当前位置:文档之家› 压缩与熵编码

压缩与熵编码

压缩与编码

?由于多媒体信号的数据量巨大,为了节省存储空间和传输带宽,需进行压缩编码?多媒体数据的压缩方法,可以分成三大类,其中熵编码是基础,源编码是重点,而将它们二者相结合的混合编码则是各种编码标准所采用的主要方法

?本章主要介绍压缩的基本概念和若干常用的熵编码算法

?源编码和混合编码将在以后几章中介绍

1 压缩概论

本节先压缩的基本概念,包括?压缩的需要与可能

?算法的特点与分类

?一般的编码过程

压缩与编码

?数据压缩(data compression) 与信号编码(signal coding)往往含义相同

–压缩(compress)

–解压缩/还原/重构(decompress)

–编码(encode/coding)

–解码/译码(decode)

?相关学科:信息论、数学、信号处理、数据压缩、编码理论和方法

1.1 压缩的需要与可能

一. 压缩的需要

?多媒体信号的数据量巨大,如:

–一幅1024*1024真彩图有3MB

–5分钟的CD音乐有50.47MB

–90分钟的PAL视频数字化后有203.68GB ?为了节省存储空间和传输带宽,进行实时高质的多媒体通信,必须对多媒体数据进行压缩编码

二. 压缩的可能

多媒体数据和人类的感觉存在着各种冗余,如:?空间冗余:图像的相邻像素相关

?时间冗余:相邻音频样本/视频帧相关

?频率冗余:相邻的频谱值相关,人对高频信号不敏感或分辨率低

?听觉冗余:人耳的低音听阈高、强纯音的频率屏蔽、相邻声音的时域屏蔽

?视觉冗余:人眼对亮度变化比对色彩的变化更敏感、对高亮区的量化误差不敏感、视网膜分频道

1.2 压缩算法的特点与分类

一.特点

用于多媒体数据的压缩方法众多,可按主要的特点分成不同类型:

1. 有/无损

–无损压缩:能够无失真地从压缩后的数据重构,准确地还原

原始数据。可用于对数据的准确性要求严格的场合。如差分

编码、RLE、Huffman编码、LZW编码、算术编码

–有损压缩:有失真,不能完全准确地恢复原始数据,重构的

数据只是原始数据的一个近似。可用于对数据的准确性要求

不高的场合。如预测编码、音感编码、分形压缩、小波压缩、JPEG/MPEG

2. 对称性

–若编解码算法的复杂性/所需时间差不多,则为对称的编码方

法。多数压缩算法都是对称的

–不对称的一般是编码难而解码容易(如Huffman编码与分形编码)。但用于密码学的编码方法则相反,是编码容易,而解

码则非常非常难

3. 帧间/内

?在视频编码中会同时用到帧内与帧间的编码方法?帧内编码是指在一帧图像内独立完成的编码方法,同静态图像的编码,如JPEG

?而帧间编码则需要参照前后帧才能进行编解码,并在编码过程中考虑对帧之间的时间冗余的压缩,如MPEG

4. 实时性

?在有些多媒体的应用场合,需要实时处理或传输数据,编解码一般要求延时≤50ms。这需要简单/快速/高效的算法和高速/复杂的处理芯片

5. 分级处理

?有些压缩算法可以同时处理不同分辨率、不同传输速率、不同质量水平的多媒体数据,如JPEG2000、MPEG-2/4

二.分类

1. 熵编码

?熵编码(entropy encoding)是一类利用数据的统计信息进行压缩的无语义数据流的无损编码。如RLE、LZW、Huffman 编码

2. 信源编码

?(信)源编码(source coding)是一类利用信号原数据在时间域和频率域中的相关性和冗余进行压缩的有语义编码。种类繁多,可进一步分为

–预测编码:利用先前和现在的数据对在时间或空间上相

邻的下面或后来的数据进行预测,从而达到压缩的目的。

如DM、ADPCM

–变换编码:采用各种数学变换方法,将原时间域或空间

域的数据变换到频率域或其他域,利用数据在变换域中

的冗余或人类感觉的特征来进行压缩。如DCT、DWT

–分层编码:将原数据在时空域或频率域上分成若干子区

域,利用人类感觉的特征进行压缩编码,然后再合并。

如子采样、子带编码

–其他编码:如矢量量化、运动补偿、音感编码

3. 混合编码

混合编码(hybrid coding) = 熵编码+ 源编码

大多数压缩标准都采用混合编码的方法进行数据压缩,一般是先利用信源编码进行有损压缩,再利用熵编码做进一步的无损压缩。如H.261、H.263、JPEG 、MPEG

常见编码方法

1.3 编码过程

一.编码准备

?模数转换(A/D):

A/D

连续模拟信号—à离散数字信号

采样/量化

?预处理:对得到的初始数字信号进行必要的处理,包括过滤、去噪、增强、修复等,以达到除去数据中的不必要成分、提高信号的信噪比、修复数据的错误等目的

二.编解码过程

A/D预处理压缩

多媒体信号—à数字信号—à处理过的数字信号—à压缩数据(子)采样/量化过滤/去噪/增强/修复源编码/熵编码

存储解码D/A

—à压缩数据—à重构的数字信号—à显示/播放

传输还原/重构(插值)

2 熵编码

?信息熵为信源的平均信息量(不确定性的度量)?熵编码是一类利用数据的统计信息进行压缩的无语义数据流的无损编码

?本节在了解熵定义的基础上,讨论若干常用的熵编码算法,内容有:

–7.2.1 熵

–7.2.2 Shannon-Fano编码

–7.2.3 Huffman编码

–7.2.4 算术编码

–7.2.5 RLE

–7.2.6 LZW算法

2.1 熵

?熵(entropy)本来是物理的热力学中用来度量热力学系统无序性的(热力学第二定律:孤立系统内的熵恒增):(S 为熵、Q 为热量、T 为绝对温度)

对可逆过程,(孤立系统)?信息熵的概念是香农(Shannon 仙农)于1948年在他创建的信息论中引进的,用来度量信息中所含的信息量:其中,H 为信息熵(单位为bit ),S 为信源,p i 为符号s i 在S 中出现的概率

