当前位置:文档之家› 碳纤维生产工艺介绍与设备介绍

碳纤维生产工艺介绍与设备介绍

碳纤维生产工艺介绍与设备介绍
碳纤维生产工艺介绍与设备介绍

碳纤维生产工艺介绍与设备介绍碳纤维生产工艺介绍与设备介绍.日新高温技术有限公司为您解答。合肥日新高温技术有限公司成立于1998年是专业设计、研发、生产、销售高温热处理设备的民营高新技术企业。碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。

生产工艺:

(1)原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基

碳纤维,其原丝要求不含碱金属离子。

(2)预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。

(3)碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500到1700℃,粘胶纤维400到2000℃。

(4)石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。

(5)表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。

(6)上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。

主要设备:①碳纤维预氧化炉:

碳纤维预氧化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在350℃以下进行热处理之用。

主要设备:②碳纤维低温碳化炉:

碳纤维低温碳化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在1000℃以下的低温碳化之用。

主要设备:③碳纤维高温碳化炉:

碳纤维高温碳化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、

PAN基碳纤维)材料在1600℃以下的高温碳化之用。

合肥日新高温技术有限公司成立之初,就确定了依托技术开拓市场空间的经营策略,在秉承传统工艺的基础上,不断引进新技术,消化再吸收新工艺,持续发展,开拓创新。以专业品质科技创新的产品价值观,以日新盛德笃志笃行的企业精神,精心打造中国窑炉一流品牌日新窑炉。逢此民族产业迅速发展之盛世,合肥日新高温技术有限公司全体同仁热忱希望能广交业内有识之士,以致力于热能技术、工程提供一流的解决方案为企业核心使命,为携手振兴中国的窑炉

事业而贡献力量。

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

碳纤维布基本知识

碳纤维布基本知识 用途: 碳纤维布与结构胶配套使用成为碳纤维复合材料,适用于混凝土结构、木质结构的加固,可有效提高构件的承载力、抗震性能和耐久性。是处理下列工程问题的优秀备选方案: 1、建筑物使用荷载增加; 2、工程使用功能改变; 3、材料老化; 4、混凝土强度等级低于设计值; 5、结构裂缝处理; 6、恶劣环境服役构件修缮、防护。 其他用途:人造卫星、飞机、火箭、体育用品、工业产品等众多领域。 特点: 1、碳纤维抗拉强度高,高于普通钢10-15倍; 2、耐酸碱,抗腐蚀,适宜在恶劣环境中服役;与结构胶配合使用,能阻止有害介质浸渗,对内部结构起保护作用;

3、比重是钢材的23%,基本不增加构件自重,不改变构件截面尺寸; 4、可弯曲缠绕成型,对各类曲面、异型构件加固优势更为显著; 5、可任意剪裁,易粘贴,施工质量易于保证。不需大型施工机具,可搭接粘结任意延长,无明火作业,施工工期短。

碳纤维布使用说明 碳纤维布均与配套结构胶配合使用,形成高性能复合材料。碳纤维加固工艺流程:

构件表面处理→粘贴面修补找平(若平整,此步骤可省去)→涂底胶→卸荷(根据实际情况和设计要求,此步骤有时省去)→配置面胶和裁剪碳纤维布→粘贴碳纤维布→固化→检验→维护 1.构件表面处理 2.粘贴面修补找平(若平整,此步骤可省去) 3.配置底胶 4.卸荷(根据实际情况和设计要求,此步骤有时省去) 5.配置面胶和裁剪碳纤维布 6.粘贴碳纤维布 7.固化 8.检验 9.维护 碳纤维发展简史 1860年,斯旺制作碳丝灯泡 1878年,斯旺以棉纱试制碳丝

1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)1882年,碳丝电灯实用化1911年,钨丝电灯实用化 1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维 1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维 1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月) 1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加张力)的技术途径 1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维 1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸) 1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作 1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M40 1972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒

碳纤维发射筒的成型方法与制作流程

本技术公开了一种碳纤维发射筒的成型方法,该成型方法包括如下步骤:1)缠绕准备:将前法兰和后法兰分别安装在芯模上;2)缠绕:采用浸过树脂胶液的连续纤维对芯模进行缠绕,形成发射筒的筒体;3)第一次固化:对筒体进行第一次固化处理;4)接口补强缠绕:在筒体上预埋金属接口,并对金属接口外层进行补强缠绕;5)第二次固化:对步骤4)处理后的筒体进行第二次固化处理;6)防热喷涂:脱模后对筒体两端的法兰安装面进行机加,再与前法兰和后法兰进行紧固,最后采用防热涂料喷涂于筒体的内表面,形成防热涂层。本技术的方法采用钩挂缠绕和开口补强方式相结合,提高发射筒的强度,提高导弹发射质量稳定性。 权利要求书 1.一种碳纤维发射筒的成型方法,其特征在于:包括如下步骤: 1)缠绕准备:将前法兰(1.1)和后法兰(1.2)分别安装在芯模(2)上,调整芯模(2)使得前法兰(1.1)和后法兰(1.2)夹紧,所述芯模(2)的两端设置有环向布置的销钉(2.1); 2)缠绕:采用浸过树脂胶液的连续纤维对芯模(2)进行缠绕,形成发射筒(1)的筒体(1.3); 3)第一次固化:对步骤2)缠绕形成的筒体(1.3)进行第一次固化处理; 4)接口补强缠绕:在筒体(1.3)上预埋金属接口(1.4),并对金属接口(1.4)外层进行补强缠绕; 5)第二次固化:对步骤4)处理后的筒体(1.3)进行第二次固化处理; 6)防热喷涂:脱模后对筒体(1.3)两端的法兰安装面进行机加,再与前法兰(1.1)和后法兰(1.2)进行紧固,最后采用防热涂料喷涂于筒体(1.3)的内表面,形成防热涂层。 2.根据权利要求1所述的碳纤维发射筒的成型方法,其特征在于:所述步骤2)中,缠绕前先在芯模(2)外表面涂覆脱模剂,再铺设一层无碱玻璃纤维表面毡。 3.根据权利要求1所述的碳纤维发射筒的成型方法,其特征在于:所述步骤2)中,连续纤维依次按照0°、45°、-45°、90°、0°、45°、-45°、90°、0°、45°、-45°、90°、0°、45°、-45°、90°方向铺层,缠绕形成16个铺层。 4.根据权利要求3所述的碳纤维发射筒的成型方法,其特征在于:所述步骤2)中,连续纤维按照0°方向铺层时,从位于前法兰(1.1)一端的销钉(2.1)缠绕后绕过位于后法兰(1.2)一端的销钉(2.1),此时缠绕机按照预设的角度再次旋转15°,芯模(2)相对绕丝嘴周向旋转15°,再通过下一销钉间距进行缠绕,继续往复直至0°铺层铺满整个芯模(2),通过两端的销钉(2.1)绕行实现钩挂并转向连续缠绕。 5.根据权利要求1所述的碳纤维发射筒的成型方法,其特征在于:所述步骤2)中,在连续纤维缠绕完倒数第二层铺层后,再缠绕一层导电布。 6.根据权利要求1所述的碳纤维发射筒的成型方法,其特征在于:所述步骤2)中,树脂胶液按照质量份数计由如下原料组成:55~60份E-51环氧树脂、45~50份乙二醇二缩水甘油醚、45~50份改性芳香胺、1~3份DMP-30。

