当前位置:文档之家› AM-2012-BC Derived Carbon for__ Asymmetric Supercapacitor

AM-2012-BC Derived Carbon for__ Asymmetric Supercapacitor

AM-2012-BC Derived Carbon for__ Asymmetric Supercapacitor
AM-2012-BC Derived Carbon for__ Asymmetric Supercapacitor

Bacterial Cellulose Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: Asymmetric Supercapacitor with

High Energy and Power Density**

By Li-Feng Chen, Zhi-Hong Huang, Hai-Wei Liang, Qing-Fang Guan, Shu-Hong Yu*

_____________________________________________________________________________________

[*] Prof. S.H. Yu, Dr. L.F. Chen, Z.H. Huang, H.W. Liang, Q.F. Guan

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

E-mail: shyu@https://www.doczj.com/doc/ab4837656.html,. Fax: +86 551 3603040

[**] This work is supported by National Basic Research Program of China (Grant 2010CB934700), National Natural Science Foundation of China (Grant nos. 91022032, 21061160492, J1030412), the Chinese Academy of Sciences (Grant KJZD-EW-M01-1), the International Science & Technology Cooperation Program of China (Grant 2010DFA41170), and Principal Investigator Award by the National Synchrotron Radiation Laboratory at University of Science and Technology of China. Supporting Information is available from the Wiley Online Library or from the author.

Table Content Used Only:

High performance asymmetric supercapacitor: a new kind of high-performance asymmetric supercapacitor has been designed with pyrolyzed bacterial cellulose (p-BC) coated MnO2 as positive electrode material and nitrogen-doping p-BC as negative electrode material via an easy, efficient, large-scale, and green fabrication approach (see Figure). The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density.

Keywords: bacterial cellulose, carbon nanofibers, asymmetric supercapacitors, manganese dioxide, nitrogen doping, high energy and power density

Nowadays, supercapacitor has drawn extensive attentions because they can instantaneously transport higher power within a very short period than rechargeable batteries and possess higher energy density than conventional dielectric capacitors,[1]which makes them promising for applications such as backup/auxiliary power sources of electric vehicles and stand-by power systems.[2-5]However, commercial supercapacitors suffer from a low energy density;[2, 6]and certain fields such as load-leveling and large industrial equipment need supercapacitors with higher energy and power density to optimize their performance.[7,8] Therefore,it is essential to improve the energy density of the supercapacitor significantly for meeting the pressing requirements.

For a long period, a great deal of work has been done to enhance energy density by extending the operating voltage using organic electrolyte or electrode materials with large capacitances in the symmetric supercapacitor.[9-11]Nevertheless, the organic media inevitably increases the equivalent series resistance compared with aqueous media, leading to relatively low power density.[12] Moreover, some organic media are expensive, flammable, or highly toxic.[13]Then, various categories of redox-reaction materials, including metal oxides, conductive polymers and hybrid materials,[14]have been employed as electrodes to improve the energy density dramatically. Among them, MnO2 exhibiting low cost, environmental compatibility, and high theoretical pseudo-capacitance, has attracted intense attentions.[15,16] However, the low conductivity of MnO2 (10?5?10?6 S·cm?1) results in a poor charge/discharge rate for high-power applications.[17]To improve the electrical conductivity, researchers developed approaches of compositing nanosized MnO2with carbon materials, including carbon nanofoams,[18,19]carbon nanotubes,[7]graphene.[20,21]Unfortunately, the carbon/MnO2-based capacitor only shows ideal capacitive behavior in aqueous electrolytes, where the potential window is relatively small, and consequently deliver limited energy or power densities.[22] The best way to solve

this problem is to utilize an effective strategy of the asymmetric system by coupling different positive and negative electrode materials with well-separated potential windows to obtain a high operation voltage, thus producing a large energy and power densities.[4,22,23]The key points in achieving ultrahigh energy and power densities are to design appropriate materials (especially nanostructured containing-carbon materials) as Faradic electrode and to select suitable capacitive electrode materials (usually carbon materials).[2,6,23]Although the present containing-carbon asymmetric supercapacitors exhibit good properties,[5,6, 12, 24] preparation processes of some relevant materials (hazardous, awkward, time-consuming, or high-cost)limit their widespread application. Thus, it urgently demands for developing relatively simple, cost-effective and green approaches.

Bacterial cellulose (BC), a low-cost, environmentally friendly, and abundant resource, can be produced on industrial scales via microbial fermentation process,[25,26]furthermore, pyrolyzed BC pellicles (p-BC) composed of interconnected nanowires has been used to prepare graphitized films and carbon nanofibers.[26,27]Inspired by these facts, here we construct an asymmetric supercapacitor containing a three-dimensional (3D) p-BC nanofiber network coated MnO2 (p-BC@MnO2) as positive electrode prepared by a redox at room temperature and nitrogen-doped p-BC (p-BC/N) nanomaterial as negative electrode derived from p-BC and urea via a facile hydrothermal reaction under mild condition.The optimized device can be reversibly charged/discharged at a voltage of 2.0 V in 1.0 M Na2SO4 solution, reaching a considerably high energy density of 32.91 Wh·kg?1 and maximum power density of 284.63 kW·kg?1. Meanwhile,the supercapacitor exhibits good cycling durability with95.4% specific capacitance retained after 2000cycles. More importantly, the electrode materials have unique characteristics, such as low cost and easy fabrication.

Since the pseudo-capacitance of MnO2dominantly determines from the surface Faradic

reactions,[15]it has been greatly desirable to prepare MnO2nanostructures with an ultrathin morphology. Hence, we coated the carbon nanofibers with the MnO2 nanofilm, which provided a high electrochemically active surface area for redox Faradic reaction.[12]

Figure 1. (a) Photograph of the pristine material BC pellicle. (b) SEM image of p-BC. (c) SEM image of p-BC@MnO2-2h (inset: photograph of p-BC@MnO2-2h). (d-g) STEM image of p-BC@MnO2-2h with corresponding elemental mapping images of (e) C, (f) Mn, and (g) O.

The BC pellicles (Figure 1a) were employed as raw materials to fabricate nanofibrous 3D carbon network p-BC via annealing at 1000 °C for 2.0 h in N2. Then, the p-BC pellicles were immersed into 0.1 M KMnO4/0.1 M K2SO4aqueous solution to obtain the product p-BC@MnO2nanocomposites. Different amounts of MnO2 can easily coat on the p-BC only by controlling reaction time, leading to samples denoted here as p-BC@MnO2-xh (x =0.5, 1.5, 2.0, 2.5). Increasing reaction time, significantly increase of MnO2deposited on the p-BC is observed by the analysis of inductively coupled plasma-atomic emission spectrometry (ICP-AES): the mass percentage of MnO2 with dipping time of 0.5, 1.5, 2.0, and 2.5 h is13.24±0.14, 26.83±0.27, 34.32±0.34, and 38.56±0.39 wt %, respectively.It suggests that MnO4?ions can be reduced spontaneously to MnO2on the surface of p-BC by oxidizing exterior carbon based on the redox reaction:4MnO4? + 3C + H2O → 4MnO2+

CO 32? + 2HCO 3?. This is a highly efficient green synthesis without adding any poisonous agents; moreover, it proceeds in a neutral mild condition. Consequently, the p -BC@MnO 2-2h still maintains the initial structure of p -BC pellicle (inset in Figure 1c).

-0.20.00.20.40.60.8 1.0 1.2

-2.0

-1.5-1.0

-0.5

0.00.51.01.52.0

(a)I s (A g -1)

E (V)

p-BC

p-BC@MnO 2-0.5h p-BC@MnO 2-1.5h

p-BC@MnO 2-2h

p-BC@MnO 2

-2.5h

20406080100120140160

0.00.20.40.60.81.01.2

(b)C e l l v o l t a g e (V )

Times (sec)

p-BC

p-BC@MnO 2-0.5h p-BC@MnO 2-1.5h p-BC@MnO 2-2h p-BC@MnO 2-2.5h

-0.20.00.20.40.60.8 1.0 1.2

-1.2

-0.8

-0.40.0

0.40.8

1.2

(c)I s (A g -1)

E (V)

p-BC

p-BC/N-3M p-BC/N-4M p-BC/N-5M p-BC/N-6M

20

406080100

0.00.20.40.60.81.0

1.2

(d)C e l l v o l t a g e (V )

Times (sec)

p-BC

p-BC/N-3M p-BC/N-4M p-BC/N-5M p-BC/N-6M

Figure 2. Electrochemical properties of the materials measured using a two-electrode system in 1.0 M Na 2SO 4 aqueous electrolyte. a) Cyclic voltammetry (CV) curves of p -BC@MnO 2 and p -BC at the scan rate of 10 mV s ?1. b) Charge-discharge curves of p -BC@MnO 2 and p -BC at the current density of 1.0 A g ?1. c) CV curves of p -BC/N and p -BC at the scan rate of 10 mV s ?1. d) Charge-discharge curves of p -BC/N and p -BC at the current densities of 1.0 A g ?1.

