当前位置:文档之家› 离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分测试题
离散数学集合论部分测试题

离散数学集合论部分综合练习

本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。

一、单项选择题

1.若集合A={a,b},B={ a,b,{ a,b }},则().

A.A?B,且A?B B.A?B,但A?B

C.A?B,但A?B D.A?B,且A?B

2.若集合A={2,a,{ a },4},则下列表述正确的是( ).

A.{a,{ a }}?A B.{ a }?A

C.{2}?A D.??A

3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).

A.{a,{a}}?A B.{2}?A

C.{a}?A D.??A

4.若集合A={a,b,{1,2 }},B={1,2},则().

A.B? A,且B?A B.B? A,但B?A

C.B ? A,但B?A D.B? A,且B?A

5.设集合A = {1, a },则P(A) = ( ).

A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}

6.若集合A的元素个数为10,则其幂集的元素个数为().

A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为().

A.自反的 B.对称的

C.传递且对称的 D.反自反且传递的

8.设集合A= {1,2,3,4,5,6 }上的二元关系R ={?a, b∈A, 且a +b = 8},则R具有的性质为().

A.自反的 B.对称的

C.对称和传递的 D.反自反和传递的

9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.

A .0

B .2

C .1

D .3

10.设集合A ={1 , 2 , 3 , 4}上的二元关系

R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>}, 则S 是R 的( )闭包.

A .自反

B .传递

C .对称

D .以上都不对

11.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如图一所示,若A 的子集B

则元素3为B 的( ). A .下界 B .最大下界 C .最小上界 D .以上答案都不对

12.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( ).

A .8、2、8、2

B .无、2、无、2

C .6、2、6、2

D .8、1、6、1

13.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={, },R 2={, , },R 3={, },则( )

不是从A 到B 的函数.

A .R 1和R 2

B .R 2

C .R 3

D .R 1和R 3

二、填空题

1.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数

为 .

2.设集合A ={a ,b },那么集合A 的幂集

是 .

应该填写:{?,{a ,b },{a },{b }}

3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系, 则R 的有序对集合为 .

4.设集合A ={0, 1, 2},B ={0, 2, 4},R 是A 到B 的二元关系, 则R 的关系矩阵M R =

5.设集合A ={a ,b ,c },A 上的二元关系

R ={,},S ={,,}

则(R ?S )-1= .

6.设集合A ={a ,b ,c },A 上的二元关系R ={, , ,

5 图一

},则二元关系R 具有的性质是 .

7.若A ={1,2},R ={|x ?A , y ?A , x +y =10},则R 的自反闭包为 .

8.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 .

9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 .

三、判断说明题(判断下列各题,并说明理由.)

1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由. 2.如果R 1和R 2是A 上的自反关系,判断

结论:“R -1

1、R 1∪R

2、R 1?R 2是自反的” 是否

成立?并说明理由.

3. 若偏序集的哈斯图如图一所示,

则集合A 的最大元为a ,最小元不存在.

4.若偏序集的哈斯图如图二所示,

则集合A 的最大元为a ,最小元不存在.

5.设N 、R 分别为自然数集与实数集,f :N

→R ,f (x )=x +6,则f 是单射.

四、计算题 1.设集合A ={a , b , c },B ={b , d , e },求

(1)B ?A ; (2)A ?B ; (3)A -B ; (4)B ?A .

2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算

(1)(A ?B ) (2)(A ∪B ) (3)(A ∪B )?(A ∩B ).

3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算

(1)(A ?B ); (2)(A ∩B ); (3)A ×B .

4.设A ={0,1,2,3,4},R ={|x ?A ,y ?A 且x +y <0},S ={|x ?A ,y ?A 且x +y ?3},试求R ,S ,R ?S ,R -1,S -1,r (R ).

5.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}.

(1)写出关系R 的表示式; (2)画出关系R 的哈斯图;

(3)求出集合B 的最大元、最小元.

6.设集合A ={a , b , c , d }上的二元关系R

如图三所示. (1)写出R 的表达式; (2)写出R 的关系矩阵;

图一

图二

图三

(3)求出R 2.

7.设集合A ={1,2,3,4},R ={|x , y ?A ;|x ?y |=1或x ?y =0},试

(1)写出R 的有序对表示; (2)画出R 的关系图;

(3)说明R 满足自反性,不满足传递性.

五、证明题

1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ).