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

碳纤维布施工工艺方法和要求

碳纤维布施工工艺方法和要求 一、应根据施工现场和被加固构件混凝土实际状况,拟定施工方案和施工计划。对所使用的碳纤维片材、配套树脂、机具等做好施工前准备工作。 (一)表面处理: 1、应清除被加固构件表面的剥落、疏松、蜂窝、腐蚀等劣化混凝 土,露出混凝土结构层,并用修复材料将表面修复平整。 2、应按设计要求对裂缝进行灌缝或封闭处理。 3、被粘贴混凝土表面应打磨平整,除去表层浮浆、油污等杂质, 直至完全露出混凝土结构新面。转角粘贴处要进行导角处理并 打磨成圆弧状,圆弧半径不应小于20㎜。 4、混凝土表面应清理干净并保持干燥。 (二)涂刷底层树脂: 1、按产品供应商提供的材料配比进行配制;甲、乙两组胶按配比 装入容器桶内,采用电锤及扩大头钻头,转速在600转/分,搅 拌时间约8分钟;使胶无色差。搅拌均匀后方可使用。 2、应用滚筒刷将底层树脂均匀涂抹于混凝土表面。应在树脂表面 指触干燥后立即进行下一步工序施工。 (三)找平处理: 1、应按产品供应商提供的工艺规定配制找平材料。 2、应对混凝土表面凹陷部位用找平材料填补平整,且不应有楞角。 3、转角处应用找平材料修复为光滑的圆弧,半径应不小于20㎜。

4、应在找平材料表面指触干燥后立即进行下一步工序施工。(四)粘贴碳纤维片材: 1、粘贴碳纤维布应符合下列要求: (1)按设计要求的尺寸裁剪碳纤维布; (2)应按产品供应商提供的工艺规定配制浸渍树脂并均匀涂抹于所要粘贴的部位; (3)用专用的滚筒顺纤维方向多次滚压,挤除气泡,使浸渍树脂充分浸透碳纤维布。滚压时不得操作碳纤维布; (4)多层粘贴重复上述步骤,应在纤维表面浸渍树脂指触干燥后立即进行下一层的粘贴; (5)在最后一层碳纤维布的表面均匀涂抹浸渍树脂。 2、应按下列步骤粘贴碳纤维板: (1)应按设计要求的尺寸裁剪碳纤维板,按产品供应商提供的工艺规定配制粘结树脂; (2)将碳纤维板表面擦拭干净至无粉尘。如需粘贴两层时,对底层碳纤维板两面均应擦拭干净; (3)擦拭干净的碳纤维板应立即涂刷粘结树脂,胶层应呈突起状,平均厚度不小于2㎜; (4)将涂有粘结树脂的碳纤维板用手轻压贴于需粘贴的位置。用橡皮滚筒顺纤维方向均匀平稳压实,使树脂从两边溢出,保证密实无空洞。当平行粘贴多条碳纤维板时,两板之间空隙应不小于5㎜;

SCOTT碳纤维车架制作详细流程(图文)

SCOTT碳纤维车架制作详细流程(图文) 2013-04-01 18:36:31 出处:SCOTT 作者:https://www.doczj.com/doc/a38687806.html,|自行车网 点击:12329 次 SCOTT是最早开始使用碳纤维作为车架材料的几个自行车品牌之一。从开始致力于研发碳纤维技术起,SCOTT便坚持创造更轻更坚固更耐用的产品。因为有这样的理念,SCOTT 在碳纤维技术发展中一直处于领导地位,不断追寻着高超的制造工艺,尽可能重复利用原料,并减少浪费。SCOTT的工程师一直都与独立的测试实验室及工程大学合作,不止为了保持SCOTT在碳纤维制品上坚如磐石的品质,更是为了培养我们在碳纤维领域的技术优势和专业素养。 SCOTT在车架上主要使用HMF和HMF两种碳纤维。 HMX HMF碳纤维 HMF是一种用来最大化强度并尽可能降低重量的碳纤,其抗拉弹性模量为125Gpa,抗拉强度为2450Mpa。这种材料混合了最佳的刚性与强度特性,提供了极佳的骑乘体验。SCOTT工程师创造出这种碳纤的诀窍就是他们对于碳纤层叠方向和大小的精确控制。与现今的产业标准相较,HMF碳纤提供了更为卓越的强度。 HMX是一种被SCOTT使用的混合碳纤材料,抗拉弹性模量为154Gpa,抗拉强度为2950Mpa。相比HMF,HMX在同样重量下有着20%的刚性提升。这种特别的材料使得SCOTT 的工程师得以创造出轻到难以置信却仍然拥有上佳骑乘品质的自行车。然而,HMX的制造成本是HMF的三倍,因此SCOTT只有在高端的Premium,Team Issue和RC版本的战车上才会使用。 HMX的碳纤原丝相比HMF更细并且更为坚硬,因此HMX碳纤制成的车架可以以更薄的管壁,达到与HMF碳纤所制车架相同的刚性。HMF碳纤车架和HMX碳纤车架最终的区别主要在重量。一个HMF车架的相比其对应的HMX车架会重15%左右。 SCOTT车架制造流程主要分为以下12个部分: (详细参考:https://www.doczj.com/doc/a38687806.html,/cn/index.html#resultsTab3)

