当前位置:文档之家› (完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法
(完整版)数列中的数学思想和方法

数列中的数学思想和方法

数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧! 一、方程思想

方程思想就是通过设元建立方程,研究方程解决问题的方法.在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法. 例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =-

464a a +=-,求其前n 项和n S 。

解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-,

故37,a a 是方程2

4120x x +-=的两根,又0d >,解之,得:376,2a a =-=。

再解方程组:11

2662a d a d +=-??

+=?110

2a d =-???

=?, 所以10(1)n S n n n =-+-。

<法一>

法二、基本量法,建立首项和公差的二元方程 知三求二

点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ?=?)找出解题的捷径。关注未知数的个数,关注独立方程的个数。

点评基本量法:性质法 技巧

备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.

已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;

(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解

(1)由已知得???

a 1

+a 2

+a 3

=7,

(a 1

+3)+(a 3

+4)

2

=3a 2

,解得a 2=2.

设数列{a n }的公比为q ,由a 2=2,可得a 1=2

q

,a 3=2q ,

又S 3=7,可知2

q +2+2q =7,即2q 2-5q +2=0.

解得q 1=2,q 2=1

2.由题意得q >1,∴q =2,∴a 1=1.

故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n ,∴b n =ln 23n =3n ln 2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)

2·ln 2.

故T n =3n (n +1)

2

ln 2.

小结:方程思想是数学解题中常用的基本思想方法之一,注意到方程思想在数列间题中的应用.常可以简洁处理一些其他思想方法难以解决的数列问题。在等差数列和等比数列中,通项公式a n 和前n 项和公式S n 共涉及五个量:a 1,a n ,n ,q (d ),S n ,其中首项a 1和公比q (公差d )为基本量,“知三求二”是指将已知条件转换成关于a 1,a n ,n ,q (d ),S n 的方程组,通过方程的思想解出需要的量.

二、函数思想

函数思想是用联系和变化的观点考察数学对象.数列是一类特殊的函数,以函数的观点认识理解数列,是解决数列问题的有效方法.

例2、已知等差数列{}n a 中,129a =,1020S S =,则该数列前多少项的和最大? 寻求通项 ,借助数列的单调性解决 解:1020111092019

,102022

S S a d a d ??=∴+

=+Q , 又129a =,2d ∴=-

29(1)(2)231n a n n ∴=+-?-=-+

令0,15,n a n n N *

>≤∈Q ,所以数列首项为正,公差为负,

前15项为正,从第16项开始为负,所以前15项的和最大,

1511514

152252

S a d ?=+

=。 巧用等差数列下标的性质,关注数列的单调性

解:10201112131920,0S S a a a a a =∴++++=Q L , 由等差数列下标的性质可得:

111213192015165()0a a a a a a a ++++=+=L ,

又1290a =>Q ,15160,0a a ∴><

∴ 当15n =时,n S 取得最大值。

又129a =,2d ∴=-

29(1)(2)231n a n n ∴=+-?-=-+

令0,15,n a n n N *

>≤∈Q ,所以数列首项为正,公差为负,前15项为正,从第16项开始为负,

所以前15项的和最大,且1511514

152252

S a d ?=+

=。

思路2:从函数的代数角度来分析数列问题 解:1020111092019

,102022

S S a d a d ??=∴+

=+Q , 又129a =,2d ∴=-

21(1)

302

n n n S na d n n ?-∴=+=-+

2(15)225n =--+

∴ 当15n =时,n S 取得最大值225。

思路3:从函数图象入手,数形结合

解:设2

n S An Bn =+,数列对应的图象是过原点的

抛物线上孤立的点,又1290a =>Q ,1020S S =,

∴对称轴为1020

152

n +=

=且开口向下, ∴ 当15n =时,n S 取得最大值。

四种方法的比较

设数列{a n }的公差为d , ∵S 10=S 20,

∴10×29+10×92d =20×29+20×19

2

d ,

解得d =-2, ∴a n =-2n +31,

设这个数列的前n 项和最大,

则需?

??

??

a n ≥0,a n +1≤0,

即?

????

