当前位置:文档之家› (完整word版)数学模型与数学建模

(完整word版)数学模型与数学建模

(完整word版)数学模型与数学建模
(完整word版)数学模型与数学建模

数学模型与数学建模

《经济数学基础》是电大财经与管理类专科学生的一门必修课程,也是学习其它技术基础课和专业课的必要基础课程,无论学生和教师都非常重视这门课程的教学。但是现在的经济数学教材,多数只注重理论和计算,对应用性不够重视,即使有个别的应用也是限于较少的几何方面以及经济方面的简单应用。很多学生都有这样的认识:数学很重要,但很枯燥,学了半天除了知道能在几何等方面的应用外,不知道还能有什么用,但又不得不学。学生学习数学的目的不明确、缺少自觉学习的动力。归于一点,就是学生不知道学了数学有什么用。在今后的学习和工作中数学到底有什么作用呢?学生很茫然,但数学又是非常重要的课程。因此,很多学生都是怀着不得不学的态度来学习数学的,缺乏自觉学习的动力。这就要求我们数学教师进行课程内容和教学方法的大胆改革,让学生明白数学除了在几何以及经济上应用以外,还有很多用处,可以说我们的生活中、工作中无时无刻的充满着数学,只是你没有认识它,不知道该怎样用它。近20年来发展起来的数学建模正是为数学的应用性提供了展示的舞台,也为大学生们提供了一个很好的学习机会。

一、数学模型

什么是数学模型呢?

1、模型

所谓模型是指为了某个特定目的将原型的某一部分信息简缩,提炼而成的原型替代物。这里的原型是指人们在现实世界里关心、研究或者从事生产、管理的实际对象。模型可以分为形象模型与抽象模型,前者包括直观模型(如机械模型,玩具等)和物理模型(如核爆炸反应模拟设备等),后者包括思维模型(如个人凭经验行事的思维模式及习惯等)和符号模型(如地图,电路图,化学分子结构式等)。

模型的特征:目的性、应用性、功能性、抽象性是一般模型所普遍具有的特征。

这里特别强调模型的目的性,模型的基本特征是由模型的目的决定的。一个原型,为了不同的目的可以有多种不同的模型。例如,为了制定大型企业的生产管理计划,模型就不必反映各生产装置的动态特性,但必须反映产品的产量、销售量和库存原料等变化情况。也就是说,各装置的动态特性对这种模型来说是非本质的。相反,为了实现各生产装置的最佳运行,模型就必须详细地描述各装置内部状态变化的生产过程动态特性。这时,各装置的动态待性就变成了本质的。可见,模型所反映的内容将因其使用的目的的不同而不同。

模型的分类:模型一般分为具体模型(物质模型)和抽象模型(理想模型)两大类。具体模型有直观模型、物理模型等,抽象模型有思维模型、符号模型、数学模型等。

2、数学模型

数学模型是一种符号模型,它是由数字、字母或其他数学符号组成的,描述现实对象数量规律(相依关系)的数学公式、图像、图表或算法,是一种数学结构。更确切地说,所谓数学模型是指对于现实世界的一个特定对象,为了一个特定目的,根据对象特有的内在规律,做一些必要的简化,假设,运用适当的数学工具,得到的一个数学结构。这个数学结构可以是方程(组)、不等式(组)、图像、图表或者算法等。

数学模型的特征:数学模型除具有一般模型所普遍具有的四个特征外,定义中的“运用适当的数学工具”得到“数学结构”表明数学模型还具有数量性特征,这是数学模型区别于其它模型的最显著特性。

“数学工具”不言而喻是我们已有的数学各分支的理论、方法。“数学结构”可以是数学公式、算法、表格、图示等。它们体现了数学模型不同于其它各种思维模型,是一种用数学语言表达的定量化的模型。用数学语言的描述往往比其它模型更概括、更精炼、更为准确,也更能抓住事物的本质。重要的是建立了数学模型以后,对对象的研究可以完全转化在数学演绎的范畴进行。

3、数学模型的分类

(1)按照建模所用的数学方法的不同,可分为初等模型、运筹学模型、微分方程模型、概率统计模型、控制论模型等。

(2)按照数学模型应用领域的不同,可分为人口模型、交通模型、经济预测模型、金融模型、环境模型、生态模型、企业管理模型、城镇规划模型等等。

(3)按照对建模机理了解的程度不同,可分为白箱模型、灰箱模型、黑箱模型

白箱模型主要指物理、力学等一些机理比较清楚的学科描述的现象以及相应的工程技术问题,这些方面的数学模型大多已经建立起来,还需要深入研究的主要是针对具体问题的特定目的进行修正与完善,或者是进行优化设计与控制等。