Scanning electron microscopy (SEM) image of p -BC (Figure 1b) displays that the as-pyrolyzed BC pellicle has a network structure with 10?20 nm nanowires and many interconnected pores, where void volume allows MnO 4? ions to diffuse into the pellicle and be reduced to MnO 2 on the surface of the nanofibers. After deposition of MnO 2 the nanocomposite still maintains a 3D structure consisting of coadjacent nanowires (Figure 1c). Furthermore, there are no obvious agglomerates of MnO 2 on the

exterior of p-BC pellicle (see Supporting Information Figure S1).More importantly, the scanning transmission electron microscopy (STEM) and X-ray elemental mappings (Figure 1d?g) prove that the MnO2-covering p-BC was successfully fabricated by the spontaneous reduction deposition process, meanwhile, suggested homogeneous, nanoscale of manganese oxide is distributed throughout the p-BC pellicle. Moreover, during the preparation of the STEM specimen, MnO2nanoparticles are still incorporated on the surface of p-BC after a long time sonication, implying the strong interaction between MnO2 nanofilms and p-BC nanowire. From the above discussion, it is found that the MnO2 nanofilm intimately connected with the p-BC nanowires and uniformly distributed throughout the p-BC pellicles.

Then, X-ray photoelectron spectroscopy (XPS) was used to identify the presence and oxidation state of the as-synthesized MnO2 covering p-BC. The survey XPS spectrum of p-BC@MnO2-2h confirms the co-existence of Mn, C, and O elements (see Supporting Information Figure S2a). And the Mn 2p spectrum suggests the formation of manganese oxides. Meanwhile, the p-BC@MnO2-2h exhibits a peak separation value of 4.8 eV for the Mn 3s (Supporting Information Figure S2c), indicating the Mn4+ is dominant in the product.[7, 28] Next, the crystal phase of MnO2 in the products was analyzed by X-ray diffraction (XRD) (Supporting Information). The XRD pattern suggested p-BC@MnO2-xh consists of MnO2 (JCPDS 42-1317) and graphitized carbon.[12]In addition, for the p-BC@MnO2, with the increase of dipping time of p-BC in KMnO4/K2SO4 solution, the intensity of the peak at around 37°gradually enhances due to more MnO2 loaded on the p-BC nanowires. These results were also revealed by Raman spectrum (see Supporting Information Figure S3b).The G-band in the first-order Raman spectra is sharper and stronger than the D-band, indicating a high graphitization of p-BC.[8, 12]The relative intensity of MnO2 peaks to C peaks suggests a gradual increase of MnO2 loaded on p-BC with

the prolongation of dipping time. These results also revealed that the presence of p-BC as carbon source in the redox reaction results in the formation of MnO2coating on p-BC nanowires. The N2 adsorption?desorption isotherms and pore size distribution curves reveal the p-BC exhibits the coexistence of micropores and mesopores,[8] while the product p-BC@MnO2-2h possesses a large sum of mesopores (see Supporting Information Figure S4). Such mesoporous structure allows fast diffusion of electrolyte ions owing to the reduced solid-state transport length. The porous properties of these materials were summarized in Table S1 (Supporting Information).

In the following step, the capacitive performances of p-BC@MnO2-xh composites were evaluated by a two-electrode system with a symmetric supercapacitor p-BC@MnO2-xh//p-BC@MnO2-xh in 1.0 M Na2SO4 aqueous electrolyte. To fabricate the symmetric device, the p-BC@MnO2-xh was cut into slices (1.0 ×1.0 cm) as the electrode material without using any binding agents and/or conducting additives. The CV curves of p-BC/p-BC and p-BC@MnO2-0.5h//p-BC@MnO2-0.5h are similar to quasi-rectangle and exhibit near mirror-image symmetry(Figure 2a), demonstrating the ideal capacitive behavior. And the CV curves exhibits larger rectangle with the increase of dipping time of p-BC in KMnO4/K2SO4aqueous solution. The galvanostatic charge/discharge curves of the p-BC@MnO2-xh//p-BC@MnO2-xh at a current density of 1.0 A g?1 (Figure 2b) are nearly linear and symmetrical without obvious IR drop, suggesting a rapid and reversible Faradic reaction between Na+ and the ultrathin MnO2.[12]The homogeneous distribution of the MnO2is crucially important for increasing the electrochemical capacitance of the nanocomposites without increasing charge transfer or contact resistance[19]Because formed MnO2nanofilm is on the surface of p-BC, the capacitance of p-BC@MnO2-xh//p-BC@MnO2-xh is much larger than that of p-BC//p-BC (77.76 F·g?1). Prolonging the dipping time from 0.5 h to 1.5 h, then to 2.0 h leads to a significant increase of the specific

capacitance (C s) for the electrode material (at 1.0 A·g?1) from 139.78 F·g?1 to 213.32 F·g?1, then to 254.64F·g?1, owing to the increase of the incorporating pseudocapacitive material into the 3D porous network. And the C s slightly enhances to 256.74 F g?1 at the dipping time of 2.5 h because most of the pseudo-capacitance charge is mainly transferred at the surface or in the bulk near surface of the electrode material. [15]Hence, we plan to employ p-BC@MnO2-2h as the positive material of our asymmetry supercapacitor. Additionally, the C s of p-BC@MnO2-2h is much higher than that of MnO2 nanoflowers grown on carbon nanotube (CNT) arrays (199.0 F·g?1)[29] and comparable to that of MnO2 incorporated within activated graphene.[24]

The rate capability is a key for the supercapacitor,[8]hence we plotted the C s of p-BC and p-BC@MnO2-xh at different current densities. Clearly, the rate capability shows a slight decrease with the increase of dipping time (see Supporting Information Figure S5a),which is attributed to a little reduced access of the electrolyte to the composite with a higher content of MnO2.[12] Nevertheless, the p-BC@MnO2-2h nanocomposite still presents a good rate capacity as the uniform MnO2nanofilm plays an important role in fast electron propagation during the charge/discharge at high current densities.[30]For example, its C s maintains as high as 197.42 F·g?1at a rate of 10 A·g?1, 77.53 % retention of 1.0 A·g?1, which is larger than that of the MnO2nanofibers grown on graphitic hollow carbon spheres (GHCS-MnO2) (144.0 vs. 101.0 F·g?1 as the current density increases from 1.0 to 10 A·g?1).[12]Moreover, its rate capability can be comparable to that of the multiwall carbon nanotube/MnO2 (MWNT/MnO2)[7] and graphene/MnO2.[5]

The good electrochemical performances of p-BC@MnO2-2h can be ascribed to its unique nanostructure; the low-cost p-BC substrate with high graphitization serves as a highly conductive matrix for fast ion and electron transport, while the ultrathin MnO2film strongly anchoring on the

surface of p-BC nanowires can effectively reduce the diffusion length of electrolyte ions during the charge/discharge process and provide a large electrochemically active surface area for the fast reversible Faradic redox reactions.[12, 23]

Our recent research revealed the nitrogen-doped carbon nanofiber as the electrode material of supercapacitor can enlarge the capacitance.[8]Therefore, nitrogen-doped p-BC (p-BC/N) may be a highly promising candidate for the cathode material of an asymmetric supercapacitor. Subsequently, we used p-BC as a precursor to synthesize the p-BC/N only through a simple hydrothermal reaction.

Figure 3. (a) SEM image of p-BC/N-5M (inset: photograph of p-BC/N-5M). (b) Typical STEM image of p-BC/N-5M. (c, d) Corresponding elemental mapping images of (c) C and (d) N.

The typical p-BC/N denoted as p-BC/N-5M was synthesized by a hydrothermal reduction with 40 mg p-BC pellicle and 40.0 mL of 5.0 M urea aqueous solution at 180 °C for 12 h; in the preparation process, the urea aqueous solution can easily permeate through the p-BC, thus the product can be prepared via the hydrothermal reaction on a large scale. The as-prepared p-BC/N-5M still maintains a free-standing 3D pellicle (Figure 3a) with overlapped nanowires and cross-linking pores (Figure 3a). The STEM revealed the p-BC/N-5M possesses network structure consisting of 10?20 nm nanowires (Figure 3b). Moreover, elemental mapping of p-BC/N-5M demonstrated the uniform doping of nitrogen (Figure 3c,d).

Figure 4. Capacitive performances of the asymmetric supercapacitor (p-BC@MnO2-2h//p-BC/N-5M) with p-BC@MnO2-2h as positive electrode and p-BC/N-5M as negative electrode in 1.0 M Na2SO4 aqueous electrolyte. (a) Scheme of our asymmetric supercapacitor device. (b) CV curves of different operation voltages at the scan rate of 20 mV s?1. (c) Galvanostatic charge?discharge curves of different operation voltages at a current density of 0.25 A g?1. (d) Potential drop (V drop) at different discharge current densities. e) Ragone plots of the supercapacitors. (f) Digital image of a red light-emitting diode (LED) lighted by the p-BC@MnO2-2h//p-BC/N-5M device.