-2n +31≥0,-2n +1+31≤0, ∴14.5≤n ≤15.5,

∵n ∈N *

,∴n =15.

方法二 设数列{a n }的公差为d , ∵S 10=S 20,

∴10×29+10×92d =20×29+20×19

2

d ,

解得d =-2.

等差数列{a n }的前n 项和S n =d

2n 2

+(a 1-d

2

)n 是关于n 的不含常数项的二次函数,根据其图象的对称

性,由S 10=S 20,知x =10+20

2

=15是其对称轴,

由d =-2知二次函数的图象开口向下, 故n =15时S n 最大.

备用:数列{}n a 中,21,n a n n n N *=

+∈,求数列{}n a 的最大项。.

小结:利用二次函数的性质解决等差数列的前n 项和的最值问题,避免了复杂的运算过程. 数列是一种特殊的函数,在求解数列问题时,若涉及参数取值范围、最值问题或单调性时,均可考虑采用函数的性质及研究方法指导解题.值得注意的是数列定义域是正整数集或{1,2,3,…,n },这一特殊性对问题结果可能造成影响.

三、分类讨论思想

复杂问题无法一次性解决,常需分类研究,化整为零,各个击破.数列中蕴含着丰富的分类讨论的问题. 分类讨论是一种逻辑方法,同时又是一种重要的解题策略,在数学解题中有广泛的应用.所谓分类讨论,是在讨论对象明确的条件下,按照同一的分类标准,不重复、不遗漏、不越级的原则下进行的.它体现了化整为零、积零为整的思想与归类整理的方法.

例3、已知等差数列{}n a 的前n 项的和32n

n S =+,求n a 。

解:(1)当1n =时,115a s ==;

(2)当2n ≥时,111222n n n n n n a s s ---=-=-=;

综合(1) (2)可知151

22

n n n a n - ,=?=? ,≥?。

点评:此例从分的体现了n a 与n s 的关系中隐含了分类讨论思想,其理由是1n n n a s s -=-中脚码1

n -必须为正整数。

备用:已知数列{}n b 的前n 项和n n s n 182

+-=,

试求数列{}

n b 的前n 项和n T 的表达式.

分析:解题的关键是求出数列{}n b 的通项公式,并弄清数列{}n b 中各项的符号以便化去n b 的绝对值.故需分类探讨.

解:当n=1时,1711812

11=?+-==s b ; 当n≥2时,

()[]

n n n n n s s b n n n 219181182

21-=+---+-=-=-. ∴当1≤n≤9时,0>n b ,当n≥10时,0

当1≤n≤9时,n T =n b b b +???++21

=n n s b b b n n 182

21+-==+???++;

当n≥10时,n T =n b b b +???++21 =9109212s s b b b b b n n +-=-???-+???++

16218)9189(218222+-=?+-+-n n n n .

∴n T =?????≥+-≤≤+-)

10(,16218)91(,1822

n n n n n n

小结:数列中的分类讨论多涉及对公差d 、公比q 、项数n 的讨论,特别是对项数n 的讨论成为近几年高考的热点.

四、整体的思想

整体思想就是从整体着眼,通过问题的整体形式、整体结构或其它整体处理后,达到简捷地解题的目的.

例4、在等差数列{}n a 中,已知1479a a a ++=,

25815a a a ++=,求369a a a ++的值。

解:258147()3a a a a a a d ++=+++Q ,2d ∴=,

369258()321a a a a a a d ∴++=+++=

例4、在等比数列{}n a 中,910(0)a a a a +=≠,1920a a b +=,

则99100a a +=________.

分析 根据题设条件可知a 19+a 20a 9+a 10=q 10=b

a ,

而a 99+a 100

a 9+a 10=q 90,故可整体代入求解. 解析 设等比数列{a n }的公比为q ,

则a 19+a 20a 9+a 10

=q 10=b a ,

又a 99+a 100a 9+a 10

=q 90=(q 10)9=????b a 9

, 故a 99+a 100=????b a 9(a 9+a 10)=b 9a

8.

答案 b 9a

8

小结:解决此题如果不把它与整体思想联系起来,那么直接解决要走很多弯路也不容易直接求出它的准确答案,因此此题应用了整体思想来解决了数列问题是非常重要的.

