作用使之活化,给铜锌分离造成困难,需加入石灰或碳酸钠等调整剂沉淀,某些可能引起活化的“难免离子”。 2、预先活化作用: 是指为了要选出某种矿物预先加一种活化剂使之活化。当黄铁矿氧化较重时,在选黄铁矿前加硫酸溶去黄铁矿表面的氧化膜,使之露出新鲜表面,以利于浮选。 3、复活作用: 是指原先被抑制过的某种矿物,如用氰化物抑制过的闪锌矿,可加硫酸铜使之复活。 4、硫化作用: 是指金属氧化矿先用硫化钠进行处理,使之在氧化矿表面生成一层金属硫矿物薄膜,然后用黄药进行浮选。 四、抑制剂:浮游选矿时增加矿粒润湿性而使不易附着于气泡上的物质。可以是无机化合物如石灰、氰化物等,或有机化合物如淀粉、胶类等。 五、调整剂:浮选药剂之一。用以改变矿物的表面性质和矿浆的特点(如液相组成、起泡性能、泡沫

有机交联剂作用的三种原理

有机交联剂对高分子化合物的交联反应,大致可以分为三种类型。 1.交联剂引发自由基反应 在这类交联反应中,交联剂分解产生自由基,这些自由基引发高分子自由基链反应。从而导致高分子化合物链的C-C键交联,在这里交联剂实际上起的是引发剂的作用。以这种机理进行交联的交联剂主要是有机过氧化物,它既可以和不饱和聚合物交联,亦可以和饱和聚合物交联。 (1)对不饱和聚合物的交联根据不饱和聚合物的结构,有机过氧化物分解生成的自由基将进行各种不同反应。交联过程大致可分别三步。 首先过氧化物分解产生自由基,该自由基引发高分子链脱氢生成新的自由基,高分子自由基进行连锁反应或在双键处连锁加成完成交联反应。 此外,还伴有交联剂自由基对聚合物的加成反应及聚合物自由基和交联剂自由基的加成等副反应。 (2)对饱和聚合物的交联。将聚乙烯和有机过氧化物反应可制得交联产物,例如过氧苯甲酰引发的反应: 交联聚乙烯是一种受热不熔的类似于硫化像胶的高分子材料,且具有优良的耐老化性能。 对饱和烃类高分子,用有机过氧化物引发自由裁的例子相当多,除交联聚乙烯发泡体外,甲基硅橡胶、乙丙橡胶、聚氨脂弹性体、全氯丙烯及偏二氟乙烯齐聚物均可采用有机过氧化物交联。 由于有机过氧化物在酸性介质中容易分解,因此在使用有机过氧化物时,不能添加酸性物质作填料,填加填料时要严格制其pH值。此外,并非所有饱和型高聚物均可发生,交联反应,与聚异丁烯反应时,会使聚合物发生分解。 同时,不同的过氧化物对不同聚合物的交联效率变化也很大,并伴有其他副反应产生。这也是选择交联剂时应该注意的。

(接上篇)2.交联剂的官能团与高分子聚合物反应 利用交联剂分子中的官能团(主要是反应性双官能团。多官能团以及C =C双键等),与高分子化合物进行反应,通过交联剂作为桥基把聚合大分子交联起来。这种交联机理是除过氧化物外大多数交联剂采用的形式。 胺类化合物广泛应用于环氧树脂的固化反应,固化机理可认为按如下进行: 这样就把大分子链通过N -R-N桥基交联起来,成为体型分子,使其固化。通常BF3胺化合物、苯酚、酸酐及羧酸等,能促进芳香族胺和环氧树脂之间的反应。又如,用叔丁基酚醛树脂硫化天然橡胶或丁基橡胶的交联反应如下: 叔丁基酚醛树脂两端的羟基与天然像胶分子中a氢原子进行缩合反应,结果使橡胶分子交联而成为体型结构。 羧酸及酸酐交联剂则多用于环氧树脂的固化,其机理是羧酸可使环氧基开环生成羧基,然后和羧酸发生酯化反应而进行交联。羧酸一般选择二元羧酸。 3.交联剂引发自由基反应和交联剂官能团反应相结合 这种交联机理实际上是前述两种机理的结合形式,它把自由基引发剂和官能团化合物联合使用。例如用有机过氧化物和不饱和单体来使不饱和聚酯进行交联就是一个典型的例子。 不饱和聚酯的种类很多,但它们的分子链上都含有碳碳双键结构。如丁烯二酸丙二醇酯。 用不饱和聚酯制造玻璃钢时,可以在不饱和聚酯中加入有机过氧化物(如过氧化苯甲酰、过氧化环己酮等)以及少量的苯乙烯。在这种情况下,由于有机过氧化物的引发作用,使得苯乙烯分子中的C =C与不饱和聚酯中的C =C发生自由基加成反应,从而把聚酯的分子链交联起来。交联后,聚酯就由线型结构变成体型结构,因而硬化。有机交联剂的这三种交联机理往往同时存在于同一交联过程中,并伴有许多副反应发生是一个复杂的反应体系。