To evaluate the nitrogen functionalities of p-BC/N-5M, XPS was carried out. The doping of nitrogen changes the number and type of surface species (see Supporting Information Figure S6a); N 1s peak is no obvious for p-BC, however, the high-resolution one in the p-BC/N-5M can be divided

into three forms of functional groups (see Supporting Information Figure S6b), namely, pyridinic (N-6, 398.1±0.2 eV), pyrrolic/pyridine (N-5, 400.0±0.2 eV), and quaternary nitrogen (N-Q, 401.0±0.2 eV),[8] indicating there are a great many nitrogen atoms. Accordingly, the low-temperature hydrothermal reaction between the p-BC and urea may be an effective method to introduce surface functionalities into carbon materials.The plentiful N-containing species (especially, N-6 and N-Q, 5.15 atom %) would serve as electrochemically active sites for improving the capacitive properties of the materials.[8, 31]

After doping nitrogen, there is a decrease in the surface area and volume of micropores owing to the destruction of pore walls and micropore blocking by functional groups.[32]p-BC/N-5M still exhibits a high S BET (252.23 m2·g?1) with a large number of mesopores (see Supporting Information Figure S7). The pore parameters of this material were also summarized in Table S1 (Supporting Information).The preserved porous network and high mesopore ratio are profitable to the transport and diffusion of electrolyte ions during the fast charge/discharge process, facilitating high-quality performance of the supercapacitor.[5]

In order to demonstrate p-BC/N-5M is an optimal N-doping p-BC as the electrode material of supercapacitors, the controlled samples, p-BC/N-yM (y denoted as the molarity of urea in aqueous solution, y =3, 4, 6), were synthesized only by adjusting the concentration of urea solution in the reaction. The electrochemical tests of the p-BC/N were also performed via a two-electrode system in 1.0 M Na2SO4aqueous electrolyte. CV curves of p-BC/N//p-BC/N are relatively rectangular-like shapes and display near mirror-like images (Figure 2c),which suggested the supercapacitor possesses ideal capacitive behavior and a good reversibility.[33] The appearance of a few humps in CV curves was owing to the redox reactions of electrochemically active functionality groups on the surface of

electrode,[8]thus it follows that the capacitive response of the p-BC/N//p-BC/N is contribution of electric double-layer capacitance (EDLC) and redox reactions. Moreover, C s of p-BC/N-5M calculated from galvanostatic charge/discharge curves (Figure 2d) is 173.32F·g?1, much larger than that of p-BC (only 77.70 F·g?1). Previous research[32] has shown that the large C s can be ascribed to proper surface functionalities, high nitrogen level, and appropriate nitrogen species. Figure S5b depicts the relationship between the C s of p-BC/N and discharge current density (Supporting Information). Obviously,the C s value of p-BC/N-5M is much larger than that of p-BC/N-yM at same current density; furthermore,p-BC/N-5M possesses a good rate capability than other p-BC/N-yM(the C s of p-BC/N-5M is still as high as136.68F g?1even at a high current density of 50 A·g?1). As a result, we chose p-BC/N-5M as the negative material of the following asymmetric supercapacitor. The good electrochemical performance of p-BC/N-5M can be attributed to high-content nitrogen doping and proper nitrogen species, which can improve the capacitance, electrical conductivity, and the wettability in the electrolyte.[8]In addition, the interconnected pore structure and high specific surface area of p-BC/N-5M increase the accessibility for electrolyte ion diffusion and transport.[31,32]

Then, we fabricated an asymmetric supercapacitor using p-BC@MnO2-2h as positive electrode material and p-BC/N-5M as negative material with 1.0 M Na2SO4aqueous electrolyte. Referring to previous reports, the MnO2-based carbon material is electrochemically stable within a potential window of 0?1.0 V (vs. Ag/AgCl) [5]and the nitrogen-doping carbon material displays a good electrochemical stability in electrolyte of 1.0 M Na2SO4aqueous solution within ?1.0?0 V (vs. Ag/AgCl).[32][5] Therefore, the working voltage of the designed asymmetric device (Figure 4a, and also see Supporting Information Figure S8) can extend up to 2.0 V.[13, 34] The mass ratio of positive electrode (0.6 mg) to negative electrode (0.9 mg) was fixed close to 0.68on the basis of charge balance

theory.[23] Figure 4b displays the device exhibits a good capacitive behavior with nearly rectangular-shape CV curves without obvious redox peaks, even operating voltage up to 2.0 V . Moreover, the charge/discharge curve still preserve nearly symmetric at the operation voltage as high as 2.0 V (Figure 4c), suggesting at the voltage 2.0 V the device exhibits ideal capacitive character with a rapid I ?V response and small equivalent series resistance. Thereby, in the subsequent research we chose a working voltage of 2.0 V.

The rectangular shape of CV curve at sweep rate as high as 400 mV s ?1 still maintains well (Figure S9a), meanwhile, the charge/discharge curves at different current densities with the operation voltage of 2.0 V are almost symmetric (Figure S9b), demonstrating the asymmetric supercapacitor exhibits a desirable fast charge/discharge property.[5] From the variation of IR drop (IR drop ) at different discharge current densities (Figure 4d), we can reasonably infer the asymmetric supercapacitor has small internal resistance (IR drop [V] = 0.01094 +

M

0.00695

I [A]), which favors high discharge power delivery in practical applications. Moreover, the Ragone plots (Figure 4e) obtained from Figure S9b,c clearly shows the asymmetric supercapacitor has significant enhancements in both energy density and power density than p -BC@MnO 2-2h//p -BC@MnO 2-2h. And the maximum energy density of this asymmetric device (32.91 Wh kg ?1) is much higher than that of p -BC/N-5M//p-BC/N-5M and p -BC//p-BC. The value is also much larger than those of symmetrical supercapacitor and containing-carbon MnO 2 nanocompound asymmetric supercapacitors (see Supporting Information Table S2). Such a high energy density of our asymmetric capacitor is mainly attributed to the large work voltage and capacitances of two electrodes.[12] To show the practical application of p -BC@MnO 2-2h//p -BC/N-5M, we connected our prototype device with a red LED and successfully lighted it (Figure 4f). More importantly, the LED was on for 90 s after being charged for 44 s at 2.0 V (see Supporting Information

movie S1). Furthermore, the asymmetric device can deliver a maximum power density of 284.63 kW·kg?1,which surpasses most of the other reported MnO2-based supercapacitors.[5,12,24]Additionally, the device exhibits a good electrochemical stability with~95.4%retention of initial specific capacitance after 2000 cycles(see Supporting Information Figure S9d). The outstanding capacitive properties of p-BC@MnO2-2h//p-BC/N-5M can be ascribed to the use of high conductivity aqueous electrolyte and two synergetic asymmetric electrodes without any binding agents; the ultrathin MnO2 coating on p-BC affords more electrochemically active surface area for fast and reversible Faradic reaction, meanwhile the negative electrode of p-BC/N-5M provides much faster electron transfer, resulting in the enhancement of work voltage.

In summary, we have developed a simple, scalable, cost-effective, and green approach to fabricate one binder-free asymmetric supercapacitor with p-BC@MnO2-2h as positive electrode material, p-BC/N-5M as negative electrode material.The optimal device can be reversibly charged/discharged at an operation voltage of 2.0 V in 1.0 M Na2SO4 aqueous electrolyte,delivering a high energy density of 32.91 Wh kg?1 and a maximum power density of 284.63 kW kg?1, possessing a remarkable cycling stability with ~95.4% capacity remained after 2,000 continuous cycles.These exciting results demonstrate such relatively easy-synthesis, low-cost, and macroscopic-scale electrode materials have great potential in the fabrication of high-class supercapacitor devices for practical applications.

References

[1] L. Zhao, L. Z. Fan, M. Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M. M. Titirici, Adv. Mater. 2010,

22, 5202.

[2] P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.

[3] J. R. Miller, P. Simon, Science 2008, 321, 651.

[4] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828.

[5] Z. J. Fan, J. Yan, T. Wei, L. J. Zhi, G. Q. Ning, T. Y. Li, F. Wei, Adv. Funct. Mater. 2011, 21,

2366.

[6] Z. S. Wu, W. C. Ren, D. W. Wang, F. Li, B. L. Liu, H. M. Cheng, Acs Nano 2010, 4, 5835.

[7] S. W. Lee, J. Kim, S. Chen, P. T. Hammond, Y. Shao-Horn, Acs Nano 2010, 4, 3889.

[8] L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, Z. Y. Wu, S. H. Yu, Acs Nano 2012,

6, 7092.

[9] D. Hulicova-Jurcakova, A. M. Puziy, O. I. Poddubnaya, F. Suárez-García, J. M. D. Tascón, G. Q.

Lu, J. Am. Ceram. Soc. 2009, 131, 5026.

[10] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett.

2011, 11, 2472.

[11] Q. Zhang, J. P. Rong, D. S. Ma, B. Q. Wei, Energy Environ. Sci. 2011, 4, 2152.

[12] Z. B. Lei, J. T. Zhang, X. S. Zhao, J. Mater. Chem. 2012, 22, 153.

[13] T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier,

D. Belanger, P. Simon, J. Power Sources 2007, 173, 633.

[14] H. Jiang, J. Ma, C. Z. Li, Adv. Mater. 2012, 24, 4197.

[15] D. G. Ivey, W. W. Wei, W. F., X. W. Cui, W. X. Chen, Chem. Soc. Rev. 2011, 40, 1697.

[16] Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C.-H. Shek, C. M. L. Wu, J. K. L. Lai, Chem. Rev. 2012,

112, 3833.

[17]X. Y. Lang, A. Hirata, T. Fujita, M. W. Chen, Nat. Nanotechnol. 2011, 6, 232.

[18] A. E. Fischer, M. P. Saunders, K. A. Pettigrew, D. R. Rolison, J. W. Long, J. Electrochem. Soc.

2008, 155, A246.