2.试证明集合等式A ? (B ?C )=(A ?B ) ? (A ?C ).

3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ?A ,存在b ?A ,使得?R ,则R 是等价关系.

4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ?也是A 上的偏序关系.

参考解答

一、单项选择题

1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B

9.B 10.C 11.C 12.B 13.B

二、填空题

1.2n

2.{?,{a ,b },{a },{b }}

3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>

4.????

??????011000011 5.{, }

6.反自反的

7.{<1, 1>, <2, 2>}

8.{<1, a >, <2, b >},{<1, b >, <2, a >}

9.8

三、判断说明题(判断下列各题,并说明理由.)

1.解:错.

设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ?C .

2.解:成立.

因为R 1和R 2是A 上的自反关系,即I A ?R 1,I A ?R 2。

由逆关系定义和I A ?R 1,得I A ? R 1-1;

由I A ?R 1,I A ?R 2,得I A ? R 1∪R 2,I A ? R 1?R 2。

所以,R 1-1、R 1∪R 2、R 1?R 2是自反的。

3.解:正确.

对于集合A 的任意元素x ,均有?R

(或xRa ),所以a 是集合A 中的最大元.

按照最小元的定义,在集合A 中不存在最

小元.

4.解:错误.

集合A 的最大元不存在,a 是极大元.

5.解:正确.

设x 1,x 2为自然数且x 1?x 2,则有f (x 1)= x 1+6? x 2+6= f (x 2),故f 为单射.

四、计算题

1.解:(1)B ?A ={a , b , c }?{b , d , e }={ b }

(2)A ?B ={a , b , c }?{b , d , e }={a , b , c , d , e }

(3)A -B ={a , b , c }-{b , d , e }={a , c }

(4)B ?A = A ?B -B ?A ={a , b , c , d , e }-{ b }={a , c , d , e }

2.解:(1)(A ?B )={{a , b }, 2}

(2)(A ∪B )={{a , b }, 1, 2, a , b , {1}}

(3)(A ∪B )?(A ∩B )={{a , b }, 2, a , b , {1}}

3.解:(1)A ?B ={{1},{2}}

(2)A ∩B ={1,2}

(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,

<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,

<2, {1,2}>}

4.解:R =?,

S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>}

R ?S =?,

R -1=?,

S -1= S ,

r (R )=I A . 5.解:(1)R =I ?{<1,2>, <1,3>, …

<3,12>, <4,8>, <4,12>, <5,10>, <6,12>}

(2)关系R 的哈斯图如图四 (3)集合B 没有最大元,最小元是:2 6.解:R ={, , , }

R 2 = {, , , }?{, , , } ={, , }

7.解:(1)R 1图四:关系R 的哈斯图

?? ? ? 1

2 3 4

<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>}

(2)关系图如图五

(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R,

即A的每个元素构成的有序对均在R中,故R在

A上是自反的。

因有<2,3>与<3,4>属于R,但<2,4>不属于R,

所以R在A上不是传递的。

五、证明题

1.证明:设,若x∈A? (B?C),则x∈A或x∈B?C,

即x∈A或x∈B且x∈A或x∈C.

即x∈A?B且x∈A?C,

即x∈T=(A?B) ? (A?C),

所以A? (B?C)? (A?B) ? (A?C).

反之,若x∈(A?B) ? (A?C),则x∈A?B且x∈A?C,

即x∈A或x∈B且x∈A或x∈C,

即x∈A或x∈B?C,

即x∈A? (B?C),

所以(A?B) ? (A?C)? A? (B?C).

因此.A? (B?C)=(A?B) ? (A?C).

2.证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x ∈A且x∈B或 x∈A且x∈C,

也即x∈A∩B或x∈A∩C,即x∈T,所以S?T.

反之,若x∈T,则x∈A∩B或x∈A∩C,

即x∈A且x∈B 或x∈A且x∈C

也即x∈A且x∈B∪C,即x∈S,所以T?S.

因此T=S.

3.设R是集合A上的对称关系和传递关系,试证明:若对任意a?A,存在b?A,使得?R,则R是等价关系.

证明:已知R是对称关系和传递关系,只需证明R是自反关系.

?a?A,?b?A,使得?R,因为R是对称的,故?R;

又R是传递的,即当?R,?R ??R;

由元素a的任意性,知R是自反的.

所以,R是等价关系.