灰箱模型主要指生态、经济等领域中遇到的模型,人们对其机理虽有所了解,但还不清楚,故称为灰箱模型。在建立和改进模型方面还有不少工作要做。

黑箱模型主要指生命科学、社会科学等领域中遇到的模型。人们对其机理知之甚少,甚至完全不清楚,故称为黑箱模型。在工程技术和现代化管理中,有时会遇到这样一类问题:由于因素众多、关系复杂以及观测困难等原因,人们也常常将它作为灰箱或黑箱模型问题来处理。

应该指出的是,这三者之间并没有严格的界限,而且随着科学技术的发展,情况也是不断变化的。

(4)按照模型表现特性的不同,可分为确定性模型与随机性模型、静态模型与动态模型、离散模型与连续模型。

确定性模型不考虑随机因素的影响,随机性模型则考虑了随机因素的影响。静态模型与动态模型两者的区别在于是否考虑时间因素引起的变化。离散模型与连续模型两者的区别在于描述系统状态的变量是离散的还是连续的。

二、数学建模

什么是数学建模呢?

数学建模,概括而言,是指包括建立、求解、检验和评价数学模型的一系列过程。具体是指:在实验、观察和分析的基础上,对实际问题的主要方面作出合理的假设和简化,将实际问题“翻译”成数学语言;明确变量和参数;根据分析得出问题的数量相依关系,用数学的语言和方法形成一个明确的数学结构,也称为这一阶段的一个数学模型;用数学或计算的方法(包括用计算机及数学软件)精确或近似求解该数学模型;检验结果是否能说明实际问题的主要现象,能否进行预测;结论的优缺点及模型改进的方向等;这样的过程反复进行,直到能解决或较好地解决问题,这就是数学建模的全过程。

一般地,数学建模过程和步骤可用如下框图表示:

模型准备:了解实际问题的背景,明确建模的目的,搜集有关的信息资料,掌握对象的特征。

模型假设:针对问题的特点和建模的目的,作出合理的、简化的假设。注意要在合理和简化之间进行折中处理。

模型构成:用数学的语言、符号来表述问题。

模型求解:使用各种数学方法、数学软件和计算机技术进行求解。

模型分析:计算结果的误差分析、统计分析、模型对数据的稳定性分析等。

模型检验:与实际现象、数据进行比对,检验模型的合理性、适用性。如果与实际现象、

数据差别加大,则需重新进行模型假设。

模型应用:将该模型应用于实践。

应当强调指出的是,并不是所有的数学建模过程都要按上述步骤进行。上述步骤只是数学建模过程的一个大概的描述,实际建模时可以灵活应用。

三、数学建模案例——椅子能在不平的地面上放稳吗?

把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。让我们来建立数学模型来证明它。

1、模型假设

对椅子和地面都要作一些必要的假设:

(1)椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形。

(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。

(3)对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。

2、模型构成

首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。

其次要把椅脚着地用数学符号表示

的竖直距离,当这个距离为0时,表示

椅脚着地了。椅子要挪动位置说明这个

距离是位置变量的函数。

由于正方形的中心对称性,只要设

两个距离函数就行了,记A、C两脚与地

面距离之和为f(θ),B、D两脚与地面距

离之和为g(θ),显然f(θ)、g(θ)≥0,

由假设(2)知f、g都是连续函数,再由假设(3)知f(θ)、g(θ)至少有一个为0。当θ=0时,不妨设f(θ)>0、g(θ)=0,这样改变椅子的位置使四只脚同时着地,就归结为如下命题:命题已知f(θ)、g(θ)是θ的连续函数,对任意θ,f(θ)?g(θ)=0,且f(0)>0、g(0)=0,则存在θ0,使f(θ0)=g(θ0)=0。

3、模型求解

将椅子旋转90度,对角线AC和BD互换,由f(0)>0、g(0)=0可知f(π/2)=0、g(π/2)>0。令h(θ)=f(θ)-g(θ),则h(0)>0、h(π/2)<0,由f、g的连续性知h也是连续函数,由零点定理,必存在θ0(0<θ0<π/2)使h(θ0)=0,即f(θ0)=g(θ0),由f(θ)?g(θ)=0,所以f(θ0)=g(θ0)=0。

4、模型评注

模型巧妙在于用变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转90度并不是必需的,同学们可以考虑四脚呈长方形的情形。

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模期末考试2018A试的题目与答案

华南农业大学期末考试试卷(A卷) 2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1.2.3.4.当i在此岸时记x i = 1.否则为0;此岸的状态下用s = (x1.x2.x3.x4)表示。该问题中决策为乘船方案.记为d = (u1, u2, u3, u4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。(12分) . .