[19] A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, J. W. Long, Nano Lett. 2007, 7, 281.

[20] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, Z. Bao,

Nano Lett. 2011, 11, 2905.

[21] B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, Acs Nano 2012, 6, 4020.

[22] C. J. Xu, H. D. Du, B. H. Li, F. Y. Kang, Y. Q. Zeng, J. Electrochem. Soc. 2009, 156, A435.

[23] G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 797.

[24] X. Zhao, L. Zhang, S. Murali, M. D. Stoller, Q. Zhang, Y. Zhu, R. S. Ruoff, Acs Nano 2012, 6,

5404.

[25] Z. China Patent, Vol. Chinese Patent, ZL96100534.3, China.

[26] H. W. Liang, Q. F. Guan, Z. Zhu, L. T. Song, H. B. Yao, X. Lei, S. H. Yu, NPG Asia Mater. 2012,

DOI:10.1038/am.2012.34.

[27] H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Adv. Mater.

2005, 17, 153.

[28] M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 2004, 16, 3184.

[29] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K.

A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.

[30] L. Bao, J. Zang, X. Li, Nano Lett. 2011, 11, 1215.

[31] F. Su, C. K. Poh, J. S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X. W. Lou, Energy Environ. Sci. 2011,

4, 717.

[32] L. Sun, L. Wang, C. G. Tian, T. X. Tan, Y. Xie, K. Y. Shi, M. T. Li, H. G. Fu, RSC Adv. 2012, 2,

4498.

[33] H. Jiang, C. Z. Li, T. Sun, J. Ma, Nanoscale 2012, 4, 807.

[34] V. Khomenko, E. Raymundo-Pinero, F. Beguin, J. Power Sources 2006, 153, 183.

Supporting Information

Bacterial Cellulose Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: Asymmetric Supercapacitor with

High Energy and Power Density

Li-Feng Chen, Zhi-Hong Huang,Hai-Wei Liang,Qing-Fang Guan,Shu-Hong Yu*

Experimental Section

Purified bacterial cellulose (BC) pellicles (thickness: 3.0 mm) were kindly provided by Ms. C.Y. Zhong (Hainan Yeguo Foods Co., Ltd., China). All other chemicals were analytical grade and commercially available from Shanghai Chemical Reagent Co. Ltd and used as received without further purification.

Preparation of p-BC: The BC pellicles were first cut into some squares, then frozen in liquid nitrogen (?196 °C), subsequently freeze-dried in a bulk tray dryer (Labconco Corporation, USA) at a sublimating temperature of ?48 °C and a pressure of 0.04 mbar. The obtained BC was then pyrolyzed under flowing N2atmosphere at 1000 °C for 2.0 h to generate a black p-BC (the yield of p-BC by pyrolysis of bacterial cellulose is about 5.63 wt %).

Incorporation of MnO2 into p-BC pellicles: The p-BC pellicles were dipped into 0.1 M KMnO4/0.1 M K2SO4 solution for 0.5, 1.5, 2.0, and 2.5 h at room temperature within the shaking table, leading to the samples denoted as p-BC@MnO2-xh (x = 0.5, 1.5, 2.0, 2.5).

Preparation of p-BC/N pellicles:Typically, 40 mg p-BC was immersed in 40.0 mL of 5.0 M urea aqueous solution for 30 min at room temperature. Then, the mixture was transferred into a 50 mL of Teflon-lined stainless steel autoclave and maintained at 180 °C for 12 h. Finally, the as-prepared sample was washed with deionized water and alcohol for several times before freeze-dried. For comparison, the p-BC/N-yM (y = 3, 4, 6) was also synthesized under the same condition. Characterizations.SEM was performed with a field emission scanning electron microanalyzer (Zeiss Supra 40) at an acceleration voltage of 5 kV. Transmission electron microscope (TEM) images were performed on a Hitachi H7650 transmission electron microscope with CCD imaging system on an

acceleration voltage of 120 kV. High-resolution transmission electron microscope (HRTEM), scanning TEM images (STEM) and elemental mapping were obtained on a JEOL-2010 transmission electron microscope at an acceleration voltage of 200 kV. X-ray diffraction (XRD) data were characterized on a Philips X’Pert Pro Super X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation (λ = 1.541841 ?). Raman scattering spectra were obtained on a Renishaw System 2000 spectrometer using the 514.5 nm line of Ar+ for excitation. X-ray photoelectron spectra (XPS) were determined on an X-ray photoelectron spectrometer (ESCALab MKII) with an excitation source of Mg Kα radiation (1253.6 eV). N2 sorption analysis was recorded from an ASAP 2020 accelerated surface area and porosimetry instrument (Micromeritics), equipped with automated surface area, at 77 K using Barrett?Emmett?Teller (BET) calculations for the surface area. The pore size distribution (PSD) plot was conducted on the adsorption branch of the isotherm based on Barrett?Joyner?Halenda (BJH) model. The mass percentage of MnO2 coating on the p-BC was carried out by the inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis using an Atomscan Advantage (Thermo Ash Jarrell Corporation, USA) spectrometer.

Electrochemical Measurement.A two-electrode configuration consists of two slices of electrode material with the same size (about 1 cm by 1 cm), a cellulose acetate membrane (porous size of 225 nm) as separator, and two pieces of nickel foil as the current collectors.Then, the cell assemblies were wrapped with parafilm.Before the construction of assemblies, the electrodes were soaked in the 1.0 M Na2SO4 aqueous electrolyte for 3 h.

All of the capacitive performances was performed on a CHI 760D electrochemical workstation in the 1.0 M Na2SO4 solution. In the symmetric supercapacitors (p-BC//p-BC, p-BC/N-yM//p-BC/N-yM, and p-BC@MnO2-xh//p-BC@MnO2-xh), the total electrode material mass of the p-BC, p-BC/N-yM, and p-BC@MnO2-xh was 0.9 ±0.1, 0.9 ±0.1, and 1.2 ±0.1 mg, respectively. To construct the asymmetric supercapacitors, 0.6 mg p-BC@MnO2-2h pellicle was used for the positive electrode and the negative electrode was 0.9 mg p-BC/N-5M pellicle. The area of the active material on each electrode was about 1.0 cm × 1.0 cm. The electrochemical performance of samples was determined by the cyclic voltammetry (CV) and galvanostatic charge-discharge. All electrochemical experiments were carried out at room temperature.

Specific capacitance values of the electrode composites were calculated from the galvanostatic discharge process according to the following equation:[1-3]

V

m t

I C ?×?×=

4s (1)

where C s (F g – 1) represents specific capacitance of the electrode material, I (A) corresponds to the discharge current, ΔV (V) is the potential change within the discharge time Δt (s), and m (g) refers to the total mass of active material on the two electrodes of the capacitor.

Specific capacitance of the asymmetric supercapacitors were calculated via the following equation:[4-5]

V

M t

I C ?×?×=

m (2)

where C m (F g ?1) is speci ?c capacitance of the supercapacitor, I (A) corresponds to the discharge current, ΔV (V) is the potential change within the discharge time Δt (s), and M (g) refers to the total mass of active materials on the two electrodes. Note that the specific capacitance of the asymmetric supercapacitor is calculated using the total mass of active materials on two electrodes.

The key parameters of the supercapacitor, power density (P ) and energy density (E ), were calculated using eqs. (3) and (4).[3, 5]

2m )(21

V C E ?××=

(3) t E

P ?=av (4) where C m (F g ?1) represents the specific capacitance of the supercapacitor measured from the eqs. (2), ΔV (V) refers to the potential change within the discharge time Δt (s), E (J g ?1) is the energy density, P av (W g ?1) is the average power density.

The maximum specific power was calculated using the R s value obtained from a linear fitting to the IR drop values according to eqs. (5) and (6):[6]

bI

a IR +=drop (5)

b

M a R M V P ×=×=2)-2(42s 2

0max

(6) where a represents the difference between the applied potential of 2 V and the charged potential of the capacitor, b means double the value of the internal resistance R s (Ω), and I (A) is the discharge current, P max (W g ?1) refers to the maximum power density, V 0 represents the practical work potential of the

device, M

(g) means the total mass of the electrode material in the device.

Figure S1. Typical high-resolution STEM image of p -BC@MnO 2-2h.