4.若非空集合A上的二元关系R和S是偏序关系,试证明:S

R?也是A上的偏序关系.

证明:.①S

<

>∈

>∈

<

,

,,所以S

,

,

>∈

?,

?<

S

x?

x

R

x

x

A

x

x

R

x

R?有自反性;

②,

?因为R,S是反对称的,

x∈

y

,A

y

x

x

y

y

x

S

x

y

S

y

x

R

x

y

R

y

x S

x

y

R

x

y

S

y

x

R

y

x

S

R

x

y

S

R

y

x

=

?

=

=

?

>∈

<

>∈

<

>∈

<

>∈

<

?>∈

<

>∈

<

>∈

<

>∈

<

?

?

>

<

?

>

<

)

,

,

(

)

,

,

(

) ,

,

(

)

,

,

(

,

,所以,R?S有反对称性.

③A

z

y

x∈

?,

,,因为R,S是传递的,

所以,S

R?有传递性.

总之,R是偏序关系.

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学试卷及答案(2)

一、填空 20% (每小题2分) 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

自考离散数学试题及答案

一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列句子不是.. 命题的是( D ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的 D .太好了! 2.下列式子不是.. 谓词合式公式的是( B ) A .(?x )P (x )→R (y ) B .(?x ) ┐P (x )?(?x )(P (x )→Q (x )) C .(?x )(?y )(P (x )∧Q (y ))→(?x )R (x ) D .(?x )(P (x ,y )→Q (x ,z ))∨(?z )R (x ,z ) 3.下列式子为重言式的是( ) A .(┐P ∧R )→Q B .P ∨Q ∧R →┐R C .P ∨(P ∧Q ) D .(┐P ∨Q )?(P →Q ) 4.在指定的解释下,下列公式为真的是( ) A .(?x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2} B .(?x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2} C .(?x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} D .(?x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} 5.对于公式(?x ) (?y )(P (x )∧Q (y ))→(?x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元 C .(?x )的辖域是R(x , y ) D .(?x )的辖域是(?y )(P (x )∧Q (y ))→(?x )R (x ,y ) 6.设论域为{1,2},与公式(?x )A (x )等价的是( ) A .A (1)∨A (2) B .A (1)→A (2) C .A (1)∧A (2) D .A (2)→A (1) 7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( ) A .仅是入射 B .仅是满射 C .是双射 D .不是函数 8.下列关系矩阵所对应的关系具有反对称性的是( ) A .???? ??????001110101 B .??????????101110001 C .??????????001100100 D .???? ??????001010101 9.设R 1和R 2是集合A 上的相容关系,下列关于复合关系R 1?R 2的说法正确的是( ) A .一定是等价关系 B .一定是相容关系

离散数学试卷及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选 项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z, Z是整数集, 定义为x xy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案) 一、(10分)判断下列公式的类型(永真式、永假式、可满足式)? 1)((P→Q)∧Q)?((Q∨R)∧Q) 2)?((Q→P)∨?P)∧(P∨R) 3)((?P∨Q)→R)→((P∧Q)∨R) 解:1)永真式;2)永假式;3)可满足式。 二、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。 解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4)) ?((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4)) ?(0∨0)∧(0∨1) ?1∧1?0 三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的二元关系数是多少?A到B的函数数是多少? 解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的二元关系有2mn个。因为|BA|=|B||A|=mn,所以A到B的函数mn个。 四、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。 解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>} 五、(10分) 75个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20人这三种东西都乘过,其中55人至少乘坐过其中的两种。若每样乘坐一次的费用是0.5元,公园游乐场总共收入70元,求有多少儿童没有乘坐过其中任何一种。 解设A、B、C分别表示骑旋转木马、坐滑行铁道、乘宇宙飞船的儿童组成的集合,|A∩B∩C|=20,|A∩B|+|A∩C|+|B∩C|-2|A∩B∩C|=55,|A|+|B|+|C|=70/0.5=140。 由容斥原理,得 |A∪B∪C|=|A|+|B|+|C|―|A∩B|―|A∩C|―|B∩C|+|A∩B∩C| 所以 |A∩B∩C|=75-|A∪B∪C|=75-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|-2|A∩B∩C|)+|A∩B∩C|=75-140+55+20=10 没有乘坐过其中任何一种的儿童共10人。 六、(12分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R ∩S=[a]R∩[a]S。 解:?x∈A,因为R和S是自反关系,所以∈R、∈S,因而∈R∩S,故R∩S是自反 的。 ?x、y∈A,若∈R∩S,则∈R、∈S,因为R和S是对称关系,所以因∈R、∈S,因而∈R∩S,故R∩S是对称的。