国内外碳纤维生产现状及发展趋势

国内外碳纤维生产现状及发展趋势 碳纤维, 国内外, 趋势, 生产, 发展 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量 生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热 传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各 个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典 型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模 工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相 称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必 须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高, 但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用 途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产 的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕 等工序。

碳纤维性能的优缺点及其对策

碳纤维性能的优缺点及其对策 现面以结构加固用的碳纤维布为例说明碳纤维的性能: 碳纤维布加固技术是利用碳素纤维布和专用结构胶对建筑构件进行加固处理,该技术采用的碳素纤维布强度是普通二级钢的10倍左右。具有强度高、重量轻、耐腐蚀性和耐久性强等优点。厚度仅为2mm左右,基本上不增加构件截面,能保证碳素纤维布与原构件共同工作。 1、碳纤维介绍 碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。 2、环氧树脂 不同类型的树脂还可以保证其对砼具有良好的渗透作用,例如底涂树脂;以及对碳纤维片与砼结构的粘接作用,例如环氧粘结树脂等。 (1)环氧树脂简介 仅仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密地结合在一起形成整体共同工作,才能达到补强的目的。因此,环氧树脂的性能是重要的关键之一。环氧树脂因类型不同而有不同的性能,适应于各个部位的不同要求。例如底涂树脂对混凝土具有良好的渗透作用,能渗入到混凝土内一定深度;粘贴碳纤维片的环氧树脂易于"透"过碳纤维片,有很强的粘结力。依使用温度的不同,树脂还分为夏用及冬用类树脂。 2、碳纤维材料与其他加固材料对比 (1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。 (2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。 (3)疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。 (4)重量:约为钢材的五分之一。 (5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