常用制冷剂简介

常用制冷剂简介 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿(C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 热力学的要求 1 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 2 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 3 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 4 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 5 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 制冷剂分子式分子量u 正常蒸发温度ts(℃) 凝固点tf(℃) 临界温度tkp(℃) 临界压力PKP绝对压力绝热指数K 水(R718) H2O 18.02 +100 ±0 +374.1 225.6 1.33 氨(R717) NH3 17.03 -33.4 -77.7 +132.4 115.2 1.31 R11 CFCL3 137.39 +23.7 -111 +198 44.6 1.17 R12 CF2CL2 120.92 -29.8 -155 +111.5 40.86 1.15 R13 CF3CL 104.47 -81.5 -180 +28.8 39.4 -

浮选药剂配制方法

浮选药剂在使用前进行合理的配制,对提高药效有重要作用。配制方法主要根据药剂的性质决定,常见的有下列几种方法: 一、配成水溶液 大多数溶于水的药剂都采取此法,一般配成5%~10%或者更稀一些的水溶液添加。溶液不宜配得太稀,太稀体积过大;但也不宜太浓,浓度太大对用量少的药剂很难正确控制用量,也不便输送。 二、加溶剂配制 有些不溶或者难溶于水的药剂,可将其溶于特殊的溶剂中再添加。例如,把油酸溶入煤油中再添加,可以增强它在矿浆中的弥散性,还可以加强油酸的捕收作用;白药可以溶于邻甲苯胺中再使用。 三、乳化法 脂肪酸类捕收剂、柴油经过乳化,可以增加其在矿浆中的弥散性,提高功效。常用的乳化法是:强烈机械搅拌、通入蒸汽或用超声波,若加入乳化剂效果更好。如妥尔油与柴油在水中可加乳化剂——烷基芳基磺酸酯。许多表面活性物质都可以作为乳化剂。 四、皂化 脂肪酸类捕收剂常用此法配制。如铁矿石浮选时,常采用氧化石蜡皂与妥尔油作捕收剂。为提高其水溶性,可配入10%左右的碳酸钠,使妥尔油皂化,并用热水加温成热的皂液添加。再如油酸,其水溶性差,但与碳酸钠作用生成油酸钠后,水溶性变好。 五、配成悬浊液或乳浊液 如石灰可加水磨成石灰乳添加。 六、酸化 在使用阳离子捕收剂(胺类)时,由于水溶性差,必须加盐酸或醋酸作用配成胺盐,才能溶于水中使用。 七、原液添加 有些药剂在水中的溶解度很小,难以配成真溶液或稳定的乳浊液,如松醇油、甲酚黑药、煤油等,可不必配成溶液,而是直接将原液按用量添加。 水溶性药剂的配制方法,一般是先把药剂在容器内用少量水溶解,待溶解完后,

再逐渐加水配成所要求的浓度。 在生产现场,为了配制方便,可在配药槽上刻上标示容积的刻度尺,把称好的已知药量的药剂放入槽内,加水至刻度标示的与浓度相符的位置,搅拌至完全溶解,即可使用。

常用制冷剂R22、134a、R404A、R407C、R410A的特性(技术分享)