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R 的性质为(). A.自反的B.对称的 C.传递且对称的D.反自反且传递的 8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为(). A.自反的B.对称的 C.对称和传递的D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

自考离散数学02324真题含答案(2009.4-2016.4年整理版)

全国2009年4月自学考试离散数学试题(附答案) 课程代码:02324 一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列为两个命题变元P,Q的小项是() A.P∧Q∧? P B.? P∨Q C.? P∧Q D.? P∨P∨Q 2.下列语句中是真命题的是() A.我正在说谎B.严禁吸烟 C.如果1+2=3,那么雪是黑的D.如果1+2=5,那么雪是黑的 3.设P:我们划船,Q:我们跑步。命题“我们不能既划船又跑步”符号化为() A.? P∧? Q B.? P∨? Q C.?(P?Q)D.?(? P∨? Q) 4.命题公式(P∧(P→Q))→Q是() A.矛盾式B.蕴含式 C.重言式D.等价式 5.命题公式?(P∧Q)→R的成真指派是() A.000,001,110,B.001,011,101,110,111 C.全体指派D.无 6.在公式(x ?)F(x,y)→(?y)G(x,y)中变元x是() A.自由变元B.约束变元 C.既是自由变元,又是约束变元D.既不是自由变元,又不是约束变元 7.集合A={1,2,…,10}上的关系R={|x+y=10,x∈A,y∈A},则R的性质是() A.自反的B.对称的 C.传递的、对称的D.反自反的、传递的 8.若R和S是集合A上的两个关系,则下述结论正确的是() A.若R和S是自反的,则R∩S是自反的 B.若R和S是对称的,则R S是对称的 C.若R和S是反对称的,则R S是反对称的 D.若R和S是传递的,则R∪S是传递的 9.R={<1,4>,<2,3>,<3,1>,<4,3>},则下列不是 ..t(R)中元素的是() A.<1,1> B.<1,2> C.<1,3> D.<1,4>

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A卷及答案) 一、证明题(10分) 1) (P∧Q∧A C)∧(A P∨Q∨C ) (A∧(P Q ))C。P<->Q=(p->Q)合取(Q->p) 证明: (P∧Q∧A C)∧(A P∨Q∨C) (P ∨Q ∨A∨C)∧(A∨P∨Q∨C) ((P ∨Q ∨A)∧(A∨P∨Q))∨C反用分配律 ((P∧Q∧A)∨(A ∧P ∧Q))∨C ( A∧((P∧Q)∨(P ∧Q)))∨C再反用分配律 GAGGAGAGGAFFFFAFAF

( A∧(P Q))∨C (A∧(P Q ))C 2) (P Q)P Q。 证明:(P Q)((P∧Q))(P ∨Q))P Q。 二、分别用真值表法和公式法求(P(Q∨R))∧(P∨(Q R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。 主析取范式可由析取范式经等值演算法算得。 GAGGAGAGGAFFFFAFAF

证明: 公式法:因为(P(Q ∨R))∧(P∨(Q R)) (P∨Q∨R)∧(P∨(Q ∧R )∨(Q ∧R)) (P∨Q ∨R)∧(((P∨Q)∧(P ∨R ))∨(Q ∧R ))分配律 (P∨Q∨R)∧(P∨Q ∨Q)∧(P∨Q ∨R)∧(P∨R ∨Q)∧(P∨R ∨R) (P∨Q ∨R)∧(P∨Q ∨R )∧(P ∨Q∨R) M∧5M∧6M使(非P析取Q析取R)为0 4 GAGGAGAGGAFFFFAFAF

所赋真值,即100,二进制为4 GAGGAGAGGAFFFFAFAF

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为(). A.自反的 B.对称的 C.传递且对称的 D.反自反且传递的 8.设集合A= {1,2,3,4,5,6 }上的二元关系R ={?a, b∈A, 且a +b = 8},则R具有的性质为(). A.自反的 B.对称的 C.对称和传递的 D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