碳纤维织造的技术

碳纤维织造的技术 织造技术的发展 早在公元前5000 年,世界文明发源地就有了纺织品生产,例如非洲尼罗河流域的亚麻纺织、我国黄河、长江流域的葛纺织和丝绸纺织等。公元前500 年我国就有了脚踏织机。早在150年前,有梭织机开始逐步代替手工织布,其产量比手工织布的产量高出一倍,1844年开始出现无梭织机,剑杆织机发明于1870年,我国20世纪60年代中期开始研制剑杆织机,并成功地应用在有梭织机的技术改造上。 20世纪末,计算机被应用到织造机械,许多电子引纬和开口装置及系统应用到众多织机总,使剑杆织机的转速和入纬率大大提高。挠性剑杆织机的速度和入纬分别到了700rpm和1500rpm。进入21世纪后,剑杆织机的发展已不再单纯追求速度和入纬率,研究重点转向提高织机的产量及运转性能、提高织造效率及产品质量。织机制造商所努力的方向为对应各种各样纬纱,织造高附加值织物。新型剑杆织机已基本实现了电子技术、变频调速技术、传感技术与织机机械的完美结合,使得剑杆织造技术达到了一个崭新水平。 近年来,在航空航天工业发展的推动下,发达国家的高性能纤维纺织装备技术取得了突破性进展,电子化自动控制的剑杆织机、多轴向经编机等关键技术装备的研制获得成功,碳纤维织物的品质和性能得到大幅度提升。 我国高性能复合材料技术研究始于20世纪70年代,经过30多年的发展,工艺装备技术水平有了很大的发展,计算机控制的纤维剑杆织机、缝边机、编织机等现代化纺织预成型设备国内已有引进。虽然我国碳纤维织物的研究在国家重大科技专项需求的牵引下得到了迅速的发展,取得了一定的成绩,但是与发达国家相比,目前我国碳纤维设备依旧落后很多。 织造工艺 织造是一种基本的纺织工艺,能够使两条以上纱线在斜向或纵向互相交织形成整体结构的预成形体。根据不同的织造手法,可分为以下四种织造工艺。 1、梭织(weaving):使用梭子(shuttle)的运动来配送纬纱而交织经纱。 2、编织(braiding):以携纱器(carrier)的运动来配送编织纱以交织轴向纱,在没有轴向纱的情况则编织纱互相交织。 3、针织(knitting):以钩针的运动来使纱线形成环结构,套环的交织便形成织物。 4、针缝(stiching):以缝线的方式将两轴以上的平面不交织的结构缝合在一起。 织造设备 梭织可以说是最古老的织布技术,至今许多手工织布事实上就是一种简化的梭织发。梭织的目的不外乎将两套垂直的纱线互相交织而形成一块平面织物。从梭织的表面说明就是使用梭子来回在纬向运动,从而带入纬纱。 以下为简单的梭织机平面示意图,其中包括了几个重要部分,经纱(warp yarn)从盘头伸出,穿过综框(harness),再经钢筘(reed or batter)到织口与纬纱(weft yarn)交织,成形的织物卷取后完成。综框的结构包含总是(heddle),综丝上有综丝眼(heddle eyelet),经纱穿过综丝眼,由综框的上下运动形成经纱的开口,开口的目的就是使梭子能通过,梭子来回运动交织纬纱。综框的数目至少是两个以上,例如,平纹织物中,单数的经纱穿过一综框而双数穿过另一综框。更复杂的织造,则需要更多的综框与综丝上下运动来控制。钢筘的作用是打纬(beat up),使刚由梭子带过的纬纱能整齐排列并增加织物密度。其运动方式是钢筘先是后退,待梭子通过后则钢筘向前将纬纱推至织口,再后退等下一次打纬。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维布加固施工工序及工艺

碳纤维布的加固施工包含了8步,分别是:1、被加固混凝土表面处理;2、底胶涂布;3、修补胶修补混凝土;4.浸渍胶涂底;5、粘贴纤维布;6.浸渍胶上涂;7.表面涂饰;8.碳纤维补强加固施工质量检查和验收。 纤维复合材(FRP)补强加固施工粘贴剖面图 1.被加固混凝土表面处理 (1)表面处理应达到三个目的:确保结构本体与纤维布牢固粘结,除锈、去污、净化处理混凝土表面的老化部位;利用结构胶修补裂缝、填补孔洞、调整高差、削除尖角,保证碳纤维布粘结在可靠的基底上。 (2)钢筋露出部位须做防锈处理,如损伤程度严重,应采取措施补救。 (3)裂缝修补。若裂缝在5mm以上,采用高强水泥砂浆灌注;裂缝宽度大于0.1mm、小于5mm,采用专用化学裂缝灌注胶灌注裂缝,以低压慢注射为主,固化后打磨修饰平坦;裂缝宽度小于0.1mm,采用封缝胶表面封闭。 (4)表面修补:被粘混凝土面如有缺陷、孔洞或蜂窝麻面,应采用修补胶修补。 ①缺陷或孔洞修补。原结构施工中或后期运行中使结构产生缺角、孔洞、蜂窝麻面,必须用修补胶修补。 ②高差调整。由于模板错位产生混凝土表面高低差,亦必须在粘贴纤维前修