∫≥==0 ,T

dQ dS T dQ S ∑=i

i i p p S H 1log )(2

x

y 1log 2=x

x y 1log 2=

?信息熵H 为自信息量I :的均值

?例如,一幅用256级灰度表示的图像,如果每一个象素点灰度的概率均为p i =1/256,则

即编码每一个象素点都需要8位(I ),平均每一个象素点也需要8位(H )

i i p s I 1log )(2=82log 256log 1log 8222==≡=i

p I )( 82log 2561256256log 25611log 82255

0225502bit p p H i i i i =×===∑∑==

2.2 Shannon-Fano编码

?按照Shannon提出的信息理论,1948年和1949年

分别由Shannon和Fano描述和实现了一种被称之

为香农-范诺(Shannon-Fano)算法的编码方法,是一种变码长的符号编码

?Shannon-Fano算法采用从上到下的方法进行编码:首先按照符号出现的概率排序,然后从上到下使

用递归方法将符号组分成两个部分,使每一部分

具有近似相同的频数,在两边分别标记0和1,最

后每个符号从顶至底的0/1序列就是它的二进制编

例子

?有一幅60个象素组成的灰度图像,灰度共有5级,分别用符号A 、B 、C 、D 和E 表示,60个象素中各级灰度出现次数见下

?如果直接用二进制编码,则5个等级的灰度值需要3位表示,也就是每个象素用3位表示,编码这幅图像总共需要60 * 3 = 180位。按照香农理论,这幅图像的熵为H = (20/60)×log2(60/20) + (10/60)×log2 (60/10) +…+ (10/60) ×log2 (60/10) ≈2.189

这就是说平均每个符号用2.189位表示就够了,60个象素共需用131.33位,压缩比约为3 / 2.189 ≈1.37 : 1。

按照Shannon-Fano算法,先

按照符号出现的频度或概率排

序:A、D、B、E、C,然后

分成次数相近左右两个部分—

—AD(35)与BEC(25),并在两

边分别标记0和1

然后类似地再将AB分成A(20)与B(15)、BEC分成B(10)与EC(15),最后再把EC分成E(10)与C(5):

Shannon-Fano算法举例表

的压缩比为180/135 = 4/3≈1.33 : 1

2.3 Huffman编码

?Huffman(哈夫曼/赫夫曼/霍夫曼)在1952年提出了另一种从下到上的编码方法,是一种统计最优的变码长符号编码,让最频繁出现的符号具有最短的编码?Huffman编码的过程= 生成一棵二叉树(H 树)

–树中的叶节点为被编码符号及其概率

–中间节点为两个概率最小符号(串)的并所构

成的符号串及其概率所组成的父节点

–根节点为所有符号之串及其概率1

《数据压缩与编码》课程教学大纲1

《数据压缩与编码》课程教学大纲 课程类型:专业限选课课程代码: 课程学时: 46学分: 2 适用专业:电子信息工程专业 开课时间: 三年级二学期开课单位: 电气与电子工程学院 大纲执笔人: 吴德林大纲审定人:杨宁 一、课程性质、任务: 人类社会已进入信息时代,网络是信息时代的重要产物,大量数据的存贮、处理特别是传输,是影响网络系统效率的重要因素之一,数据压缩技术对提高网络通信能力和效率提供了有力的支持。课程的目的在于学习数据通信基本原理和了解数据通信网络。 通过本课程的学习,学生能够掌握数据压缩的基本知识、基本方法;掌握数据压缩技术及经典算法,包括信源的数字化方法、基本的统计编码方法、预测编码的理论与实现方法、HUFFMAN方法、算术编码方法、字典压缩技术、文本压缩技术、图像压缩技术;理解和实验基本图像JPEG压缩编码或EZW/SPIHT压缩编码。 二、课程教学内容 1)教学内容、目标与学时分配 (一)理论教学部分

2、实验要求指:必做或选做 2) 教学重点与难点 1、重点:数据压缩的基本概念、数据压缩的常用方法与算法,数据编码技术、图像压缩技术以及视频压缩技术。。 2、难点:视频压缩与小波分析技术 三、课程各教学环节的基本要求 1)课堂讲授: 多媒体、PPT课件 2)实验(实训、实习):

3)作业: 问答题,计算题 4)课程设计: 5)考试 5.1 考试方法:(考试;考查;闭卷;开卷;其它方法) 闭卷考试 5.2 各章考题权重 第一章 5% 第二章 10% 第三章 10% 第四章 20% 第五章 20% 第六章. 20% 第七章 10% 第八章 5% 5.3 考试题型与比例 Eg:填空:20% ;判断题:10% ;单项选择:20% ;问答题:40%;分析题:10% 四、本课程与其他课程的联系 先修课程: 微机原理与程序设计、C 语言程序设计、数据结构、算法设计与分析。 五、建议教材及教学参考书 教材:吴乐南著:《数据压缩(第3版)》,电子工业出版社,2012年 参考书:魏江力.JPEG2000图像压缩基础、标准和实践.电子工业出版社,2004

图像压缩编码方法

图像压缩编码方法综述 概述: 近年来, 随着数字化信息时代的到来和多媒体计算机技术的发展, 使得人 们所面对的各种数据量剧增, 数据压缩技术的研究受到人们越来越多的重视。 图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于 图像的存储和传输。即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。 图像压缩编码原理: 图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。 图像数据的冗余度又可以分为空间冗余、时间冗余、结构冗余、知识冗余 和视觉冗余几个方面。 空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。 时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。 结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构 冗余。 视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像 的变化并不都能察觉出来。 人眼的视觉特性: 亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别 不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。人眼刚 刚能察觉的亮度变化值称为亮度辨别阈值。 视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就 察觉不出来,高于它才看得出来,这是一个统计值。 空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。 掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像 信号变化的剧烈程度有关。 图像压缩编码的分类: 根据编码过程中是否存在信息损耗可将图像编码分为: 无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真; 有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。 根据编码原理可以将图像编码分为: 熵编码:熵编码是编码过程中按熵原理不丢失任何信息的编码。熵编码基