备用:已知数列{}n b 为等差数列,前12项和为354,前12项中

奇数项和与偶数项和之比为27:32,求公差d . 分析:此题常规思路是利用求和公式列方程组求解,计算量较大,注意考虑用整体思想去解决,解法十分简捷.

解:由题意令奇数项和为x 27,偶数项和为x 32. 因为:,35459322712==+=x x x s 所以:6=x . 而5,63052732=∴===-d d x x x .

五、转化与化归的思想

等价转化就是将研究对象在一定条件下转化并归结为另一种研究对象,使之成为大家熟悉的或容易解决的问题.这是解决数列问题重要方法.

例5. 已知数列{}n a 的首项11=a ,前n 项和为n S ,且)(24*

1N n a S n n ∈+=+,求{}n a 的

通项公式。

分析与略解:当n ≥2时,241+=+n n a S ,241+=-n n a S 。两式相减,得

11144-++-=-=n n n n n a a S S a , )2(2211-+-=-n n n n a a a a 。

可见{}n n a a 21-+是公比为2的等比数列。 又 241221+==+a S a a ,11=a , 得 52=a , 则 3212=-a a 。

因此 1

1232-+?=-n n n a a 。

两边同除以1

2

+n ,得

43

2

21

1=-++n n n n a a (常数), 可见?

??

???n n a 2是首项为2121=a ,公差为43的等差数列。因此 )1(43

212-+=n a n

n 4

14

3-=n ,

从而2

2)13(--=n n n a 。

评析:本例通过两次化归,第一次把数列化归为等比数列,第二次把数列化归为等差数列,随着化归的进行。问题降低了难度。

六、类比的思想方法

如:数列与函数、等差数列与一次函数、等比数列与指数函数以及等差数列与等比数列之间概念和性质的类比等。类比等差数列的通项、性质、前n 项和,可以得出对等比数列相应问题的研究;类比函数概念、性质、表达式,可以得出对数列、等差数列、等比数列相应问题的研究。类比思想的应用是本章的主要特色。

还有一些重要的思想方法,如递推思想、从特殊到一般、数形结合、构造模型等思想方法。

数列问题应用数学思想方法来解决非常重要,具体应用在数学解题中灵活多变,如果我们掌握了数学思想方法解题的一些常用技巧,在解决数列的时候认真分析,巧妙地应用八种数学思想方法中的一种来解决,那么解题就变得简单多了.在高中数学中,我们也可以应用这些思想方法来解决相关数学问题.并且学好这些思想方法我们也可以来解决其它数学知识方面的难点问题.

预习作业:

1.设数列{}n a 是公差不为零的等差数列,n S 为其前n 项和()n N *

∈,

且2

129S S =,424S S =,则数列{}n a 的通项公式为________.

答案 a n =36(2n -1)

解析 设等差数列{a n }的公差为d , 由前n 项和的概念及已知条件得 a 21=9(2a 1+d ), ① 4a 1+6d =4(2a 1+d ).

由②得d =2a 1,代入①有a 21=36a 1

, 解得a 1=0或a 1=36.

将a 1=0舍去.因此a 1=36,d =72,

故数列{a n }的通项公式为 a n =36+(n -1)·72=72n -36=36(2n -1). 2.若数列{}n a 的前n 项和2329

22

n S n n =

- ()n N *∈, 则此数列的通项公式为________;

数列{}n na 中最小的项是第________项.

答案 a n =3n -16 3

解析 利用a n =?????

S 1,n =1,S n -S n -1,n ≥2

求得a n =3n -16. 则na n =3n 2-16n =3[(n -83)2-64

9

],

所以n =3时,na n 的值最小.

3、在等比数列{}n a 中,910(0)a a a a +=≠,1920a a b +=,

则99100a a +=________.

总结方法比做题重要!

方法产生于具体数学内容的学习过程中. 祝同学们学习进步!