(a)

Binding Energy (eV)

Binding Energy (eV)

(b)

(c)

Binding Energy (eV)

Figure S2. XPS spectra of p -BC@MnO 2-2h. (a) XPS survey spectra. (b,c) High-resolution XPS spectra of (b) Mn 2p and (c) Mn 3s. Two characteristic peaks in the Mn 2p spectrum at 653.6 and 642.0 eV are assignable to Mn 2p 3/2 and Mn 2p 1/2 spin-orbit peaks of MnO 2, respectively.[7]

指纹考勤机使用操作步骤

指纹考勤机使用操作步骤 对于新购机用户,可按此操作步骤来操作使用该机器。 本操作步骤将按照采集指纹、设置排班、报表查询、系统管理四个部分进行介绍。 一、采集指纹 新购机用户需要学习如何采集指纹,指纹采集完成后即可正常使用考勤机。 1.把考勤机通电,打开机器,使机器处于正常工作状态。 2.在考勤机操作面板上按主菜单[MENU] – [用户管理] – [用户登记] – [指纹登记],屏幕提示“新登记?” ,按[OK]键,这个时候要输入员工的工号,输入后按[OK]确认,此时屏幕提示:“请放手指”。 3.放手指时要注意,被采集者身体相对考勤机要站正。把从指尖开始2/3位置指肚非常饱满的平放在采集器玻璃片上,不要滑动手指,轻轻用力按压,听到“嘀”的一声移开手指,同样进行第2次第3次按压,按压3次为采集了一枚完整的指纹。 4.3次按压完成后,按[OK] 保存。此时屏幕提示:…新登记??我们可按[ESC] 键,进行备份登记,每个员工可以采集至少2枚指纹,以备其中一个有磨损破裂时使用。 5.备份完成后,按[OK] 保存,此时屏幕提示:“继续备份吗?”如果要继续进行备份请按[OK],要结束备份请按[ESC] ,并进行下一个员工的指纹登记。 6.指纹登记完成后,即可使用所登记的手指进行指纹考勤。依照采集指纹时的按压方法进行即可。按压后,屏幕显示员工的工号,并伴随有机器语音提示“谢谢”。如果按压不成功,则有语音提示“请重按手指”,此时请重新按压手指或更换另一手指按压。 7.在上面第6步操作中,我们只看到了员工的工号,没看到姓名,实际上是可以显示员工的姓名的。请进行以下步骤。 8.在计算机上安装考勤管理系统。放入安装光盘,按屏幕提示进行安装即可,注意要把程序安装路径更改为D盘。 9.把考勤机和计算机进行连接。考勤机和计算机的通讯方式有RS232、RS485、TCP/IP、USB数据线4种直连方式。 10.打开考勤管理系统,选种设备名称及相应的连接方式,点[连接设备]按钮。见下图: 连接成功后,右下放状态栏有提示;且设备名称前的图标为亮彩色显示。 11.点[从设备下载人员信息] 按钮,将弹出窗口,并点[下载]即可。下载完成后请关闭该窗口。 12.点[人员维护] 按钮,则弹出人员维护窗口,如下图: 在上图窗口中,输入员工的姓名信息,并保存。员工姓名输入完毕后请关闭该窗口。 13.点[上传人员信息到设备] 按钮。在弹出的窗口中,按[上传] 即可。此一步是把刚才输入的员工姓名上传到考勤中,上传完毕,按压指纹考勤时即可同时显示员工的工号和姓名了。 至此,指纹的采集工作已经完成。可以把考勤机安放在指定位置进行考勤使用了。接下来我们要讲一下有关部门的设置和员工的调动。

离心泵技术参数(重量)

ISW卧式离心泵排水泵增压泵循环泵 永嘉县泉顿泵业制造厂 ISW管道泵采用先进水力模型,运行平衡,噪音低,密封可靠,无泄漏,结构合理占地面积小,寿命长是IH泵基础上改良起来 应用范围供输送不含固体颗粒具有腐蚀性、粘度类似水的液体。其标记、额定性能和尺寸等效采用国际标准ISO2858,具有性能范围广、效率高、“三化”水平高和维修方便,是国家推广的节能产品。 化工泵输送介质温度为-20℃~105℃,需要时采用冷却措施可输送更高温度的介质,适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输送各种腐蚀的或不允许污染的类似于水的介质。 食品工业化工企业和城市给水污水排放,自来水网增压,建筑生活用水,建筑消防用水,中央空调系统,其它冷热清洁介质,循环增压。 技术参数 流量:6.3-1500m3/h 扬程:5-150m 转速:980-2900r/min 口径:φ40-φ500 工作压力:1·6.MPa 介质温度:≤0~+180℃

型号意义 型号流量Q 扬程(m) 效率(%)转速(r/min)电机功率(kW)必需汽蚀余量(NPSH)r 重量(kg)(m3/h) (L/S) 15-80 1.5 0.42 8 34 2800 0.18 2.3 17 20-110 2.5 0.69 15 34 2800 0.37 2.3 25 20-160 2.5 0.69 32 25 2900 0.75 2.3 29 25-110 4 1.11 15 42 2900 0.55 2.3 26 25-1254 4 1.11 20 36 2900 0.75 2.3 28

AZG贴片三极管印字

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD SOT-23 Plastic-Encapsulate Transistors KTA1505 TRANSISTOR (PNP ) FEATURES · Excellent h FE linearity: · Complementary to KTC3876 MAXIMUM RATINGS (T a =25 unless otherwise noted) ELECTRICAL CHARACTERISTICS (T a =25℃ unless otherwise specified) Parameter Symbol Test conditions M in T yp Max Unit Collector-base breakdown voltage V (BR)CBO I C =-100μA,I E =0 -35 V Collector-emitter breakdown voltage V (BR)CEO I C =-1mA,I B =0 -30 V Emitter-base breakdown voltage V (BR)EBO I E =-100μA,I C =0 -5 V Collector cut-off current I CBO V CB =-35V,I E =0 -0.1 μA Emitter cut-off current I EBO V EB =-5V,I C =0 -0.1 μA h FE(1) V CE =-1V,I C =-100mA 70 400 DC current gain h FE(2) V CE =-6V,I C =-400mA 25 Collector-emitter saturation voltage V CE(sat) I C =-100mA,I B =-10mA -0.25V Base-emitter voltage V BE V CE =-1V,I C =-100mA -1 V Transition frequency f T V CE =-6V,I C =-20mA 200 MHz Collector output capacitance C ob V CB =-6V,I E =0,f=1MHz 13 pF CLASSIFICATION OF h FE(1) Rank O Y GR Range 70-140 120-240 200-400 Marking AZO AZY AZG COLLECTOR ℃ A,May,2011 https://www.doczj.com/doc/ab4837656.html, 【南京南山半导体有限公司 — 长电贴片三极管选型资料】

贴片三极管上的印字,与真实型号对照表

?? ? ?p ? ? W[W ?p μ ń -c? 3'7$ :83KL1627 SQS GWU 3'7& 783KL1627 QSQ GWU 5 N 3'7$ 783KL1627 SQS GWU 5 N 3'7& :83KL1627 QSQ GWU 3066 3KL1627 1 3066 3KL1627 1 6& 1HF &; 627 1SQ 5) I7 *+] *DOL 0&$=627 '& *+] 00,& DPS G% JDLQ 6& 1HF&; QSQ 5) I7 *+] %$ 3KL,62' 9+) 7XQHU EDQG VZLWFK GLRGH %67 3KL 0 Q FK PRVIHW 9 P$ 05) / 0RW ; 627 QSQ 5) 05) '7&& 7 5RK 1 9 P$ QSQ VZ N EDVH UHV *DOL 0&$=627 '& *+] 00,& DPS G% JDLQ %$7 :6LH,6&' %$7 VFKRWWN\ GLRGH 6& 1HF&; QSQ 5) I7 *+] G%# *+] *DOL 0&$=627 '& *+] 00,& DPS G% JDLQ '7& 7(5RK1(07 QSQ GWU 5 N 9 P$ '7& 78$5RK16& QSQ GWU 5 N 9 P$ '7& 7.$5RK16& QSQ GWU 5 N 9 P$ %$7 $6LH,62' 9 $ VZ VFKRWWN\ %$7 :6LH,6&' '7& 7&$ 5RK 1 627 QSQ GWU 5 N 9 P$ '7& 7( 5RK 1 (07 QSQ GWU 5 N 9 P$ '7& 78$ 5RK 1 6& QSQ GWU 5 N 9 P$ '7& 7.$ 5RK 1 6& QSQ GWU 5 N 9 P$ 05) / 0RW ; 627 SQS 5) 05) *DOL 0&$=627 '& *+] 00,& DPS G%P %% 6LH,6&' 9DULFDS S) 6673$' 6LO - 3$' S$ OHDNDJH GLRGH *DOL 0&$=627 '& *+] 00,& DPS G%P R S '7& 7( 5RK 1 (07 QSQ GWU 5 N 9 P$ '7& 78$ 5RK 1 6& QSQ GWU 5 N 9 P$ '7& 7.$ 5RK 1 6& QSQ GWU 5 N 9 P$ *DOL 0&$=627 '& *+] 00,& DPS G%P R S '7& 7( 5RK 1 (07 QSQ GWU 5 N 9 P$ '7& 78$ 5RK 1 6& QSQ GWU 5 N 9 P$ '7& 7.$ 5RK 1 6& QSQ GWU 5 N 9 P$ '7& 78$ 5RK 1 6& QSQ GWU 5 N 9 P$ '7& 7.$ 5RK 1 6& QSQ GWU 5 N 9 P$ %& 0RW1627 %& % 6673$' 6LO - 3$' S$ OHDNDJH GLRGH 05) /0RW;627 QSQ 5I *+] 05) 62 5 6*6 5 627 5 1 05) /0RW;627 QSQ 5) *+] 05) 081 ': 0RW'3627 QSQ SQS GWU N N 3'7$ (83KL1627 SQS GWU 081 ': 0RW'3627 QSQ SQS GWU N N '7$ (8$5KR16& SQS GWU N N 9 PD '7$ (.$5KR16& SQS GWU N N UHV 9 PD '7$ (8$5KR16& SQS GWU N N 9 PD '7$ (.$5KR16& SQS GWU N N 9 PD '7$ (&$5KR1627 SQS GWU N N 9 PD 0$ &6 $0 $&627 6FKRWWN\ 5) 9 P$ 081 ': 0RW'3627 QSQ SQS GWU N N %$7 56LH'4 4XDG 6FKRWWN\ FURVVRYHU ULQJ '7$ (8$5RK16& SQS GWU N N '7$ (.$5RK16& SQS GWU N N 081 ': 0RW'3627 QSQ SQS GWU N 5 '7$ (&$5RK1627 SQS GWU N N '7$ (8$5RK16& SQS GWU 9 P$ N N '7$ (.$5RK16& SQS GWU 9 P$ N N '7$ (&$5RK1627 SQS GWU 9 P$ N N 081 ': 0RW'3627 QSQ SQS GWU N 5 00%7 0RW1 1 081 ': 0RW'3627 QSQ SQS GWU N 5 '7$ (8$5RK16& SQS GWU 9 P$ N N '7$ (.$5RK16& SQS GWU 9 P$ N N %)3 77IN; QSQ 5I I7 *+] 9 P$ 3'7& =.3KL1627 QSQ GWU N N 3'7$ =.3KL1627 SQS GWU N N '7$ (8$5KR16& SQS GWU N N 9 PD '7$ (.$5KR16& SQS GWU N N 9 PD 6673$' 6LO - 3$' S$ OHDNDJH GLRGH