复。大面积可用高强砂浆,局部位置则用修补胶修补。 纤维布(FRP)补强加固施工流程图 (5)表面污垢和碳化物处理。以盘式打磨机、喷砂、高压水冲洗等方法,将表面处理成平坦规整、无松动、无脆弱碎块及无污物的表面,油脂类污物用中性洗涤剂脱脂,用高压气枪清除灰尘,粘结纤维布前混凝土表面必须充分干燥。 (6)修角加工。为防止内凹角处纤维布在粘结时容易剥离或扯起,可采用修补胶泥修补成圆角,圆角半径R应满足规范要求。 对于棱形柱或尖锐外凸角结构,在尖角处的纤维会有较大的应力集中,容易使碳纤维折断,因此必须进行处理。可用研磨机将棱角修饰成半径R的弧形。用修补胶做表面修饰,用弧形量具检测,保证修饰角半径R满足规范要求(特种结构按相关规范要求)。

碳纤维制备工艺简介讲解

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

聚丙烯腈碳纤维原丝改性的研究进展

第43卷第6期2015年3月 广州化工 Guangzhou Chemical Industry Vol.43No.6 Mar.2015聚丙烯腈碳纤维原丝改性的研究进展 刘江卫 (湖南长岭石化科技开发有限公司,湖南岳阳414012) 摘要:从聚丙烯腈(PAN)基碳纤维的原丝改性入手,着重综述了PAN基碳纤维原丝改性的国内外现状,原丝改性主要以化学改性与物理改性为主,化学改性作为一种较为成熟的改性手段,其大大提高了碳纤维的力学性能;而物理改性主要以辐射改性为主,辐射改性能够改善预氧化过程,对碳纤维最终性能的影响尚需进一步深入研究。最后对PAN基碳纤维原丝的改性研究进行了展望。 关键词:聚丙烯腈;原丝;碳纤维;辐射改性 中图分类号:TQ342+.3文献标志码:A文章编号:1001-9677(2015)06-0025-03Research Progress on Modification of PAN Fiber Precursor LIU Jiang-wei (Hunan Changling Petrochemical S&T Developing Co.,Ltd.,Hunan Yueyang414012,China)Abstract:The development and current research situation on modification of PAN precursor was mainly focused on. The modification mainly has two methods:chemical modification and physical modification.The chemical modification as a more mature modification method could improve the mechanical properties of PAN-based carbon fibers largely.Though the physical modification mainly including irradiation modificationis,beneficial to stabilization process,a further study on how to affect the mechanical properties of carbon fibers were needed.At last,the new direction in the future on modification of PAN precursor was indicated. Key words:polyacrylonitrile;precursor;carbon fiber;modification 聚丙烯腈(PAN)基碳纤维具高有强度、高模量、密度小、耐高温等优异性能,被广泛应用在航天、国防科技等领域以及体育、交通、建筑、压力容器、风力发电等民用领域,成为当今世界碳纤维发展的主流,占碳纤维市场的90%以上[1-2]。 目前,国内外专家学者一致认为PAN原丝的质量是影响制备高性能碳纤维的重要因素,制备优异的PAN原丝必须具备高品质的PAN聚合物和先进的纺丝技术。而高品质的PAN聚合物必须具有高纯度、高的分子量、合适的分子量分布、分子结构缺陷少及理想的共聚单体和含量。原丝制备过程和预氧化碳化过程对碳纤维的质量具有大的影响。 近年来,不少研究人员采用多种方法对原丝进行改性处理,原丝的改性处理是指把PAN原丝在溶液或其他介质中进行物理化学方法处理,改变原丝表面或内部结构或成分,降低预氧化过程的活化能,从而降低预氧化起始反应温度和反应时间。 1化学改性 原丝的化学改性一般通过选择合适的化学试剂对PAN原丝进行浸渍,通过试剂与PAN分子的热化学反应来改变原来的热稳定化反应模式,达到提高结晶度,增大晶粒尺寸,使后继的氧化碳化更加充分。 1.1无机金属盐改性 MnO- 4 电子云与PAN纤维分子中氰基可以发生很强的相互作用(图1),MnO-4攻击氰基中氮原子,-C≡N转化成了-C=N,即在热稳定化之前使PAN分子中的氰基发生环化反应,形成网状的梯形聚合物结构,同时MnO-4渗入到纤维的内部,能够降低氰基之间相互作用力,有利于促进氰基的环化。Liu S 等[3]采用5wt%的KMnO4水溶液对PAN原丝进行不同时间的浸渍改性,并将其与未改性的原丝分别进行预氧化处理。结果表明,经过KMnO4溶液改性后的PAN原丝具有较低的拉伸强度,在预氧化温度范围内释放出较少的热量,经过预氧化后的纤维在内部结构、力学性能等都有较大改善,同时得出在10 20min内的改性处理能够有效提高碳纤维的性能 。 图1高锰酸钾与PAN的作用机理 张旺玺等[4]采用动态粘弹性研究了NiSO4溶液改性对PAN 纤维晶区和非晶区的影响,结果显示,改性的PAN纤维其与无定形区分子运动相关的峰增强,晶区分子运动相关的峰向高温区右移10?,说明NiSO4能够影响无定形区,使该区域内分子活性增强;同时与热稳定化过程中环化、交联、降解有关的峰出现较早,在190 230?间峰宽较弱,可认为PAN原丝经NiSO 4 改性后,缓和了环化反应,易于形成致密和均匀的梯形