高一数学数列解题方法

数学高考总复习:数列的应用 知识网络: 目标认知 考试大纲要求: 1.等差数列、等比数列公式、性质的综合及实际应用; 2.掌握常见的求数列通项的一般方法; 3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题. 4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题. 重点: 1.掌握常见的求数列通项的一般方法; 3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题 难点: 用数列知识解决带有实际意义的或生活、工作中遇到的数学问题. 知识要点梳理 知识点一:通项与前n项和的关系 任意数列的前n项和;

注意:由前n项和求数列通项时,要分三步进行: (1)求, (2)求出当n≥2时的, (3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式. 知识点二:常见的由递推关系求数列通项的方法 1.迭加累加法: , 则,,…, 2.迭乘累乘法: , 则,,…, 知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型. 2.建立数学模型的一般方法步骤. ①认真审题,准确理解题意,达到如下要求: ⑴明确问题属于哪类应用问题; ⑵弄清题目中的主要已知事项; ⑶明确所求的结论是什么. ②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适

当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达. ③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出 满足题意的数学关系式(如函数关系、方程、不等式). 规律方法指导 1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想; 2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如 通项公式、前n项和公式等. 3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内 容的综合.解决这些问题要注意: (1)通过知识间的相互转化,更好地掌握数学中的转化思想; (2)通过解数列与其他知识的综合问题,培养分析问题和解决问题 的综合能力. 精析 类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式

例谈数列中的数学思想

例谈数列中的数学思想 高中数学常见的数学思想有:方程思想、函数思想、分类讨论思想、化归与转化、整体思想等;在高中数学教学过程中,加强数学思想方法的渗透,培养学生的思维能力,显得非常重要。下面通过几道例题浅谈数列解题过程中渗透的数学思想,不当之处,敬请批评指正. 1、方程思想在数列中运用 等差(比)数列一般涉及五个基本量:n n S a n q d a ,,),,1(或.于是“知三求二”成为等差(比)数列中的基本问题,可运用方程思想,通过解方程(组)求解。 例1:等差数列 {}n a 的前n 项和为S n ,且S 12 =84,S 20 =460,求S 28。 解:由已知得 ??? ????=-+=-+4602)112(2020842)112(121211d a d a , 解得4,151=-=d a . 故10922 ) 128(2828128=-+ =d a S . 在解决问题中利用方程揭示问题隐含的等量关系,从而显露设问与条件的联系。等差(比)数列基本量之间的关系决定了方程思想在等差(比)数列问题中得以广泛运用。 例2、实数4321,,,a a a a 都不为0,且0)(2)(23224312242221=+++-+a a a a a a a a a ,求证: 321,,a a a 成等比数列,且4a 为其公比。 分析:题中出现了四个变量,切不可乱了阵脚眉毛胡子一把抓,要抓住一个进行研究,观察后发现以4a 为主研究简单。 证明:由题设知,4a 是一元二次方程0)(2)(2 32231222221=+++-+a a x a a a x a a 的实数 根 所以0)(4))((4)(4231222322222123122≥--=++-+=?a a a a a a a a a a 所以312231220a a a a a a =?=- 因为)4,3,2,1(0=≠i a i 所以321,,a a a 成等比数列 由求根公式得:12 3 1213122 2213124)()(2)(2a a a a a a a a a a a a a a =++=++= 所以4a 为其公比。 评注:对已知等式进行整体观察,发现4a 是某一元二次方程的根,从而得出巧妙的解答,颇具代表性。 例3、已知),0(,5 1 cos sin πααα∈= +,则αcot 的值是__________。 分析:初观之,易两边同时平方---比较复杂;细察之,联想等差数列的性质,构造等差中项求解---非常简洁。

数列中包含的数学文化

数列中包含的数学文化 数学家的故事———数学王子高斯 高斯(Carl Fried rich Gauss,1777~1855)德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。 1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的《算术研究》,阐述了数论和

高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。 高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教书真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

高考数学数列题型篇

2019年高考数学数列题型篇 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基

本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

数学文化――数列(27题)