中控考勤机详细操作说明书

中控考勤机说明书 1考勤机的使用 1.1登记指纹 1.2考勤机功能介绍(通讯,参数设置,系统信息,U盘管理) 2考勤软件的使用 2.1 软件的安装 2.2 软件使用 2.2.1 增加设备 2.2.2 从设备下载人员信息 2.2.3 修改人员信息(改名字,调动部门等) 2.2.4 上传人员信息到设备 2.2.5 下载考勤数据 2.2.6 时间段设置 2.2.7 班次管理 2.2.8 人员排班 2.2.9 统计报表 页脚内容1

一考勤机快速使用 1.1登记指纹(分彩屏跟黑白屏) 从设备上采集指纹: (1)彩屏:长按M/OK键--“用户管理”点OK--“新增用户”点OK--选择工号,- 往下翻在“指纹登记”上点OK,同一个手指按三次,完成后再点击OK键,再放上另一个手指按三次--往下翻到完成上点OK。(如果要再登记指纹可在‘用户管理‘点OK--’管理用户‘点M/OK---点M/OK选择’---- 查找用户‘—输入工号点OK—点M/OK选择“编辑用户”然后选择登记指纹,登记完成后---往下翻到完成上点M/OK。 (2)黑白屏录指纹的跟彩屏类似就不再说了。录备用指纹的话跟彩屏有点区别:按M/OK—用户登记—指纹登记—提示新登记—按ESC键—跳出备份登记—输入工号—登记指纹。。 1.2机器的功能介绍 (1)通讯设置—设置通讯方式有RS232/485通讯,TCP/IP,USB通讯 (2)系统设置—参数设置(包含提示声音,键盘声音,时间设置算法切换(高端机器如iclock360, S20等)--数据维护(删除考勤机上的记录数据【记录要定时去删除】,清除管理权限【管理员破解】,清除全部数据----恢复设置(恢复出厂设置【不会删除考勤机上的数据只是恢复机器出厂的通讯设置等】; (3)系统信息—可以查看设备的人员登记数跟指纹数及考勤记录数-------设备信息可以查看设备的序列号、算法版本、MAC地址、出厂时间等。 (4)U盘功能(包含下载跟上传的功能) <1>(1)把U盘插到考勤机上--长按M/OK键进入菜单--选择U盘管理--下载数据--下载用户数据--下载完成后退出然后把U盘拿下来插到电脑上。 页脚内容2

防水板、止水带技术规格书

渝黔、渝万铁路站前工程隧道防水板、止水带采购招标 招标编号:TW--2013--04 第六章技术规格书

6.1 隧道防水板 1 范围 为规范铁路隧道用防水板技术标准,保证隧道防排水工程质量,特制定本技术条件。 本技术条件规定了铁路隧道防水板的分类、产品标记、技术要求、试验方法、检验规则、标志、包装、运输与贮存。 本技术条件适用于铁路隧道(不含明洞)防排水工程用防水板,包括EVA(乙烯、醋酸乙烯共聚物)、ECB(乙烯、醋酸乙烯与沥青共聚物)、PE(聚乙烯)。 2 规范性引用文件 下列文件中的条款通过本技术条件的引用而成为本技术条件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本技术条件,然而,鼓励根据本技术条件达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本技术条件。 3.1 分类 3.1.1 乙烯、醋酸乙烯共聚物防水板,代号EVA。 3.1.2 乙烯、醋酸乙烯与沥青共聚物防水板,代号ECB。 3.1.3 聚乙烯防水板,代号PE。 3.2 产品标记 3.2.1 产品应按下列顺序标记,并可根据需要增加标记内容: 隧道防水-材料代号-规格(长度×宽度×厚度) 3.2.2 标记示例 长度30m,宽度2.0m,厚度1.5mm的乙烯、醋酸乙烯共聚物防水板标记为:隧道防水-EVA-30m×2.0m×1.5mm 4 技术要求 4.1 原材料

防水板生产用原材料不得使用再生料。 4.2 规格尺寸及偏差 防水板的规格尺寸及允许偏差见表1,特殊规格由供需双方商定。 表1 防水板的规格尺寸及允许偏差 4.3.1 防水板在规格确定的长度内不允许有接头。 4.3.2 防水板表面应平整、边缘整齐,无裂纹、机械损伤、折痕、孔洞、气泡、及异常粘着部分等影响使用的缺陷。 4.3.3 防水板外观颜色应为材料本色,不得添加颜料和填料,特殊要求除外。 4.3.4 在不影响使用的条件下,防水板表面凹痕,深度不得超过厚度的5%。 4.4 物理力学性能 防水板物理力学性能应符合表2规定。 表2 防水板的物理力学性能

水泵技术规格书

1.设计标准 设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括但不仅限于此。 (1)G B/T3216-1989《离心泵、混流泵、轴流泵和旋流泵试验方法》 (2)G B/T5660-1955《轴向吸入离心泵底座尺寸和安装尺寸》 (3)G B/T5656-1994《离心泵技术条件》 (4)G B/T13006-91《离心泵、混流泵、轴流泵汽蚀余量》 (5)G B/T13007-91 《离心泵效率》 (6)J B/《管道式离心泵型式与基本参数》 (7)G B10889-89《泵的振动测量与评价方法》 (8)G B10890-89《泵的噪声测量与评价方法》 (9)J B4127-85 《机械密封技术条件》 (10)JG/T3009-1993《微机控制变频调速给水设备标准》 (11)GA30—92 《消防气压给水设备性能要求和实验方法》 电气部分按国家现行的有关标准和规范执行。 所有与设计、制造、使用本次招标采购设备有关的国际标准、国家标准、 行业标准、深圳市地方标准及规定。 上述技术标准和规范如有不涉及之处或未能达到国际和国家最新标准时, 供货商应使本次招标采购设备所选用的材料、零部件符合最新版本的国际 和国家标准、规范,并提供所采用的国际和国家标准、规范以及所采用版 本的有关技术资料。 供货商使用上述以外的标准和规范时,应加以说明。应清楚地说明并提交 用于替代的标准或规范,明显的差异点要特别说明。当推荐的标准和规范 等效于或优于本规格书的要求时,才可能为业主接受。 2.定义

2.1“货物”系指供货商根据合同规定须向业主提供的一切设备及其附属设施、机械、备品备件、消耗性材料、专用工具和测试设备,以及满足合同设备组装、检验、培训、调试、性能测试、正常运行及维修等所必须的手册、技术文件、图纸和资料。 2.2“服务”系指根据合同规定供货商承担与供货有关的辅助服务,如调试、提供技术援助、培训和合同中规定供货商应承担的其它义务。 2.3“业主”指接受合同中货物及服务的单位。 2.4“供货商”指为本合同提供货物和服务的公司或实体。 2.5“现场”指将要进行设备安装和运转的地点。 2.6“验收”指业主依据技术规格及要求规定,接受合同货物所遵循的程序和条件。 2.7“业主”指深圳和而泰智能控制股份有限公司。 2.8“供货商”是指与业主签订供货合同的公司或实体。 2.9“用户方”是指接受合同货物及服务的最终用户。 2.10“原产地”是指设备的生产地或提供辅助服务的来源地。 2.11“天”是指自然天。 2.12TN-S: 电源端有一点直接接地,电气装置的外露可导电部分通过或保护导体连接到此接地点,整个系统的中性导体和保护导体是分开的。 2.13BAS:环境与设备监控系统。 2.14FAS:火灾自动报警系统。 3.工作条件 3.1海拔高度﹤1000米。 3.2环境温度: 最高日平均温度+40oC 最高月平均温度+35oC 最低温度:-25oC 3.3相对湿度:25oC时相对湿度不超过90%,投入运行前和运行初期可达到95%。 3.4地震烈度:8度。