7月全国自考离散数学试题及答案解析

全国2018年7月自学考试离散数学试题 课程代码:02324 一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列句子不是 ..命题的是() A.中华人民共和国的首都是北京B.张三是学生 C.雪是黑色的D.太好了! 2.下列式子不是 ..谓词合式公式的是() A.(?x)P(x)→R(y) B.(?x) ┐P(x)?(?x)(P(x)→Q(x)) C.(?x)(?y)(P(x)∧Q(y))→(?x)R(x) D.(?x)(P(x,y)→Q(x,z))∨(?z)R(x,z) 3.下列式子为重言式的是() A.(┐P∧R)→Q B.P∨Q∧R→┐R C.P∨(P∧Q) D.(┐P∨Q)?(P→Q) 4.在指定的解释下,下列公式为真的是() A.(?x)(P(x)∨Q(x)),P(x):x=1,Q(x):x=2,论域:{1,2} B.(?x)(P(x)∧Q(x)),P(x):x=1,Q(x):x=2,论域: {1,2} C.(?x)(P(x) →Q(x)),P(x):x>2,Q(x):x=0,论域:{3,4} D.(?x)(P(x)→Q(x)),P(x):x>2,Q(x):x=0,论域:{3,4} 5.对于公式(?x) (?y)(P(x)∧Q(y))→(?x)R(x,y),下列说法正确的是() A.y是自由变元B.y是约束变元 C.(?x)的辖域是R(x, y) D.(?x)的辖域是(?y)(P(x)∧Q(y))→(?x)R(x,y) 6.设论域为{1,2},与公式(?x)A(x)等价的是() A.A(1)∨A(2) B.A(1)→A(2) C.A(1)∧A(2) D.A(2)→A(1) 7.设Z+是正整数集,R是实数集,f:Z+→R, f(n)=log2n ,则f() 1

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案 一、选择或填空(数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:(1),(4) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。答:x,y, x,z 5、判断下列语句是不是命题。若是,给出命题的真值。( ) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。(5) 前进! (6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是 (4)是,T (5)不是(6)不是 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死 7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q→ ?(2)Q P? →(3)Q P? ?(4)Q P→ ? 8、设个体域为整数集,则下列公式的意义是( )。 (1) ?x?y(x+y=0) (2) ?y?x(x+y=0) 答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值: (1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( ) (3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( ) (1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1) 11、命题“2是偶数或-3是负数”的否定是()。答:2不是偶数且-3不是负数。 12、永真式的否定是() (1) 永真式(2) 永假式(3) 可满足式(4) (1)--(3)均有可能答:(2) 13、公式(?P∧Q)∨(?P∧?Q)化简为(),公式 Q→(P∨(P∧Q))可化简为()。答:?P ,Q→P 14、谓词公式?x(P(x)∨?yR(y))→Q(x)中量词?x的辖域是()。答:P(x)∨?yR(y) 15、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为()。

【离散数学】知识点及典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

离散数学及答案

全国2010年7月自学考试离散数学试题 课程代码:02324 一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列句子不是..命题的是( D ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的 D .太好了! 2.下列式子不是..谓词合式公式的是( B ) A .(?x )P (x )→R (y ) B .(?x ) ┐P (x )?(?x )(P (x )→Q (x )) C .(?x )(?y )(P (x )∧Q (y ))→(?x )R (x ) D .(?x )(P (x ,y )→Q (x ,z ))∨(?z )R (x ,z ) 3.下列式子为重言式的是( ) A .(┐P ∧R )→Q B .P ∨Q ∧R →┐R C .P ∨(P ∧Q ) D .(┐P ∨Q )?(P →Q ) 4.在指定的解释下,下列公式为真的是( ) A .(?x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2} B .(?x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2} C .(?x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} D .(?x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} 5.对于公式(?x ) (?y )(P (x )∧Q (y ))→(?x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元 C .(?x )的辖域是R(x , y ) D .(?x )的辖域是(?y )(P (x )∧Q (y ))→(?x )R (x ,y ) 6.设论域为{1,2},与公式(?x )A (x )等价的是( ) A .A (1)∨A (2) B .A (1)→A (2) C .A (1)∧A (2) D .A (2)→A (1) 7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( ) A .仅是入射 B .仅是满射 C .是双射 D .不是函数 8.下列关系矩阵所对应的关系具有反对称性的是( ) A .???? ? ?????001110101 B .???? ? ?????101110001

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

文本预览
相关文档 最新文档