数学文化——数列(27题) 1、“竹九节”问题 【编号第1题】 1.【2015秋?九江校级期末】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共5升,下面3节的容积共4升,则第5节的容积为() A.B.C.D. 【考点】等差数列的前n项和;等差数列的通项公式. 【分析】由题意可得等差数列的首项和公差,由通项公式可得. 【解析】:由题意可得每节的容积自上而下构成9项等差数列, 且a1+a2+a3+a4=5,a9+a8+a7=4,设公差为d, 则a1+a2+a3+a4=4a1+6d=5,a9+a8+a7=3a1+21d=4, 两式联立可得a1=,d=, 所以第5节的容积a5=a1+4d=. 故选:B 【点评】本题考查等差数列的通项公式和求和公式,属基础题. 【编号第2题】 2.【2011?湖北】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()A.1升B.升C.升D.升 【考点】等差数列的性质. 【分析】设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积. 【解析】:设竹子自上而下各节的容积分别为:a1,a2,…,a9,且为等差数列, 根据题意得:a1+a2+a3+a4=3,a7+a8+a9=4, 即4a1+6d=3①,3a1+21d=4②,②×4﹣①×3得:66d=7,解得d=, 把d=代入①得:a1=, 则a5=+(5﹣1)=. 故选B 【点评】此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道中档题. 2、“女子织布”问题

(完整版)高中数学七大数学思想

高中数学七大数学思想 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想

(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

蕴含数列中的数学思想方法

蕴含数列中的数学思想方法 山东省五莲一中 王振香 数列是高中数学的重要内容之一,与其它数学知识有着广泛、密切而又深入的交汇,这类数列综合问题往往蕴含着许多重要的数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等),在分析与处理解决时,若能灵活地以这些数学思想与方法作思路指导,则会取得事半功倍的效果. 一 函数思想 由于数列是以正整数为自变量的一种特殊离散型函数,则我们若能有意识地多从函数的角度去看待数列,在这种整体的、动态的观点之下加强数列与函数的联系,利用函数的图象和性质去解决数列的一系列问题,就会使数列的一些性质显现得更加清楚,使某些问题得到更好地解决. 例1.已知数列{}n a 是等差数列,若10=n S ,502=n S ,求n S 3. 分析:因{}n a 是等差数列,则知n S n ?????? 也为等差数列,由此可用一次函数的方法解决问题. 解:)1(2)1(2111-+=-+=n d a n d n n na n S n ,故? ?????n S n 为等差数列, 其通项为一次函数,将之设为b ax x f +=)(,则点),(n S n n 、)2,2(2n S n n 在其图象上,n b an 10=+∴,5022a n b n ?+=,则解得155,an b n n ==-. 故n n n S n n a n f n 5315353)3(3-?==-?=,解之得1203=n S . 评注:n S n 是关于n 的一次函数,其图象是直线上的离散点.上述解法是利用待定系数法建立一次函数来求解n S 3.当然更可利用结论“232,,n n n n n S S S S S --成等差数列”这个等差数列的重要结论而简单解决本题. 二 方程(组)思想 数列与以前所学过的数、式、方程、函数、不等式、简易逻辑等许多知识都有广泛的联系,方程(组)思想在学习过程中得以较为充分的体现,许多数列习题都可通过列出方程或方程

高考专题突破三 高考中的数列问题

高考专题突破三 高考中的数列问题 等差数列、等比数列基本量的运算 命题点1 数列与数学文化 例1 (1)(2019·乐山模拟)《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织多少尺布?( ) A.1631 B.1629 C.12 D.815 答案 B 解析 由题意可知每天织布的多少构成等差数列,其中第一天为首项a 1=5,一月按30天计 可得S 30=390,从第2天起每天比前一天多织的即为公差d .又S 30=30×5+30×292 ×d =390,解得d =1629 .故选B. (2)(2020·北京市房山区模拟)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长一尺,蒲生日自半,莞生日自倍.问几何日而长等?意思是今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍,若蒲、莞长度相等,则所需时间为(结果精确到0.1,参考数据: lg 2≈0.301 0,lg 3≈0.477 1)( ) A .2.2天 B .2.4天 C .2.6天 D .2.8天 答案 C 解析 设蒲的长度组成等比数列{a n },其a 1=3,公比为12,其前n 项和为A n ,则A n =3????1-12n 1-12 =6??? ?1-12n . 莞的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n .则B n =2n -12-1 =2n -1, 由题意可得,6??? ?1-12n =2n -1, 整理得,2n +62n =7,解得2n =6或2n =1(舍去). ∴n =log 26=lg 6lg 2=1+lg 3lg 2 ≈2.6.