常用制冷剂R22、134a、R404A、R407C、R410A的特性(技 术分享) 常用制冷剂R22、134a、R404A、R407C、R410A 的特性 1. R22R22是一种中温制冷剂,它的标准沸点为-40.8°C; 水在R22中的溶解度很小,与矿物油互相溶解; R22不燃烧,也不爆炸,毒性很小; R22参透能力很强,并且泄漏难以发现.R22的ODP和GWP比R12小的多,属于HCFC类物质,对臭氧层仍有破坏作用.由于R12已逐步禁用,R22正作为某些CFC制冷剂的过渡替代物在使用。 2. 134a R134a是一种新型制冷剂,它的标准沸点为-26.5°C; R134a 安全性好、无色、无味、不燃烧、不爆炸、基本无毒性、化学性质稳定; R134a气化潜热大、比定压热容大、具有较好制冷能力;饱和气体积大,相同排气量压缩机的制冷剂的质量流量小;热导率较高、热传导性能好;粘度低、流动性好;对臭氧层没有破坏作用、温室效应比R22小。R134a对金属的腐蚀作用比较小,稳定性好,也不溶于水,但R134a不溶于矿物油,需用POE或PAG润滑油。R134a属HFC类制冷剂,按当前的国际协议可长期使用。值得指出的是R134a的GWP(全球变暖潜能值)为1600,仍比较头。注:环境性能及指标解释。ODP表示制冷剂消耗大气层臭氧分子潜能的程度。GWP表示制冷剂对气候变暖影响的潜能指标值。

TEWI总体温室效应值,它由两项构成:a 直接使用制冷剂产 生的温室效应;b制冷机使用期内电厂发电产生的间接温室效应。 3. 混合制冷剂常用的混合制冷剂有R404A、 R407C、R410A等。其物理性质均不可燃,属HFC类制冷剂,压缩机须充注聚酯类(POE)润滑油。R404A是由R125、R134a和R143a三种工质按44%、52%和52%和4%的质量分数混合而成,可作为R22和R502的替代工质。美国杜邦公司和英国ICI公司产品的商品名分别为SUV A-HP62、FX-70。R404A的标准压力下泡点温度为-46.6°C,相变温度滑移较小,约为0.8°C,气化潜热为143.48KJ/(Kg.K),液体的比热容为1.64KJ/(Kg.K),气体的比定压热容为1.03KJ/(Kg.K)。该制冷剂的ODP为0,GWP为4540。R407C是由R32、R125和R134a三种工质按23%、25%和52%的质量分数混合而成。标准压力下泡点温度为-43.8°C,相变温度滑移为7.2°C。该制冷剂的ODP为0, GWP为1980。美国杜邦公司和英国ICI 公司产品的商品名分别为SUV A9000和KLEA66。R407C的热力性质与R22最为相似,两者的工作压力范围,制冷量都十分相近。原有R22机器设备改用R407C后,需要更换润滑油、调整制冷剂的充注量及节流元件。R407C机器的制冷量和能效比比R22机器稍有下降。R407C的缺点可能是温度滑移较大,在发生泄漏、部分室内机不工作的多联系统,以及使用满液式蒸发器的场合时,混合物的配比就可能发生变化而达不

交联剂的使用注意事项

交联剂 交联剂是一种受热能放出游离基来活化高分子链,使它们发生化学反应而相 互交联起来的一种助剂。线性的热塑性树脂通过高分子链之间的交联反应可以得 到三维的网状结构,这种结构可改进塑料耐热性差、机械强度不高等缺点,尤其 是提高塑料在高温下的热稳定性和化学耐蚀性,使其具有工程塑料的某些性能从 而扩大其用途。有些加工工艺如聚烯烃的发泡成型若没有交联剂的帮助就难以实 施,特别像聚丙烯泡沫塑料更无法成型。 线型高分子之间的交联通常采用射线辐照法或化学反应法。还有一种可能的 交联方法是让水扩散进入硅化乙烯共聚物内部,通过水解及之后的缩聚反应引发 交联形成.. Si-O-Si键。乙烯硅橡胶在聚乙烯上的接枝也同此方法类似。 塑料工业中最常见的的交联剂是有机过氧化物,若再加上乙烯基硅氧烷或其 它不饱和化合物作助交联剂,可在高分子链上产生接枝交联,则能进一步改善性 能。 过氧化物作为交联剂时一般应满足以下条件: (1)在规定的温度下,其分解产物应保证交联迅速进行,而无过早反应的 倾向。 (2)只发生对聚合物改性的交联反应。 (3)与弹性体和塑料充分相容。 (4)在运输、贮存和加工过程中必须是安全的。 (5)不易挥发,以避免在混合过程中损失。 (6)在含有其它混合成分如填料或增强剂时,也必须有活性。 (7)过氧化物及其分解产物必须无毒,应满足工业卫生要求。 一.有机过氧化物 1 化学名2,5-二甲基-2,5-双(叔丁过氧基)己烷 英文名2,5-Dimethyl-2,5-bis(tert-butyl peroxy) hexane,AD 结构式 性质商品形式有两种:纯度为.. 90%左右的为淡黄色液体(相对密度.. 0.85,凝固点.. 8℃);纯度为.. 40~50%的为白色粉末,相对分子质量.. 290。纯品的凝固点.. 4℃,闪点.. 55℃,燃点.. 175℃。理论活性氧量.. 11.02%。活化能.. 150.7kJ/mol。分解温度:179℃(半衰期.. 1 分钟)、118~119℃(半衰期.. 10h)。半衰期:17h(115℃)、2.8h(130℃)、0.4h(145℃)、17分钟(150℃)、5.8分钟(160℃)、0.9分钟(190℃)。