视频压缩编码方法简介—AVI

视频压缩编码方法简介—AVI AVI(Audio Video Interleave)是一种音频视像交插记录的数字视频文件格式。1992年初Microsoft公司推出了AVI技术及其应用软件VFW(Video for Windows)。在AVI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个AVI文件的主要参数包括视像参数、伴音参数和压缩参数等: 1、视像参数 (1)、视窗尺寸(Video size):根据不同的应用要求,AVI的视窗大小或分辨率可按4:3的比例或随意调整:大到全屏640×480,小到160×120甚至更低。窗口越大,视频文件的数据量越大。 (2)、帧率(Frames per second):帧率也可以调整,而且与数据量成正比。不同的帧率会产生不同的画面连续效果。 2、伴音参数:在AVI文件中,视像和伴音是分别存储的,因此可以把一段视频中的视像与另一段视频中的伴音组合在一起。AVI 文件与WAV文件密切相关,因为WAV文件是AVI文件中伴音信号的来源。伴音的基本参数也即WAV文件格式的参数,除此以外,AVI文件还包括与音频有关的其他参数: (1)、视像与伴音的交织参数(Interlace Audio Every X Frames)AVI格式中每X帧交织存储的音频信号,也即伴音和视像交替的频率X是可调参数,X的最小值是一帧,即每个视频帧与音频数据交织组织,这是CD-ROM上使用的默认值。交织参数越小,回放AVI文件时

读到内存中的数据流越少,回放越容易连续。因此,如果AVI文件的存储平台的数据传输率较大,则交错参数可设置得高一些。当AVI文件存储在硬盘上时,也即从硬盘上读AVI文件进行播放时,可以使用大一些的交织频率,如几帧,甚至1秒。 (2)、同步控制(Synchronization) 在AVI文件中,视像和伴音是同步得很好的。但在MPC中回放AVI文件时则有可能出现视像和伴音不同步的现象。 (3)、压缩参数:在采集原始模拟视频时可以用不压缩的方式,这样可以获得最优秀的图像质量。编辑后应根据应用环境环择合适的压缩参数。 3、 AVI数字视频的特点 (1)、提供无硬件视频回放功能:AVI格式和VFW软件虽然是为当前的MPC设计的,但它也可以不断提高以适应MPC的发展。根据AVI格式的参数,其视窗的大小和帧率可以根据播放环境的硬件能力和处理速度进行调整。在低档MPC机上或在网络上播放时,VFW的视窗可以很小,色彩数和帧率可以很低;而在Pentium级系统上,对于64K色、320×240的压缩视频数据可实现每秒25帧的回放速率。这样,VFW就可以适用于不同的硬件平台,使用户可以在普通的MPC上进行数字视频信息的编辑和重放,而不需要昂贵的专门硬件设备。 (2)、实现同步控制和实时播放:通过同步控制参数,AVI可以通过自调整来适应重放环境,如果MPC的处理能力不够高,而AVI文件的数据率又较大,在WINDOWS环境下播放该AVI文件时,播放器可

图像压缩编码实验报告

图像压缩编码实验报告 一、实验目的 1.了解有关数字图像压缩的基本概念,了解几种常用的图像压缩编码方式; 2.进一步熟悉JPEG编码与离散余弦变换(DCT)变换的原理及含义; 3.掌握编程实现离散余弦变换(DCT)变换及JPEG编码的方法; 4.对重建图像的质量进行评价。 二、实验原理 1、图像压缩基本概念及原理 图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类: (1)无损压缩编码种类 哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。(2)有损压缩编码种类 预测编码,DPCM,运动补偿; 频率域方法:正交变换编码(如DCT),子带编码; 空间域方法:统计分块编码; 模型方法:分形编码,模型基编码; 基于重要性:滤波,子采样,比特分配,向量量化; (3)混合编码 JBIG,,JPEG,MPEG等技术标准。 2、JPEG 压缩编码原理 JPEG是一个应用广泛的静态图像数据压缩标准,其中包含两种压缩算法(DCT和DPCM),并考虑了人眼的视觉特性,在量化和无损压缩编码方面综合权衡,达到较大的压缩比(25:1以上)。JPEG既适用于灰度图像也适用于彩色图像。其中最常用的是基于DCT变换的顺序式模式,又称为基本系统。JPEG 的压缩编码大致

信源编码(数据压缩)课程课后题与答案(第二章)

信源编码 Assignment of CH2 1、(a)画出一般通信系统结构的组成框图,并详细说明各部分的作用或功能; 信源信源编码信道编码调制 噪声信道传输 , 信宿信源解码信道解码解调 图1、一般数字通信系统框图 各部分功能: 1、信源和信宿:信源的作用是把消息转换成原始的电信号;信宿的作用是 把复原的电信号转换成相应的消息。 . 2、信源编码和信源解码:一是进行模/数转换,二是进行数据压缩,即设法降低信号的数码率;信源解码是信源编码的逆过程。 3、信道编码和信道解码:用于提高信道可靠性、减小噪声对信号传输的影响;信道解码是信道编码的反变换。 4、调制和解调:将信息调制为携带信息、适应在信道中传输的信号。数字 " 解调是数字调制的逆变换。 5、信道:通信的通道,是信号传输的媒介。 (b)画出一般接收机和发射机的组成框图,并分别说明信源编解码器和信道编 解码器的作用; … 高频振荡器高频放大调制高频功放天线

" 音频功放 信 号 图2、一般发射机框图(无线广播调幅发射机为例)

天线 信号放大器混频器解调器音频放大器 信 号 本地振荡器 图3、一般接收机框图(无线广播调幅发射机为例) 信源编解码器作用:它通过对信源的压缩、扰乱、加密等一系列处理,力求 用最少的数码最安全地传输最大的信息量。信源编解码主要解决传输的有效性问题。 信道编解码器作用:使数字信息在传输过程中不出错或少出错,而且做到自 动检错和尽量纠错。信道编解码主要解决传输的可靠性问题。 (c)信源编码器和解码器一般由几部分组成,画出其组成图并给以解释。 信源编码器 时频分析量化熵编码 信道传输 时频分析反量化熵解码 信源解码器 图 4、信源编解码器框图 时频分析部分:信源编码器对信源传送来的信号进行一定方法的时域频域分析,建立一个能够表达信号规律性的数学模型,从而得知信号中的相关性和多余度,分析出信号数据中可以剔除或减少的部分(比如人感知不到的高频率音频信号或者看不见的色彩信号等等),以决定对后续数据的比特分配、编码速率等处理问题。 量化部分:根据时频分析的结果,为了更加简洁地表达利用该模型的参数, 减少精度,采取相应量化方法对信号进行量化,减小信号的多余度和不相关性,