(完整版)公务员考试行测各种题型解题技巧及考场技巧(总结版)

国家公务员行测答题技巧大全 考生们都知道,在国家公务员考试中做行测题没有行测答题技巧是不行的,那么短的时间内把每一道完完整整进行思考很难行得通,掌握一定技巧就很关键,相信通过一段时间的积累,在国家公务员考试中,你就是王者。山西中公教育专家总结了公务员行测试卷中可能用到的常用答题技巧,期望为考生备考提速。 公务员行测答题技巧之数学运算: 1.分析选项整体性,三奇一偶选其偶,三偶一奇选其奇。 2.选项有升降,最大最小不必看,答案多为中间项;答案排序处在中间的两个中的一个往往是正确的选项。 3.选项中如果有明显的整百整千的数字,先代入验证,多为正解。 4.看到题目中存在比例关系,在选项中选择满足该比例中数字整除特性的选项为正解。 5.一个复杂的数学计算问题,答案中尾数不同,直接应用尾数法解题即可。 6.极值问题中,问最小在选项中多为第二小的,问最大在选项中多为第二大的(先代入验证)。 公务员行测答题技巧之选词填空: 1.注意找语境中与所填写词语相呼应的词、短语或句子。 2.重点落在语境与所选词语的逻辑关系上,而不是选项的词语上。 3.选项中近义词辨析方向是从范围不同角度辨析的,选择范围大的。 4.从语意轻重角度辨析的,选项要么选最重的,要么选最轻的。 5.成语辨析题选择晦涩难懂的成语。 公务员行测答题技巧之片段阅读: 1.选项要选积极向上的。 2.选项是文中原话不选。 3.选项如违反客观常识不选。 4.选项如违反国家大政方针不选。 5.启示、告诉、道理材料的片段阅读,不选文字内容层面的选项。 6.启示、告诉、道理材料的片段阅读,选择激励人的选项或在精神上有触动的选项。 7.提问方式是选标题的,选择短小精悍的选项。 8.提问方式是“错误的”“不正确的”,要通读材料在选择选项,不能断章取义。 公务员行测答题技巧之逻辑推理: 1.数字比例与题干接近的选项要注意。 2.定义判断题注意提问方式是属于还是不属于。 3.定义判断若出现多定义,不提问的定义不用看。 4.削弱型和加强型推理题题干中未提信息若出现一般为无关选项。 5.评价型推理题正确答案一般兼顾双方。 6.结论型推理题正确答案一般为语气较弱的选项。 7.排除弱化项、主观项、论题偏离项,剩下往往是答案。 公务员行测答题技巧之图形推理 1.图形本身变化不大考虑对称、旋转、平移、翻转等。 2.图形本身变化较大考虑元素数量、叠加等。 3.若图形复杂多变且出现怪图,重点考虑共性,如共同元素数量、位置关系等。 4.空间型图形推理注意合理利用橡皮、小刀等工具模拟题干。 公务员行测答题技巧之数列问题:

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

数列中的数学思想和方法

数列中的数学思想和方 法 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

数列中的数学思想和方法 数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧! 一、方程思想 方程思想就是通过设元建立方程,研究方程解决问题的方法.在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法. 例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =- 464a a +=-,求其前n 项和n S 。 解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-, 故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。 再解方程组:112662 a d a d +=-?? +=?110 2a d =-??? =?, 所以10(1)n S n n n =-+-。 <法一> 法二、基本量法,建立首项和公差的二元方程 知三求二 点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了 376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ?=?)找出解题的捷径。关注未知数的个数,关注独立方程的个数。 点评基本量法:性质法 技巧 备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和. 已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项; (2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解 (1)由已知得? ?? a 1 +a 2 +a 3 =7, ?a 1 +3?+?a 3 +4? 2=3a 2 , 解得a 2=2. 设数列{a n }的公比为q ,由a 2=2,可得a 1=2 q ,a 3=2q , 又S 3=7,可知2 q +2+2q =7,即2q 2-5q +2=0. 解得q 1=2,q 2=1 2 .由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…,