印字16贴片三极管

A,Jun,2012 JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD SOT-23 Plastic-Encapsulate Transistors MMBT1616 TRANSISTOR (NPN) FEATURES z Audio frequency power amplifier z Medium speed switching MARKING:16· MAXIMUM RATINGS (T a =25℃ unless otherwise noted) ELECTRICAL CHARACTERISTICS (T a =25℃ unless otherwise specified) Parameter Symbol Test conditions Min Typ Max Unit Collector-base breakdown voltage V (BR)CBO I C =10μA, I E =0 60 V Collector-emitter breakdown voltage V (BR)CEO I C =2mA, I B =0 50 V Emitter-base breakdown voltage V (BR)EBO I E =10μA, I C =0 6 V Collector cut-off current I CBO V CB = 60V, I E =0 100 nA Emitter cut-off current I EBO V EB =6V, I C =0 100 nA h FE(1) V CE =2V, I C =100mA 135 600 DC current gain h FE(2) V CE =2V, I C =1A 81 Collector-emitter saturation voltage V CE(sat) I C =1A, I B =50mA 0.3 V Collector-emitter saturation voltage V BE(sat) I C =1A, I B =50mA 1.2 V Base-emitter voltage V BE V CE =2V, I C =50mA 0.6 0.7 V Transition frequency f T V CE =2V,I C =100mA, f=100MHz 100 MHz Collector output capacitance C ob V CB =10V, I E =0, f=1MHz 19 pF CLASSIFICATION OF h FE(1) RANK Y G L RANGE 135~270 200~400 300~600 Symbol Parameter Value Unit V CBO Collector-Base Voltage 60 V V CEO Collector-Emitter Voltage 50 V V EBO Emitter-Base Voltage 6 V I C Collector Current 1 A P C Collector Power Dissipation 750 mW R ΘJA Thermal Resistance From Junction To Ambient 167 ℃/W T j Junction Temperature 150 ℃ T stg Storage Temperature -55~+150℃ https://www.doczj.com/doc/ab4837656.html, 【南京南山半导体有限公司 — 长电贴片三极管选型资料】

贴片三极管上的印字与真实型号对照手册

贴片三极管上的印字与真实名称的对照表 印字器件厂商类型封装器件用途及参数 -28 PDTA114WU Phi N SOT323 pnp dtr -24 PDTC114TU Phi N SOT323 npn dtr R1 10k -23 PDTA114TU Phi N SOT323 pnp dtr R1 10k -20 PDTC114WU Phi N SOT323 npn dtr -6 PMSS3906 Phi N SOT323 2N3906 -4 PMSS3904 Phi N SOT323 2N3904 0 2SC3603 Nec CX SOT173 Npn RF fT 7GHz 1 Gali-1 MC AZ SOT89 DC-8GHz MMIC amp 12dB gain 1 2SC3587 Nec CX - npn RF fT10GHz 1 BA277 Phi I SOD523 VHF Tuner band switch diode 2 BST82 Phi M - n-ch mosfet 80V 175mA 2 MRF5711L Mot X SOT14 3 npn RF MRF571 2 DTCC114T Roh N - 50V 100mA npn sw + 10k base res 2 Gali-2 MC AZ SOT89 DC-8GHz MMIC amp 16dB gain 2 BAT62-02W Sie I SCD80 BAT16 schottky diode 2 2SC3604 Nec CX - npn RF fT8GHz 12dB@2GHz 3 Gali-3 MC AZ SOT89 DC-3GHz MMIC amp 22dB gain 3 DTC143TE Roh N EMT3 npn dtr R1 4k7 50V 100mA 3 DTC143TUA Roh N SC70 npn dtr R1 4k7 50V 100mA 3 DTC143TKA Roh N SC59 npn dtr R1 4k7 50V 100mA 3 BAT60A Sie I SOD323 10V 3A sw schottky 3 BAT62-02W Sie I SCD80 - 4 DTC114TCA Roh N SOT23 npn dtr R1 10k 50V 100mA 4 DTC114TE Roh N EMT3 npn dtr R1 10k 50V 100mA 4 DTC114TUA Roh N SC70 npn dtr R1 10k 50V 100mA 4 DTC114TKA Roh N SC59 npn dtr R1 10k 50V 100mA 4 MRF5211L Mot X SOT143 pnp RF MRF521 4 Gali-4 MC AZ SOT89 DC-4GHz MMIC amp 17. 5 dBm 4 BB664 Sie I SCD80 Varicap 42-2.5pF 5 SSTPAD5 Sil J - PAD-5 5pA leakage diode 5 Gali-4 MC AZ SOT89 DC-4GHz MMIC amp 18 dBm o/p 5 DTC124TE Roh N EMT3 npn dtr R1 22k 50V 100mA 5 DTC124TUA Roh N SC70 npn dtr R1 22k 50V 100mA 5 DTC124TKA Roh N SC59 npn dtr R1 22k 50V 100mA 6 Gali-6 MC AZ SOT89 DC-4GHz MMIC amp 115 dBm o/p 6 DTC144TE Roh N EMT3 npn dtr R1 47k 50V 100mA 6 DTC144TUA Roh N SC70 npn dtr R1 47k 50V 100mA 6 DTC144TKA Roh N SC59 npn dtr R1 47k 50V 100mA 9 DTC115TUA Roh N SC70 npn dtr R2 100k 50V 100mA 9 DTC115TKA Roh N SC59 npn dtr R2 100k 50V 100mA

指纹考勤机如何连接考勤机软件

指纹考勤机如何连接考勤机软件? 指纹考勤机怎么和电脑连接安装,你首先要弄清楚指纹考勤机本身有什么通讯接口,一般指纹考勤机连接有以下接口:USB线,RS232/485(串口),TCP/IP(RJ45口)等几种; 那么电脑软件中也相应的有以上三种通讯方式。买串口或USB口指纹考勤机,里面一般都自带有RS232线和USB线; 1、如果你的考勤机是USB口的,把USB线分别插 入考勤机和电脑USB口,打开软件,选择USB连接方式,就可以成功; 2、以此类推,如果是串口或网线接口,设置一下相关参数,打开软件,选择串口或网线接口连接方式,就可以连接成功了。 指纹考勤机怎么导出打卡记录? 前提是你已经安装好了软件,软件中有人员资料 1、因为H10是用USB线下载数据的,所以首先你要在考勤软件中“设备维护”那里把考勤机与软件的“通讯方式”设置为USB下载后,然后保存。 2、再把考勤机通电,把USB线插入考勤机中和电脑USB接口,再选择“我的设备列表”中“U SB连接方式”,再点连接设备,稍等几秒后,设备连接成功,同时设备名称的圆圈会变成彩色,同时右下角系统会提示连接成功字样。这时,考勤机与电脑软件连接成功了。 3、连接成功后,点“从设备下载记录数据”,这时考勤机里的数据就会通过数据线上传到软件中,同时有下载多少条记录的提示,这时,你点“出勤记录”就可以看见你刚才下载的所有人员记录数据。 打卡机考勤管理系怎么用? 1、你首先把部门资料、人事资料,这些资料全部弄好(包括员工编号、姓名、卡号、部门、就职日期等等) 2、再把公司上班下班的作息时间定义好,考勤规则班次设置好,人员班次分配好 3、以上弄好后,员工上下班打卡,从打卡考勤机导出来的考勤数据记录,进行数据统计,统计完成后,你就可以看考勤明细表,考勤日报表、考勤汇总表、考勤异常表,加班统计表,请假汇总表等。

多级离心泵采购技术要求

多级离心泵采购技术要求 1 总则 1.1 本技术要求适用于AA发电有限责任公司2×600MW机组,热水项目生活水泵。本技术要求提出了多级离心泵的功能、设计、结构、性能、安装等方面的技术要求。 1.2 该技术要求提出的仅是最低限度的技术要求,并未对一切技术条件做出详细的规定,也未充分引述有关标准及规范的条文,卖方应保证提供符合本技术要求和相关工业标准的优质产品。 1.3卖方提出的产品应完全符合本技术要求。如未对本要求提出偏差,将认为卖方提供的设备符合技术要求和标准要求。偏差(无论多少)都必须清楚地书面表示。 1.4卖方提供的设备应是全新的和先进的,并经过运行实践已证明是完全成熟可靠的产品。 1.5 如果卖方没有以书面的形式对本技术要求中的条文提出异议,那么买方可以认为卖方提供的产品完全符合本技术要求。 1.6 在签订合同之后,买方有权提出因规范标准和现场技术条件发生变化而产生的一些补充要求,具体情况由买、卖双方共同商定。 1.7 本技术要求所提出的标准如遇与卖方所执行的标准发生矛盾时,按较高的标准执行。 1.8设备、系统采用的专利涉及到的全部费用均被认为已包含在设备报价中,卖方应保证买方不承担有关设备专利的一切责任。 2.0 设计和运行条件 地震烈度:8度 历年极端最高气温:42.3℃ 历年极端最低气温:-15.5℃ 多年平均气温:14.4 C 多年平均相对湿度:67%

运行环境:输送介质石灰石浆液。 2、技术要求 2.1多级离心泵的设计应满足国家及行业的有关标准、规范的要求,并充分考虑到当地环境条件和买现场实际使用条件的影响,卖方应到现场实地测量,选用立式多级管道离心泵,输送介质为电厂生活水,输送介质为清水。 2.2多级离心泵