图像压缩编码的方法概述

图像压缩编码的方法概述摘要:在图像压缩的领域,存在各种各样的压缩方法。不 同的压缩编码方法在压缩比、压缩速度等方面各不相同。本文从压缩方法分类、压缩原理等方面分析了人工神经网络压缩、正交变换等压缩编码方法的实现与效果。 关键词:图像压缩;编码;方法 图像压缩编码一般可以大致分为三个步骤。输入的原始图像首先需要经过映射变换,之后还需经过量化器以及熵编码器的处理最终成为码流输出。 一、图像压缩方法的分类 1.按照原始信息和压缩解码后的信息的相近程度分为以下两类:(1)无失真编码又称无损编码。它要求经过编解码处理后恢复出的图像和原图完全一样,编码过程不丢失任何信息。如果对已量化的信号进行编码,必须注意到量化所产生的失真是不可逆的。所以我们这里所说的无失真是对已量化的信号而言的。特点在于信息无失真,但压缩比有限。(2)限失真编码中会损失部分信息,但此种方法以忽略人的视觉不敏感的次要信息的方法来得到高的压缩比。图像的失真怎么度量,至今没有一个很好的评判标准。在由人眼主观判读的情况下,唯有人眼是对图像质量的最有利评判者。但是人眼视觉机理到现在为止仍为被完全掌握,所以我们很难得到一个和主观评价十分相符的客观标准。目前用的最多的仍是均方误差。这个失真度量标准并不好,之所以广泛应用,是因为方便。

2.按照图像压缩的方法原理可分为以下三类:(1)在图像编码过程中映射变换模块所做的工作是对编码图像进行预测,之后将预测差输出供量化编码,而在接受端将量化的预测差与预测值相加以恢复原图,则这种编码方法称为预测编码。预测编码中,我们只对新的信息进行编码。并且是利用去除邻近像素之间的相关性和冗余性的方法来达到压缩的目的。(2)若压缩编码中的映射变换模块用某种形式的正交变换来代替,则我们把这种方式的编码方法称为变换编码。在变换编码中常用的变换方法有很多,我们主要用到的有离散余弦变换(DCT),离散傅立叶变换(DFT)和离散小波变换(DWT)等。(3)混合编码,LZW算法以及近些年来的一些新的压缩编码方法,最主要的有分形编码算法、小波变换压缩算法、基于模型的压缩算法等。 3.按照压缩对象来分,我们可将图像压缩方法分为静止图像压缩和运动图像压缩。它们所采用的压缩编码标准有所不同,对于静止图像压缩而言,采用的是JPEG、JPEG2000标准;而对运动的图像进行压缩时,我们则采用的是、、、MPEG-1、MPEG-2、MPEG-4、MPEG-7等。 二、常用的图像压缩方法 图像压缩方法至研究开始至今,已经有将近70年的发展了,随着科技的不断发展和人们越来越高的期望和要求,使得图像压缩技术也在不断的发展着,不断的进步着,各种各样的方法层出不穷,争对不同的要求我们可以选择不同的方法对图像进行压缩,以达到

多变效率

第八章离心式压缩机原理 §1 离心式压缩机的结构及应用 排气压力超过34.3×104N/m2以上的气体机械为压缩机。压缩机分为容积式和透平式两大类,后者是属于叶片式旋转机械,又分为离心式和轴流式两种。透平式主要应用于低中压力,大流量场合。 离心式压缩机用途很广。例如石油化学工业中,合成氨化肥生产中的氮,氢气体的离心压缩机,炼油和石化工业中普遍使用各种压缩机,天然气输送和制冷等场合的各种压缩机。在动力工程中,离心式压缩机主要用于小功率的燃气轮机,内燃机增压以及动力风源等。 离心压缩机的结构如图8-1所示。高压的离心压缩机由多级组成,为了减少后级的压缩功,还需要中间冷却,其主要可分为转子和定子两大部分。分述如下: 1.转子。转子由主轴、叶轮、平衡盘、推力盘、联轴器等主要部件组成。 2.定子。由机壳、扩压器、弯道、回流器、轴承和蜗壳等组成。 图8-1 离心式压缩机纵剖面结构图 (1:吸气室 2:叶轮 3:扩压器 4:弯道 5:回流器 6:涡室 7,8:密封 9:隔板密封 10:轮盖密封 11: 平衡盘12:推力盘 13:联轴节 14:卡环 15:主轴 16:机壳 17:轴承 18:推力轴承 19:隔板 20:导流叶片 ) §2 离心式压缩机的基本方程 一、欧拉方程 离心式压缩机制的流动是很复杂的,是三元,周期性不稳定的流动。我们在讲述基本方程一般采用如下的简化,即假设流动沿流道的每一个截面,气动参数是相同的,用平均值表示,这就是用一元流动来处理,同时平均后,认为气体流动时稳定的流动。 根据动量矩定理可以得到叶轮机械的欧拉方程,它表示叶轮的机械功能变成气体的能量,如果按每单位质量的气体计算,用表示,称为单位质量气体的理论能量: (8-1)

数据压缩

一、名词解释 1、数据压缩:以最小的数码表示信源所发的信号,减少容纳给定消息集合或数据采样集合的信号空间。 2、数据压缩比:将压缩前每个信源符号(取样)的编码位数(mlog)与压缩后平均每符号的编码位数(l)之比,定义为数据压缩比。 3、均匀量化:把输入信号的取值域按等距离分割的量化称为均匀量化。 4、最优量化(MMSE准则):使均方误差最小的编码器设计方法称为最小均方误差(MMSE)设计。以波形编码器的输入样值与波形解码器的输出样值之差的均方 误差作为信号质量的客观评判标准和MMSE的设计准则。(能使量化误差最小的所谓最佳量化器,应该是非均匀的。) 5、信息熵定义:信息量的概率平均值,即随机变量的数学期望值,叫做信息熵或者简称熵。 6、统计编码定义:主要利用消息或消息序列出现概率的分布特性,注重寻找概率与码字长度间的最优匹配,叫做统计编码或概率匹配编码,统称熵编码。 7、变长编码:与等长编码相对应,对一个消息集合中的不同消息,也可以用不同长度码字来表示,这就叫做不等长编码或变长编码。 8、非续长码:若W中任一码字都不是另一个码字的字头,换句换说,任何一个码字都不是由另一个码字加上若干码元所构成,则W称为非续长码、异字头码或前缀码。 9、游程长度:是指字符(或信号采样值)构成的数据流中各字符重复出现而形成字符串的长度。 10、电视图像的取向:我国彩色电视制式采用逐行倒相的PAL-D制。 11、HVS的时间掩蔽特性:指随着时间变化频率的提高,人眼对细节分辨能力下降的特性。 12、HVS的空间掩蔽特性:指随着空间变化频率的提高,人眼对细节分辨能力下降的特性。 13、HVS的亮度掩蔽特性:指在背景较亮或较暗时,人眼对亮度不敏感的特性。 14、CIF格式:是常用的标准图像格式。是一种规范Y、Cb、Cr色差分量视频信号的像素分辨率的标准格式。像素。 15、SIF格式:是一种用于数字视频的存储和传输的视频格式。 16、压扩量化:由于低电平信号出现概率大、量化噪声小;高电平信号虽然量化噪声变大,但因为出现概率小,总的量化噪声还是变小了,从而提高量化信噪比。这种方法叫做压缩扩张量化。(压扩量化用一个非线性函数变换先将信号“压缩”后再均匀量化,它和非线性量化器完全等效。) 17、信号压缩系统的复杂度:指实现编解码算法所需的硬件设备量,典型地可用算法的运算量及需要的存储量来度量。 18、离散信源:被假设为由一系列随机变量所代表,往往用随机出现的符号表示,称输出这些符号集的源为信源,如果取值于某一离散集合,就叫做离散信源。 19、互信息量:对两个离散随机时间集X和Y,事件yj的出现给出关于xi的信息量,即为互信息量。 20、联合熵:两个变量X和 Y 的联合熵定义为:

熵编码

熵编码 熵编码(entropy encoding)是一类利用数据的统计信息进行压缩的无语义数据流之无损编码。本章先介绍熵的基本概念,然后介绍香农-范诺(Shannon-Fano)编码、哈夫曼(Huffman)编码、算术编码(arithmetic coding)、行程编码(RLE)和LZW 编码等常用的熵编码方法。 1 熵 熵(entropy)本来是热力学中用来度量热力学系统无序性的一种物理量(热力学第二定律:孤立系统内的熵恒增): 对可逆过程,?≥== 0 ,T dQ dS T dQ S (孤立系统) 其中,S 为熵、Q 为热量、T 为绝对温度。 (信息)熵H 的概念则是美国数学家Claude Elwood Shannon (香农 /仙农 / 向农)于1948年在他所创建的信息论中引进的,用来度量信息中所含的信息量:(为自信息量 i i p s I 1 log )(2 =的均值/数学期望) ∑=i i i p p S H 1log )(2 其中,H 为信息熵(单位为bit ),S 为信源,p i 为符号s i 在S 中出现的概率。 例如,一幅256级灰度图像,如果每种灰度的像素点出现的概率均为p i =1/256,则 82log 256log 1 log 8222 ==≡=i p I )( 82log 2561 256256log 25611log 8225502255 2bit p p H i i i i =?===∑∑== 即编码每一个像素点都需要8位(I ),平均每一个像素点也需要8位(H )。 2 Shannon-Fano 编码 按照Shannon 所提出的信息理论,1948年和1949年分别由Shannon 和MIT 的数学教授Robert Fano 描述和实现了一种被称之为香农-范诺(Shannon-Fano)算法的编码方法,它是一种变码长的符号编码。 算法

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量 ,单位为。若按吸气状态的容积计算,则其 容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地 用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机 的重要性能指标之一。 (4-3) 式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率; -压缩机向环境的散热量。 表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。 表2-2 热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度 五、指示功率和指示效率

各种格式的图像编码

【图像编码】【文件格式】 本次团队合作充分将时间的利用率达到了最高化,我们用了2天将思路制定以及部根据自己的喜好分成2组,有人肯定会说不是给你们题目了么?还制定什么思路?因为这次题目比较宽广,我们需要挑选重点以及难点来进行讲解,况且前期的准备工作充分了,对于后面接下来的过程将会更加得心应手,目的性明确。我们小组里图像编码和文件格式又各分一组,用了3天的时间查找资料以及用了最后2天我们在图书馆以及网上进行了讨论总结。 【图像编码】 1.为什么要使用图像编码 答:图像编码主要利用图像信号的统计特性以及人类视觉的生理学及心理学特性,对图像信号进行高效编码,即研究数据压缩技术,目的是在保证图像质量的前提下压缩数据,便于存储和传输,以解决数据量大的矛盾。一般来说,图像编码的目的有单个:1.减少数据存储量2.降低数据率以减少传输带宽3.压缩信息量,便于特征提取,为后续识别做准备。 2.经典编码技术 2.1熵编码 2.1.1行程编码 2.1.2哈夫曼编码【原理】 2.1.3算术编码 优点:编码过程中按熵原理不丢失任何信息,根据消息出现概率的分布特性而进行的,是无损数据压缩编码。

缺点:使用长度不同的比特串对字母进行编码有一定的困难。尤其是,几乎所有几率的熵都是一个有理数。 2.2预测编码 2.1.1差分脉冲编码调制 2.1.2自适应差分脉冲编码调制 2.1.3帧间预测 优点:在同等精度要求的条件下,就可以用比较少的比特进行编码,达到压缩数据 的目的。 缺点:在于当图像中有运动物体时,两个传输帧在物体经过的区域上不再一一对应,因而引起图像模糊。 2.3变换编码(压缩比最高) 2.1.1 K-L变换 2.1.2离散余弦编码 优点:在时域或空域描述时,数据之间相关性大,数据冗余度大,经过变换在变换 域中描述,数据相关性大大减少,数据冗余量减少,参数独立,数据量少,这样再进行量化,编码就能得到较大的压缩比。 缺点:间接编码编码时间较长,压缩时间复杂度较大。 2.4混合编码 优点:这种方法克服了原有波形编码与参数编码的弱点,并且结合了波形编码的 高质量和参数编码的低数据率,取得了比较好的效果。 缺点:不便于解码等工作 3.第二代编码技术 3.1分型编码 压缩比高,压缩后的文件容量与图像像素数无关,在压缩时时间长但解压缩速度快 3.2小波变换编码