桥梁碳纤维布加固施工方案

碳纤维布施工技术指南 一、总则 1、碳纤维布简介 碳纤维增强塑性是碳纤维材料通过一定的制作工艺与特定的树脂复合而成,其力学特点是应力应变量完全线性弹性,不存在屈服点和塑性区。碳纤维材料具有优异的物理力学性能,加固混凝土构件所用的碳纤维布是有碳纤维长丝组成的柔软片材,具有强度高,自身轻,施工方便、快捷、应用范围广等,用于建筑结构加固的碳纤维具有优良的力学能力,其抗拉力度一般为建筑钢材的几十倍,但是,碳纤维材料织成碳纤维布后,其中的各碳纤维丝很难完全工程工作,在承受较低的荷载时,一部分应力水平较高的碳纤维丝首先达到其抗拉强度并退出工作状态,以此类推,各碳纤维丝逐渐断裂,直至整体破坏,而使用粘结剂后,各碳纤维丝能很好的共同工作,大大提高碳纤维抗拉强度,故碳纤维加固首先必须使用碳纤维布中的碳纤维丝能共同工作,因此胶黏剂对碳纤维布起到的加固作用是比较关键的,它既能确保各碳纤维丝共同工作,又能同时确保碳纤维布与结构共同工作,从而达到加固目的。因此在桥梁工程有广泛发展的前景。 2、碳纤维布加固的作用 作用是纤维材料在加固结构中承担拉应力,改善构件的受力状态,限制裂缝的产生和发展。 3、碳纤维布的应用范围和时机 当混凝土构造因为抗弯承载力不行,选用碳纤维布进行加固时,加固构造的损坏形状一方面取决于原构造的配筋状况,另一方面取决于碳纤维的用量。现假定原构造为适筋构件,则加固构造的损坏形状可分为如下三种状况。 ⑴碳纤维用量较少。损坏时受压区边际混凝土压碎,受拉钢筋屈从,碳纤维能够到达较高的拉应变。 ⑵碳纤维用量适中。损坏时受压区边际混凝土压碎,受拉钢筋屈从,碳纤维可到达某一中等拉应变。 ⑶碳纤维用量较多。损坏时受压区边际混凝土压碎,受拉钢筋屈从,碳纤维应变很低。

碳纤维生产现状

碳纤维生产现状及发展趋势 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料 (金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1 生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。 碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。 根据产品规格的不同,碳纤维目前被划分为宇航级(aerospace—grade)和工业级(commercial—grade)两类,亦称为小丝束(small—strand tow或small tow)和大丝束

相关主题
文本预览
相关文档 最新文档