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

完整版数学建模论文

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞 赛参赛规则》(以下简称为“竞赛章程和参赛规则” ,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述 方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从 A/B/C/D 中选择一项填写): A 我们 的参赛报名号为(如果赛区设置报名号的话):所属学校(请填 写完整的全名):大连工业大学 参赛队员(打印并签名 ) : 1.王佳锴 2.梁嘉祯 3.杨挺 指导教师或指导教师组负责人(打印并签名 ): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2013年9月16日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

数学建模模拟试题及参考答案

《数学建模》模拟试题 一、(02') 人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。 二、(02') 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。 三、(03') 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。 将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离 ,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论; (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量 (2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0 30,0==θθ时的总淋雨量。 (3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为?,如图2建立总淋雨量与速度v 及参数?,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。 四、(03') 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

数学建模论文示例精选版

数学建模论文示例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

“空瓶换汽水”问题探讨 摘要:“空瓶换汽水”问题是一个比较经典的趣味数学问题,曾以“空瓶换啤酒”“废电池换新电池”“费电珠换新电珠”等形式出现在前苏联、德国和中国各种数学竞赛题目中。这个问题的探讨与解决,对于我们在日常生活中如何使开支与效益达到最优化等问题,具有一定的指导意义。 关键词:瓶数空瓶不含瓶单价推论 日常生活中,我们经常遇到过空瓶换汽水问题。喝完了凉爽的汽水还能用空瓶换汽水继续喝,那简直是炎炎夏日里的一种享受。如果没有经历过,那么以下这几道数学题你应该似曾相识。 【问题一】 某品牌汽水可以用3个空瓶再换回1瓶汽水,某人买回10瓶汽水,则他最多可以喝到多少瓶汽水 【解析一】 “用3个空瓶再换回1瓶汽水”,假设汽水一瓶3元,则空瓶相应的1元,而真正的汽水就只值2元,“某人买回10瓶汽水”意味着花去人民币 3*10=30元, 故而“最多可以喝到?30/2=15瓶。 【问题二】 5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶? 【解析二】 同理“5个空瓶可以换1瓶汽水”由题意,假设1瓶汽水5元,空瓶则1元,真正的汽水只值4元,“某班同学喝了161瓶汽水”则一共真正汽水的钱是:161*4元; 而买整个汽水(真正的汽水加空瓶)需要5元,所以“他们至少要买汽水多少瓶”则等于( 161*4)/5=(161/5)*4=(32*4)...余1,此时就可算出32*4+1=129瓶。 笔者对类似的题目的思考与研究,得到以下推论: 1,汽水的瓶数=总共的钱/汽水(不含瓶)的钱; 2,至少要买汽水多少瓶=总花去的钱/汽水的单价+余数。 这些推论是否正确呢是否可以解决此类问题呢我们不妨拿类似的问题验证一下。 【问题三】 超市规定每3个空汽水瓶可以换一瓶汽水,小李有12个空汽水瓶,最多可以换几瓶汽水A.4瓶B.5瓶C.6瓶D.7瓶 【解答三】 由题意可知,空汽水瓶的价钱是1元,汽水加瓶是3元,所以“小李有12个空汽水瓶”等于小李有12元钱,问题是“最多可以换几瓶汽水”,就是小李