图像压缩编码的方法概述

图像压缩编码的方法概述 摘要:在图像压缩的领域,存在各种各样的压缩方法。不同的压缩编码方法在压缩比、压缩速度等方面各不相同。本文从压缩方法分类、压缩原理等方面分析了人工神经网络压缩、正交变换等压缩编码方法的实现与效果。 关键词:图像压缩;编码;方法 图像压缩编码一般可以大致分为三个步骤。输入的原始图像首先需要经过映射变换,之后还需经过量化器以及熵编码器的处理最终成为码流输出。 一、图像压缩方法的分类 1.按照原始信息和压缩解码后的信息的相近程度分为 以下两类:(1)无失真编码又称无损编码。它要求经过编解码处理后恢复出的图像和原图完全一样,编码过程不丢失任何信息。如果对已量化的信号进行编码,必须注意到量化所产生的失真是不可逆的。所以我们这里所说的无失真是对已量化的信号而言的。特点在于信息无失真,但压缩比有限。(2)限失真编码中会损失部分信息,但此种方法以忽略人的视觉不敏感的次要信息的方法来得到高的压缩比。图像的失真怎么度量,至今没有一个很好的评判标准。在由人眼主观判读的情况下,唯有人眼是对图像质量的最有利评判者。

但是人眼视觉机理到现在为止仍为被完全掌握,所以我们很难得到一个和主观评价十分相符的客观标准。目前用的最多的仍是均方误差。这个失真度量标准并不好,之所以广泛应用,是因为方便。 2.按照图像压缩的方法原理可分为以下三类:(1)在图像编码过程中映射变换模块所做的工作是对编码图像进行 预测,之后将预测差输出供量化编码,而在接受端将量化的预测差与预测值相加以恢复原图,则这种编码方法称为预测编码。预测编码中,我们只对新的信息进行编码。并且是利用去除邻近像素之间的相关性和冗余性的方法来达到压缩 的目的。(2)若压缩编码中的映射变换模块用某种形式的正交变换来代替,则我们把这种方式的编码方法称为变换编码。在变换编码中常用的变换方法有很多,我们主要用到的有离散余弦变换(DCT),离散傅立叶变换(DFT)和离散小波变 换(DWT)等。(3)混合编码,LZW算法以及近些年来的一些新的压缩编码方法,最主要的有分形编码算法、小波变换压缩算法、基于模型的压缩算法等。 3.按照压缩对象来分,我们可将图像压缩方法分为静止图像压缩和运动图像压缩。它们所采用的压缩编码标准有所不同,对于静止图像压缩而言,采用的是JPEG、JPEG2000 标准;而对运动的图像进行压缩时,我们则采用的是H.261、H.263、H.264、MPEG-1、MPEG-2、MPEG-4、MPEG-7等。

等熵膨胀制冷

等熵膨胀制冷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

等熵膨胀制冷 高压气体绝热可逆膨胀过程,称为等熵膨胀。气体等熵膨胀时,有功输出,同时气体的温度降低,产生冷效应。这是获得制冷的重要方法之一,尤其在低温技术领域中。 常用微分等熵效应来表示气体等熵膨胀过程中温度随压力的变化,其定义为:(1) 因总为正值,故气体等熵膨胀时温度总是降低,产生冷效应。 对于理想气体,膨胀前后的温度关系是: (2) 由此可求得膨胀过程的温差 (3) 对于实际气体,膨胀过程的温差可借助热力学图查得,如图1所示。 图 1 等熵过程的温差 由于等熵膨胀过程有外功输出,所以必须使用膨胀机。当气体在膨胀机内膨胀时,由于摩擦、漏热等原因,使膨胀过程成为不可逆,产生有效能损失,造成膨胀机出口处

工质温度的上升,制冷量下降。工程上,一般用绝热效率来表示各种不可逆损失对膨胀机效率的影响,其定义为: (4) 即为膨胀机进出口的实际比焓降Δh pr与理想焓降(即等熵焓降)Δh id之比。目前,透平式膨胀机的效率可达到~,活塞式膨胀机的效率达~。 比较微分等熵效应和微分节流效应两者之差为: (5) 因为υ始终为正值,故αs>αh。因此,对于气体绝热膨胀,无论从温降还是从制冷量看,等熵膨胀比节流膨胀要有效得多,除此之外,等熵膨胀还可以回收膨胀功,因而可以进一步提高循环的经济性。 以上仅是对两种过程从理论方面的比较。在实用时尚有如下一些需要考虑的因素:(1)节流过程用节流阀,结构比较简单,也便于调节;等熵膨胀则需要膨胀机,结构复杂,且活塞式膨胀机还有带油问题;(2)在膨胀机中不可能实现等熵膨胀过程,因而实际上能得到的温度效应及制冷量比理论值要小,这就使等熵膨胀过程的优点有所减小;(3)节流阀可以在气液两相区工作,但带液的两相膨胀机(其带液量尚不能很大);(4)初温越低,节流膨胀与等熵膨胀的差别越小,此时,应用节流较有利。因此,节流膨胀和等熵膨胀这两个过程在低温装置中都有应用,它们的选择依具体条件而定。 单一气体工质布雷顿循环 布雷顿(Brayton)制冷循环又称焦耳(Joule)循环或气体制冷机循环,是以气体为工质的制冷循环,其工作过程包括等熵压缩,等压冷却,等熵膨胀及等压吸热四个过程,这与蒸气压缩式制冷机的四个工作过程相近,两者的区别在于工质在布雷顿循环中不发生集态改变。历史上第一次实现的气体制冷机是以空气作为工质的,称为空气制冷机。除空气外,根据不同的使用目的,工质也可以是CO2,N2,He 等气体。 (1)无回热气体制冷机循环 图2示出无回热气体制冷机系统图。气体由压力p0被压缩到较高的压力p c,然后进入冷却器中被冷却介质(水或循环空气)冷却,放出热量Q c,而后气体进入膨胀机,经历作外功的绝热膨胀过程,达到很低的温度,又进入冷箱吸热制冷。循环就这样周而复始地进行。

huffman编码译码实现文件的压缩与解压

数据结构 课程设计 题目名称:huffman编码与解码实现文件的压缩与解压专业年级: 组长: 小组成员: 指导教师: 二〇一二年十二月二十六日

目录 一、目标任务与问题分析 (2) 1.1目标任务 (2) 1.2问题分析 (2) 二、算法分析 (2) 2.1构造huffman树 (2) 2.1.1 字符的统计 (2) 2.1.2 huffman树节点的设计 (2) 2.2构造huffman编码 (3) 2.2.1 huffman编码的设计 (3) 2.3 压缩文件与解压文件的实现 (3) 三、执行效果 (4) 3.1界面 (4) 3.2每个字符的编码 (4) 3.3操作部分 (5) 3.4文件效果 (6) 四、源程序 (7) 五、参考文献 (16)