常见制冷剂热力性质表

附录: 附表1:R12饱和液体及蒸汽热力性质表 附表2:R13饱和液体及蒸汽热力性质表 附表3:R22饱和液体及蒸汽热力性质表 附表4:R134a饱和液体及蒸汽热力性质表 附表5:R152a饱和液体及蒸汽热力性质表 附表6:R600a饱和液体及蒸汽热力性质表 附表7:R407c饱和液体及蒸汽热力性质表 附表8:R123饱和液体及蒸汽热力性质表 附表9:R410a饱和液体及蒸汽热力性质表

附表1:R12饱和液体及蒸汽热力性质表 R12饱和液体及蒸汽热力性质表 温度绝对压力密度密度比焓比焓比熵比熵t pρ′ρ″h′h″s′s″℃MPa kg/m3kg/m3kJ/kg kJ/kg kJ/kg·K kJ/kg·K -1000.00118851679.10.099959113.32306.090.60771 1.721 -990.00130441676.50.10908114.14306.540.61242 1.7172 -980.00142981673.90.1189114.96306.980.61711 1.7135 -970.00156531671.30.12945115.78307.430.62178 1.7098 -960.00171171668.60.14077116.6307.880.62642 1.7062 -950.001869616660.15291117.42308.320.63105 1.7026 -940.00203971663.40.16592118.24308.770.63564 1.6992 -930.00222281660.70.17983119.06309.230.64022 1.6958 -920.00241971658.10.19471119.88309.680.64477 1.6925 -910.00263111655.50.21059120.71310.130.6493 1.6892 -900.0028581652.80.22754121.53310.590.65381 1.6861 -890.00310131650.20.24561122.36311.040.6583 1.6829 -880.00336171647.50.26485123.18311.50.66277 1.6799 -870.00364041644.90.28532124.01311.960.66722 1.6769 -860.00393831642.20.30708124.83312.410.67164 1.6739 -850.00425651639.60.33019125.66312.870.67605 1.6711 -840.00459591636.90.35471126.49313.340.68044 1.6683 -830.00495781634.30.38072127.32313.80.68481 1.6655 -820.00534321631.60.40827128.15314.260.68916 1.6628 -810.005753416290.43743128.98314.720.69349 1.6602 -800.00618961626.30.46827129.81315.190.6978 1.6576 -790.00665291623.60.50087130.64315.650.7021 1.655 -780.007144916210.53531131.47316.120.70637 1.6525 -770.00766671618.30.57164132.31316.580.71063 1.6501 -760.00821981615.60.60996133.14317.050.71487 1.6477 -750.00880561612.90.65034133.98317.520.7191 1.6454 -740.00942561610.30.69286134.81317.990.7233 1.6431 -730.010*******.60.73761135.65318.460.72749 1.6409 -720.010*******.90.78466136.49318.930.73167 1.6387 -710.0115061602.20.83411137.33319.40.73583 1.6365 -700.0122781599.50.88605138.17319.870.73997 1.6344 -690.0130921596.80.94056139.01320.340.74409 1.6323 -680.013951594.10.99774139.85320.820.7482 1.6303 -670.0148541591.4 1.0577140.69321.290.7523 1.6283 -660.0158051588.7 1.1205141.54321.760.75638 1.6264

相关主题
文本预览
相关文档 最新文档