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用 函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。 函数与方程思想在数列中的应用(含具体案例) 本文列举几例分类剖析: 一、方程思想 1.知三求二 等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的. 例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值. 解(1)由a10=a1+9d=30, a20=a1+19d=50, 解得a1=12, 因为n∈N*,所以n=11. 2.转化为基本量 在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得. 例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8. 解a6―a4=a1q3(q2―1)=24.(1) 由a3a5=(a1q3)2=64,得a1q3=±8. 将a1q3=―8代入(1), 得q2=―2(舍去); 将a1q3=8代入(1),得q=±2. 当q=2时,a1=1,S8=255; 当q=―2时,a1=―1,S8=85.

数列题型的解题技巧

近几年高考题可见数列题命题有如下趋势: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等. 因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等. 4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳. 5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键. 6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果. 7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用. 【考点透视】 1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【例题解析】 考点1 正确理解和运用数列的概念与通项公式 理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式.

中学数学中重要数学思想

中学数学中重要数学思想——分类讨论思想的教 中学数学中重要数学思想—— 分类讨论思想 数学思想是人们对数学内容的本质认识,是对数学方法的进一步抽象和概括,属于对数学规律的理性认识的范畴,数学教学中不仅要注重数学知识的传授,能力的提高,更要注重揭示知识发生、发展过程中,解决问题过程中蕴含的数学思想方法。数学思想方法在人的能力培养和素质提高方面具有重要作用。 分类讨论是一种重要的数学思想方法:是按照数学对象的相同点和相异点将数学对象区分为不同种类的思想方法(朱人杰.数学思想方法研究导论);分类讨论是根据需要对研究对象进行分类,然后将划分的每一类别分别进行求解,综合后即得答案(任子朝.数学标准解读)。分类讨论贯穿在整个高中数学学习的全过程,通过分类可以使大量繁杂的材料条理化、系统化,从而为人们进行分门别类的深入研究创造条件,分类讨论不仅在数学知识的探究和概念学习中十分重要,而且在解决数学问题过程中起着重要作用。学会用这种思想方法解决问题,对提高学生思维能力、解决问题的能力有很大作用。 数学思想方法需要在教学过程中多次孕育,初步形成以致应用发展,使思想方法由隐到显,以致明朗化、深刻化。本文针对部分学生不会分类,分类不全面,标准不统一,以致有畏难情绪,结合学生学习实际,提出分类讨论的三个教学策略,以求学生能理解该思想方法的含义,初步掌握该方法的操作步骤,会运用分类讨论思想方法解决问题。 1、分类讨论的教学策略一、“按需而分” 分类讨论是按照数学对象的相同点和相异点,将数学对象区分为不同种类的思想方法。是根据研究数学对象、数学问题过程的需要进行分类讨论,需要是根本。在教学过程中要挖掘教材中采用分类讨论解决问题的材料,渗透、孕育分类讨论思想,同时一定要让学生体验到分类讨论的必要性,是解决问题的需要而讨论。逐步内化为学生的思想意识。 1.1、从数学知识的发生、发展过程,分类是一种重要的逻辑方法,通过分类研究可以使问题化繁为简,化零乱为条理,化分散为系统。如研究函数,从函数的解析式、定义域、值域、性质和图像,先一般函数后特殊函数,指数函数、对数函数、三角函数。数列也可以看成特殊的函数来进行研究,以期更深刻地理解数列的本质。 1.2、在高中数学教学过程中着重在以下方面对学生加以引导,让学生体悟分类讨论思想的运用: 绝对值概念的定义;一元二次方程根的判别式与实根数的情况;二次函数二次项系数正负与抛物线开口方向;指数函数、对数函数的单调性与底a的关系;等比数列的求和公式中q=l与q≠1的区别;由数列的前n项和求数列的通项公式n=1与n≠1;不等式的性质,

相关主题
文本预览
相关文档 最新文档