huffman编码与解码实现文件的压缩与解压 一、目标任务与问题分析 1.1目标任务 采用hu ffm an编码思想实现文件的压缩和解压功能,可以将任意文件压缩,压缩后也可以解压出来。这样即节约了存储空间,也不会破坏文件的完整性。 1.2问题分析 本问题首先应该是利用哈夫曼思想,对需要压缩的文件中的个字符进行频率统计,为了能对任意的文件进行处理,应该所有的文件以二进制的方式进行处理,即对文件(不管包含的是字母还是汉字)采取一个个的字节处理,然后根据统计的频率结果构造哈夫曼树,然后对每个字符进行哈夫曼编码,然后逐一对被压缩的文件的每个字符构建的新的哈夫曼编码存入新的文件中即得到的压缩文件。解压过程则利用相应的哈夫曼树及压缩文件中的二进制码将编码序列译码,对文件进行解压,得到解压文件。 二、算法分析 2.1构造huffman树 要利用哈夫曼编码对文本文件进行压缩,首先必须知道期字符相应的哈夫曼编码。为了得到文件中字符的频率,一般的做法是扫描整个文本进行统计,编写程序统计文件中各个字符出现的频率。由于一个字符的范围在[0-255]之间,即共256个状态,所以可以直接用256个哈夫曼树节点即数组(后面有节点的定义)空间来存储整个文件的信息,节点中包括对应字符信息,其中包括频率。 2.1.1 字符的统计 用结构体huffchar来存放文件字符的信息。其中有文件中不同字符出现的种类Count、字符data。 struct huffchar{ //存放读入字符的类; int Count;//字符出现的个数; char data;//字符; }; 函数实现: bool char_judge(char c)//判断字符出现的函数; void char_add(char c)//添加新出现的字符; void read_file_count() //文件的读取 2.1.2 huffman树节点的设计 用结构体huff_tree来存储结点信息,其中有成员频率weight、父亲节点parent、左儿子节点lchild、右儿子节点rchild。

视频压缩编码方法简介—AVI

视频压缩编码方法简介—A V I A VI(Audio Video Interleave)是一种音频视像交插记录的数字视频文件格式。1992年初Microsoft公司推出了A VI技术及其应用软件VFW(Video for Windows)。在A VI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个A VI文件的主要参数包括视像参数、伴音参数和压缩参数等。 1.视像参数 (1)视窗尺寸(Video size)。根据不同的应用要求,A VI的视窗大小或分辨率可按4:3的比例或随意调整,大到全屏640×480,小到160×120甚至更低。窗口越大,视频文件的数据量越大。 (2)帧率(Frames per second)。帧率也可以调整,而且与数据量成正比。不同的帧率会产生不同的画面连续效果。 2.伴音参数。在A VI文件中,视像和伴音是分别存储的,因此可以把一段视频中的视像与另一段视频中的伴音组合在一起。A VI文件与WA V文件密切相关,因为WA V文件是A VI文件中伴音信号的来源。伴音的基本参数也即WA V文件格式的参数,除此以外,A VI文件还包括与音频有关的其他参数。 (1)视像与伴音的交织参数(Interlace Audio Every X Frames)。A VI格式中每X帧交织存储的音频信号,也即伴音和视像交替的频率X是可调参数,X的最小值是一帧,即每个视频帧与音频数据交织组织,这是CD-ROM上使用的默认值。交织参数越小,回放A VI文件时读到内存中的数据流越少,回放越容易连续。因此,如果A VI文件的存储平台的数据传输率较大,则交错参数可设置得高一些。当A VI文件存储在硬盘上时,也即从硬盘上读A VI文件进行播放时,可以使用大一些的交织频率,如几帧,甚至1秒。 (2)同步控制(Synchronization)。在A VI文件中,视像和伴音是同步得很好的。但在MPC中回放A VI文件时则有可能出现视像和伴音不同步的现象。 (3)压缩参数。在采集原始模拟视频时可以用不压缩的方式,这样可以获得最优秀的图像质量。编辑后应根据应用环境选择合适的压缩参数。 3.A VI数字视频的特点 (1)提供无硬件视频回放功能。A VI格式和VFW软件虽然是为当前的MPC设计的,但它也可以不断提高以适应MPC的发展。根据A VI格式的参数,其视窗的大小和帧率可以根据播放环境的硬件能力和处理速度进行调整。在低档MPC机上或在网络上播放时,VFW的视窗可以很小,色彩数和帧率可以很低;而在Pentium级系统上,对于64K色、320×240的压缩视频数据可实现每秒25帧的回放速率。这样,VFW就可以适用于不同的硬件平台,使用户可以在普通的MPC上进行数字视频信息的编辑和重放,而不需要昂贵的专门硬件设备。 (2)实现同步控制和实时播放。通过同步控制参数,A VI可以通过自调整来适应重放环境,如果MPC 的处理能力不够高,而A VI文件的数据率又较大,在WINDOWS环境下播放该A VI文件时,播放器可以通过丢掉某些帧,调整A VI的实际播放数据率来达到视频、音频同步的效果。 (3)可以高效地播放存储在硬盘和光盘上的A VI文件。由于A VI数据的交叉存储,VFW播放A VI数据时只需占用有限的内存空间,因为播放程序可以一边读取硬盘或光盘上的视频数据一边播放,而无需预先把容量很大的视频数据加载到内存中。在播放A VI视频数据时,只需在指定的时间内访问少量的视频图像和部分音频数据。这种方式不仅可以提高系统的工作效率,同时也可以实现迅速地加载和快速地启动播放程序,减少播放A VI视频数据时用户的等待时间。 (4)提供了开放的A VI数字视频文件结构。A VI文件结构不仅解决了音频和视频的同步问题,而且具有通用和开放的特点。它可以在任何Windows环境下工作,而且还具有扩展环境的功能。用户可以开发自己的A VI视频文件,在Windows环境下可随时调用。 (5)A VI文件可以再编辑。A VI一般采用帧内有损压缩,可以用一般的视频编辑软件如Adobe Premiere 或MediaStudio进行再编辑和处理。