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学模型吕跃进数学建模A试卷及参考答案

数学建模A试卷参考答案 一.概念题(共3小题,每小题5分,本大题共15分) 1、什么是数学模型?(5分) 答:数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 2、数学建模有哪几个过程?(5分) 答:数学建模有如下几个过程:模型准备,模型假设,模型构成,模型求解,模型分析,模型检验,模型应用。 3、试写出神经元的数学模型。 答:神经元的数学模型是 其中x=(x1,…x m)T输入向量,y为输出,w i是权系数;输入与输出具有如下关系: θ为阈值,f(X)是激发函数;它可以是线性函数,也可以是非线性函数.(5分) 二、模型求证题(共2小题,每小题10分,本大题共20分) 1、(l)以雇员一天的工作时间t和工资w分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图。解释曲线为什么是你画的那种形状。(5分) (2)如果雇主付计时工资,对不同的工资率(单位时间的工资)画出计时工资线族。根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议。(5分) 答:(l)雇员的无差别曲线族f(w,t)=C是下凸的,如图1,因为工资低时,他愿以较多的工作时间换取较少的工资;而当工资高时,就要求以较多的工资来增加一点工作时间. (2)雇主的计时工资族是w=at,a是工资率.这族直线与f(w,t)=c的切点P1,P2,P3,…的连线PQ为雇员与雇主的协议线.通常PQ是上升的(至少有一段应该是上升的),见图1. 2、试作一些合理的假设,证明在起伏不平的地面上可以将一张椅子放稳。(7分)又问命题对长凳是否成立,为什么?(3分) 答:(一)假设:电影场地面是一光滑曲面,方凳的四脚连线构成一正方形。 如图建立坐标系:其中A,B,C,D代表方凳的四个脚,以正方形ABCD的中心为坐标系原点。 记H为脚A,C与地面距离之和, G为脚B,D与地面距离之和, θ为AC连线与X轴的夹角, 不妨设H(0)>0,G(0)=0,(为什么?) 令X f(θ)=H(θ)-G(θ)图二 则f是θ的连续函数,且f(0)=H(0)>0 将方凳旋转90°,则由对称性知H(π/2)=0,G(π/2)=H(0) 从而f(π/2)=-H(0)<0 由连续函数的介值定理知,存在θ∈(0,π/2),使f(θ)=0 (二)命题对长凳也成立,只须记H为脚A,B与地面距离之和, G为脚C,D与地面距离之和, θ为AC连线与X轴的夹角 将θ旋转1800同理可证。 三、模型计算题(共5小题,每小题9分,本大题共45分)

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数学建模考试题(开卷)及答案

2010年上学期2008级数学与应用数学,信息与计算科学专业 《数学建模》课程考试供选试题 第1题 4万亿投资与劳动力就业: 2008以来,世界性的金融危机席卷全球,给我国的经济发展带来很大的困难。沿海地区许多中小企业纷纷裁员,造成大量的人员失业。据有关资料估计,从2008年底,相继有2000万人被裁员,其中有1000万人是民工。部分民工返乡虽然能够从一定程度上缓解就业压力,但2009年的600多万毕业大学生给我国就业市场带来巨大压力。但可喜的是,我国有庞大的外汇储备,民间资本实力雄厚,居民储蓄充足。中国还是发展中国家,许多方面的建设还处于落后水平,建设投资的潜力巨大。为保持我国经济快速发展,特别是解决就业问题带来希望,实行政府投资理所当然。在2009年两代会上,我国正式通过了4万亿的投资计划,目的就是保GDP增长,保就业,促和谐。但是有几个问题一直困扰着我们,请你运用数学建模知识加以解决。问题如下: 1、GDP增长8%,到底能够安排多少人就业?如果要实现充分就业,2009年的GDP到底要增长多少? 2、要实现GDP增长8%,4万亿的投资够不够?如果不够,还需要投资多少? 3、不同的产业(或行业)吸纳的劳动力就业能力不同,因此投资的流向会有所不同。请你决策,要实现劳动力就业最大化,4万亿的投资应该如何分配到不同的产业(或行业)里? 4、请你给出相关的政策与建议。 第2题 深洞的估算:假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG的石头,并准确的测定出听到回声的时间T=5S,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。 1、不计空气阻力; 2、受空气阻力,并假定空气阻力与石块下落速度成正比,比例系数k1=0.05; 3、受空气阻力,并假定空气阻力与石块下落速度的平方成正比,比例系数k2=0.0025; 4、在上述三种情况下,如果再考虑回声传回来所需要的时间。 第3题 优秀论文评选:在某数学建模比赛的评审过程中,组委会需要在一道题目的150 篇参赛论文中选择4 篇论文作为特等奖论文。评审小组由10 名评委组成,包括一名小组组长(出题人),4 名专业评委(专门从事与题目相关问题研究的评委),5 名普通评委(从事数学建模的教学和组织工作,参与过数学建模论文的评审)。组委会原先制定的评审步骤如下: step1:首先由普通评委阅读所有150 篇论文,筛选出20 篇作为候选论文。 Step2:然后由小组内的所有评委阅读这些候选论文,每人选择4 篇作为推荐的论文。 Step3:接着进入讨论阶段,在讨论阶段中每个评委对自己选择的 4 篇论文给出理由,大家进行讨论,每个评委对论文的认识都会受到其他评委观点的影响。 Step4:在充分讨论后,大家对这些推荐的论文进行投票,每个评委可以投出4票,获得至少6 票的论文可以直接入选,如果入选的论文不足,对剩余的论文(从20篇候选论文中除去已经入选的论文)重复step2至step4 步的评审工作。如果三轮讨论后入选的论文仍然不够,则由评选小组组长确定剩下名额的归属。 如果有超过4 篇的论文获得了至少6票,则由评选小组组长确定最终的名额归属。问题:

相关主题
文本预览
相关文档 最新文档