二,三极管,IC印字对型号

贴片3个脚 C001 A06 M073 QFN-6封装 IC表面编码 CCQ 09K E7E0 AR982 SOT-143 61HL SOT-143 B83 4脚 10A10 22A15 F5H3 F5HE 222 SOT-23 MARK为ECIG,封装为SOT-23 BU1H SOT-323 39BBAE AO 4MQU,封装为SOT-23的IC B8SN7 SOT-23封装, 丝印:B8TX4 SOT-23封装, 丝印:W2H SOT-23封装, 丝印:ZTW SOT-23封装, 丝印:L231 SOT-23封装 ,丝印:EA2 SOT-23封装, 丝印:8F SOT-23封装 M762 SCD7 BE30C N611 10 8Z FJKB1 FJJK5 TFT 3H0015 BA7 sot-23封装的,上标是X1YV与他垂直是10,标有A1FV与他垂直是16的是什么管子 贴片二极管上写着ZE20J 贴片二极管CCD MZ 贴片二极管第一行03A 第2行F6 5D 贴片二极管ACX K7JA SOT-23

C251A 5V的稳压芯片,贴片封装,印字为8C032 NC SN 36W D.P S3 J7 P03B XP D:P 62Z A7 S3 KW 8C032 J7 27EI WC AFPL AFPL E601 E605 28C26 XB LY AP 2 ABNJ KS5R SOT23封装的丝印28G2G BAs87 BAs88 BAs89 W3W 贴片二极管封装是1206的丝印是T72是什么型号SOT-23的上面标有OOOI 贴片二极管标有16LE4 00BC,封装SOT-23 丝印Txw3F,这个x看不清,像0也像U,用x代替了与二极管上面写着D写或5.5 SOT-89的,上面丝印为:BD S2L 和 DD S3F 2314 贴片三极管印字76ee,8626 贴片三极管标HG18

橡胶止水带、钢板止水带施工要求

橡胶止水带、钢板止水带施工要求 新建市城南污水处理厂,主要水工构筑物包括:粗格栅问及进水泵站、细格栅问及曝气沉砂池、初沉池集配水井及初沉污泥泵站、初沉池、生物池、二沉池集配水井及二沉污泥泵站、二沉池、中途提升泵站、深度处理车间、接触池、出水泵站等。水工构筑物的施工重点是各种施工缝的处理,否则漏水维修难度很大。为了保证工程质量,增强管理人员的感性认识,项目部组织对莱山水厂进行参观学习。 俗话说:白闻不如一见。通过对莱山水厂的参观学习,感触很深,同时也增长了见识。新建莱山水厂建设规模10万m3/d ,主要有平流沉淀池、过滤池、深度处理单元等水工构筑物。该工程正在施工,通过现场相关人员的介绍,对水平施工缝的预留位置、止水钢板的焊接及安装、止水螺栓的处理、伸缩缝的处理、后浇带同时浇注混凝土的处理方法及施工过程中的注意事项有了初步认识,主要体现在: 一、池壁水平施工缝的施工要求 池壁根据施工条件分两次浇捣:第一次到底板面上50cm高度处与底板同时浇筑,第二次施工至池壁顶面。池壁及隔墙在底板施工前,先在垫层上根据设计图纸意图,用墨线打出池壁中心线及边框线,根据边框线用短钢筋打入控制定位,绑扎钢筋,调整标高支立棋板,完成后与底板一次浇筑。第二次在立模前先对 5 0cm处的施工缝修凿、活洗后立模

池壁水平■施工缝位置 二、池壁水平■施工缝的施工要求 池体施工底板时,池壁上翻500mm留水平■施工缝,缝按设计要求设钢板止水带,止水带表面油污、铁锈提前活除干净,并检查不得有裂口、脱焊现象。止水带宽度为 350mm,每边埋入碌不少丁150mm。钢板止水带纵向采用搭接焊, 搭接长度不小丁50mm。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

钢板止水带

关于止水钢板的连接及固定的问题 关于止水钢板我有以下疑问: 1、止水钢板一般裁多长合适? 2、止水钢板焊接连结时的搭接长度是多少?其焊接要求是什么? 3、止水钢板焊接连接接缝可以在转角出么? 4、固定止水钢板的钢筋可以直接焊接在结构钢筋上? 5、止水钢板连接及其固定有没有什么规范可以做依据? 止水钢板的施工技术 1、钢板止水带和橡胶止水带相比,优点不如橡胶止水带,一个最明显的缺点就是生锈,后期处理麻烦,所以尽可能采用橡胶止水带施工; 2、原材料问题,钢板止水带不是成品,是由三块规格不一样的钢板焊接而成,但施工单位一般都是买专业厂家加工制作好的成品,但焊接质量及原材料质量直接影响止水效果; 3、安装方向问题,无论是水平钢板止水带还是竖向钢板止水带,一定要使两翘曲面安装方向朝迎水面; 4、止水带一般都是安装在后浇带位置、有防水要求的地下室侧墙板分隔缝或施工缝处,暴露在外周期长,要做好防护处理,比如说涂刷防锈漆等措施;

止水钢板的作用 GB50141-2008中6.1.10规定金属止水带搭接长度不得小于20mm,且必须使用双面焊接。

首先,止水带不仅仅是用在剪力墙上的; 其次,一般止水带是用在地下室的; 第三,需要设止水带的地方都是混凝土不能一次浇筑,需要分开时段浇的地方,原因是这些地方会有缝隙,不做处理会有水源源不断的渗到室内,所以需要用止水带,以达到密封的目的。 止水带设在有防水要求的地方。 在实际工程设计和使用角度上讲,止水带主要是用于混凝土的变形缝、伸缩缝、沉降缝以及施工缝等处,而止水条一般是混凝土构筑物的水平施工缝处使用的,从结构形式上讲,止水带一般为有中心孔的带状橡胶体,而且在中心孔两侧均匀布置了若干道防水线,这些防水线在浇注混凝土的时候,与混凝土紧密结合,延长了水的绕渗线路,并且靠橡胶本身的弹性和中心孔的变形量来适应混凝土的伸缩变形,属于结构型止水材料,而止水条一般为遇水膨胀型,就是说在施工缝处,在后浇混凝土浇注之前放置在混凝土的接缝处,这样后期如果有水进入到施工缝后,这个材料会遇水膨胀,从而填满整个缝隙,以达到止水的效果,属于功能型止水材料. 遇水膨胀橡胶止水带就是把这两种材料的优点聚于一体的一种新型防水材料,从而使防水效果更佳,是一种既能结构型防水,又能

贴片三极管封装上的印字,与真实名称的对照表

贴片三极管封装上的印字,与真实名称的对照表 印字器件名厂家类型封装器件用途及参数 T2 HSMS-286C HP D SOT323 dual series HSMS-286B T2 HSMS-2862 HP D SOT23 dual series HSMS-286B t23 PDTA114TU Phi N SOT323 pnp dtr R1 10k t24 PDTC114TU Phi N SOT323 npn dtr R1 10k t2A PMBT3906 Phi N SOT23 2N3906 t2A PMST3906 Phi N SOT323 2N3906 t2B PMBT2907 Phi N SOT23 2N2907 t2D PMBTA92 Phi N SOT23 MPSA92 pnp Vce 300V t2D PMSTA92 Phi N SOT323 MPSA92 pnp Vce 300V t2E PMBTA93 Phi N SOT23 MPSA93 pnp Vce 200V t2E PMSTA93 Phi N SOT323 MPSA93 pnp Vce 200V t2F PMBT2907A Phi N SOT23 2N2907A t2F PMBT2907A Phi N SOT323 2N2907A t2G PMBTA56 Phi N SOT23 MPSA56 t2G PMSTA56 Phi N SOT323 MPSA56 t2H PMBTA55 Phi N SOT23 MPSA55 t2H PMSTA55 Phi N SOT323 MPSA55 t2L PMBT5401 Phi N SOT23 2N5401 pnp 150V t2L PMST5401 Phi N SOT323 2N5401 pnp 150V T2p BCX18 Phi N SOT23 BC328 t2T PMBT4403 Phi N SOT23 2N4403 t2T PMST4403 Phi N SOT323 2N4403 T2t BCX18 Phi N SOT23 BC328 t2U PMBTA63 Phi N SOT23 MPSA63 darlington t2V PMBTA* Phi H SOT23 MPSA* darlington t2X PMBT4401 Phi N SOT23 2N4401 t2X PMST4401 Phi N SOT323 2N4401 T3 BSS63 Phi N SOT23 BSS68 T3 HSMS-286E HP A SOT323 ca dual HSMS-286B T3 HSMS-2863 HP A SOT23 ca dual HSMS-286B t31 PDTA143XT Phi N SOT23 pnp dtr4k7+10k t32 PDTC143XT Phi N SOT23 pnp dtr 4k7+10ks T32 2SC4182 Nec N SOT23 npn RF fT @3V hfe 60-105 T33 2SC4182 Nec N SOT23 npn RF fT @3V hfe 85-150 T34 2SC4182 Nec N SOT23 npn RF fT @3V hfe 120-220 T4 BCX17R Phi R SOT23R BC327 T4 HSMS-286F HP B SOT323 cc dual HSMS-286B T4 HSMS-28* HP B SOT23 cc dual HSMS-286B T4 MBD330DW Mot DL SOT363 dual UHF schottky diode T42 2SC3545P Nec N - npn RF fT 2GHz hfe 50-100

相关主题
文本预览
相关文档 最新文档