第10讲 信源编码的性能指标

第10讲 信源编码的性能指标 1. 无失真信源编码的冗余度压缩原理 为了压缩冗余度,必须改造信源输出符号的统计特性。一方面要尽量提高任一时刻输出符号的概率分布的均匀性,另一方面要尽量消除前后输出符号的统计相关性。因此,无失真信源编码的实质是将信源尽可能地改造为均匀分布的无记忆信源。这种信源的通信效率是最大的。改造后的新信源是由原信源和编码器共同组成的,称为编码后的信源。设f 是信源S 的一个编码,X 是编码后的信源,则三者之间的关系表示如下 f S X ??→ 信源编码f 所用的码元可以与信源S 的符号不同,一般是某个信道的输入符号。 从数据处理这个角度来看,编码f 是一个数据处理器,输入信源S 的数据,输出信源X 的数据。从通信的角度看,编码f 是一个信道,输入信源S 的数据,输出信源X 的数据。 无失真信源编码的目的是无损压缩,即用尽可能少的数据表示数据中的所有信息,不能破坏数据原有信息。这相当于提高信息传输效率,使之接近于1。因此,度量无失真编码的压缩性能可以看编码后信息传输效率,称为编码效率。编码效率越接近于1,无损压缩性能越好。下面介绍信源编码的5个性能指标,包括平均码长、码率、编码效率、编码冗余度和压缩率。 2. 平均码长 平均码长是信源编码的一个关键的性能指标。在已知信源熵的前提下,根据平均码长,可以计算出无损压缩编码的码率和编码效率。 定义2.1 设f 是一个N-分组码,各码字的码长分别记为,1i l i q ≤≤,对应的N 长分组的概率为i p ,则f 的平均码长定义为 11(/ q i i i L p l N ==∑码元信源) 注:在有的教材中,当平均码长的单位转化为“比特/信源”时,称为编码速率。本课程用不到这个概念。 讨论:用平均码长估计编码后的数据长度 设S 是一个离散无记忆信源,:f S C →是信源S 的一个编码,其平均码长为L 。令12n s s s s =?是一个信源序列。假设用f 对该数据进行编码,试估计编码后码元序列的长度。 对于信源数据12n s s s s =?,我们令L i 表示信源符号s i 所对应的码字f (s i )的长度,则编码后的数据长度为12+++n L L L 。我们把L i 视为随机变量,则对于任何i ,我们有[]i E L L =。 因为S 是离散无记忆的,所以{L i }是独立同分布随机序列。根据辛钦大数定理,我们有

第六讲 等熵流动

3、理想气体流动基本方程 1)运动方程 0=+VdV dp ρ 2)等熵方程 k C p ρ= 3)状态方程 RT p ρ= 4)连续方程 m VA &= ρ 将等熵过程关系式带入运动方程,积分得到 C V p k k =+-2 12 ρ 此式为可压缩气体流动的伯努利方程。 注:绝热过程即可,不一定要求等熵流动。 5、一元气体等熵流动基本关系式 1)滞止参数 000,,T p ρ 2)一元气体等熵流动基本关系式 1 12012020]2 11[]2 1 1[2 1 1---+=-+=-+=k k k M k M k p p M k T T ρρ 3)临界参数 马赫数达到1时的流动参数称为临界参数,有 *** T p ρ 等。此时, 速度为音速。基本关系式如下:

634.0)1 2(528 .0)1 2(833.0)12()12(1 1 0*1 0*0*2 1 0*=+==+==+=+=--k k k k k p p k T T k a a ρρ 判断亚音速或超音速流的准则,临界一词的来源。 4)极限状态(最大速度状态) T=0的断面上,速度达到最大,m ax u T = 0,无分子运动,是达不到的。 2 12 max 00u p k k = -ρ ==> 0000max 21 2 12i kRT k p k k u =-=-= ρ 5) 不可压伯努利方程的限度 对于不可压伯努利方程 02 2 1p u p =+ρ 既有 12 120=-u p p ρ 对于可压缩伯努利方程 ... 48 )2(821... )21(!2)11(1)21(11)2 11(6 422 221 20+-+++=+----+--+=-+=-M k k M k M k M k k k k k M k k k M k p p k k 由于 2 22222 212121M kp kp a u kp kp u u ===ρρ

数据压缩试题库

第一章 填空题: 1、信源编码主要解决传输的问题,信道编码主要解决传输的问题。 2、数据压缩的信号空间包括、、。 3、数据压缩按其压缩后是否产生失真可划分为 和两大类。 第二章 填空题: 1、脉冲编码调制包括、、三个步骤。 2、连续信号的多种离散表示法中,我们最常用的取样方法是。 3、若要将取样信号准确地恢复成原信号,取样频率必须满足定理。 4、黑白电视信号的带宽大约为5MHz,若按256级量化,则按奈奎斯特准则取样时的数据速率为。如果电视节目按25帧/s发送,则存储一帧黑白电视节目数据需内存容量。 5、量化器可分为和两大类。 6、量化器的工作特性可分为、、三个区域。 6、按照处理方法是否线性来判断,我们认为量化过程本身是。 7、我国数字电话网中压扩量化的对数函数采用曲线。 8、信号质量的主观度量方法中最常用的判决方法是。 9、对信号压缩系统的性能评价应从几个性能指标上综合评价,这些性能指标包括、、、。 简答题: 1、量化误差和噪声的本质区别是什么? 2、简述压扩量化的工作过程? 3、数据压缩中的“二次量化”是指什么?它和模数转换时的量化有什么区别? 证明题:

1、试导出以均方误差最小定义的最佳量化方法中量化判决电平k d 和量化输出电平k y 的表达式。 2、证明M-L 量化器的最小量化误差为:{}{}∑-=+≤<-=1 012 2min J k k k k d x d p y x E ε 第三章 填空题: 1、离散无记忆平稳信源的冗余度隐含在 。 2、对于联合信源,其冗余度除了各自本身的冗余度外还隐含在 。 3、离散有记忆信源的的理论极限是 。 4、在限失真编码理论中,使限失真条件下比特数最少的编码称为 。 问答题: 1、什么是平均自信息量(信息熵),平均条件自信息量(条件熵)以及平均互信息量?它们之间有什么关系? 2、简述率失真函数的基本含义,并指出它对信源编码的指导意义。 3、什么是最大离散熵?它对数据压缩有什么指导意义? 证明题: 2、证明 ()()|H Y X H Y ≤,并简述它对数据压缩的意义。 3、证明:()()()Y |X H X H Y X I -=;。 第四章 填空题: 1、统计编码主要是利用消息或消息序列 的分布特性,注重寻找 的最优匹配。 2、长度为L 1,L 2,…,L n 的m 进制唯一可译码存在的充分必要条件是 。

相关主题
文本预览
相关文档 最新文档