当前位置:文档之家› 小波算法

小波算法

小波算法
小波算法

传统的第一代小波变换是在欧式空间内通过基底的平移和伸缩构造小波基的,不适合非欧式空间的应用。因此小波的提升方案应运而生,它是构造第二代小波变换的理想方法。

提升的形式给出了小波完全的空间域的完全解释,它具有许多优良的特性:结构简单,运算量低,原位运算,节省存储空间,逆变化可以直接翻转实现,以及可逆的整数到整数变换,便于实现。在高速处理、移动手持设备、低功耗设备应用中具有很大的吸引力。提升小波在1996年由Sweldens提出后,在信号处理领域得到了广泛的应用。在静态图像处理中,提升小波已被选作JPEG2000的变换核。它还提供了多精度的性能,同基于JPEG2000的标准相比,在很低的比特率时具有较好的压缩DCT的JPEG性能,并提供了在同一个编码结构中有效的失真和无失真的压缩。在视频领域,使用提升小波方法自适应地对任意形状的物体进行编码,显著提高了编码效率,在静态图像编码上明显优于MPEG4;视频物体的主观评价效果更好,具有比MPEG4更好的块效应。通过提升小波的梯形结构,提出的渐进性的小波逆变换合成(PIWC)算法来保证一个局域场景的再现只需要使用部分的压缩数据,这样减少了数据访问量和计算开销,实现了在3D环境下从压缩数据中实时再现3D。提升小波用于一维信号消噪和图像消噪也得到了良好的效果。通过将水印加入到提升结构正在处理的小波系数中,进一步增强了安全性。

提升算法:

二维离散小波变换最有效的实现方法之一是采用Mallat算法,通过在挺香的水平和垂直方向交替使用低通和高通滤波器实现。这种传统的基于卷积的离散小波变换的计算量很大,计算复杂度高,对存储空间要求高,不利于硬件实现。提升小波的出现有效地解决了这一问题。提升算法相对于MATLAB算法而言,是一种更为快速有效的小波变换实现方法,被誉为第二代小波变换。它不依赖于傅里叶变换,继承了第一代小波的多分辨率的特征,小波变换后的系数是整数,计算速度快,计算时无需额外的存储开销,Daubechies已经证明,任何离散小波或具有有限长滤波器的两阶滤波变换都可以被分解成一系列简单的提升步骤,因此能够用Mallat算法实现的小波,都可以用提升算法来实现。

提升算法给出了双正交小波简单而有效的构造方法,使用了基本的多项式插补来获取信号的高频分量,之后通过构建尺度函数来获取信号的低频分量,“提升”算法的基本思想是,将现有的小波滤波器分解成基本的构造模块,分步骤完成小波变换。

基于提升算法的小波变换称为第二代小波变换。它使我们能够用一种简单的方法去解释小波的基本理论,而第一代小波变换都可以找到等效的提升方案。提升方案把第一代小波变换过程分为以下三个阶段:分解(split),预测(predict)和更新(update)。

(1)分解。将输入信号s(i)分为2个较小的子集s(i-1)和d(i-1),d(i-1)也称为小波子集。最简单的分解方法是将输入信号s(i)根据奇偶性分为2 组,这种分裂所产生的小波称为懒小波(lazy wavelet)。分解过程可

以表示为如下:F(s(i))=(s(i-1),d(i-1)),其中F(s(i))为分解过程。

(2)预测。在基于原始数据相关性的基础上,用偶数序列s(i-1)的预测值P(s(i-1))去预测(或者内插)奇数序列d(i-1),即将滤波器P 对偶数信号作用以后作为奇数信号的预测值,奇数信号的实际值与预测值相减得到残差信号。实际中虽然不能从子集s(i-1)中准确地预测子集d(i-1),但是P(s(i- 1))有可能很接近d(i-1),因此我们可以使用P(s(i-1))和d(i-1)的差值来代替原来的d(i-1),这样产生的d(i-1)比原来的d(i-1)包含更少的信息,于是得到d(i-1)=d(i-1)-P(d(i-1))

,这里,已经可以用更小的子集s(i-1)和子集d(i-1)来代替原信号集s(i)。重复分解和预测过程,经过n步以后原信号集可用{s(n),d(n),d(n-1),d(n-2),.....,d(1)}来表示。

(3)更新。为了使原始信号集的某些全局特性在其子集s(i-1)中继续保持,使得它保持原图的某一标量特性Q(x)(如均值、消失矩等不变),即有Q(s(i- 1))=Q(s(i))。可能利用已经计算的小波子集d(i-1)对s(i-1)进行更新,从而使得后者保持特性Q(x),即要构造一个算子U去更新s(i-1)。定义如下:

s(i-1)=s(i-1)+U(d(i-1))

从上述分析可以知道,提升方法可以实现原位运算,即该方法不需要除了前级提升步骤的输出之外的数据,这样在每个点都可以运用新的数据流替换旧的数据流。

当重复使用原位提升滤波器组时,就获得了交织的小波变换系数。

https://www.doczj.com/doc/a31508064.html,/content/13/0928/15/10724725_317659907.shtml

% 2.提升系数确定

% t1=liftwave('9.7');

% 获取提升系数(MATLAB7.0以后)

d1=[-1.586100000000000e+000,-1.586134342069360e+000];

p1=[1.079600000000000e+000,-5.298011857188560e-002];

d2=[-8.829110755411875e-001,-8.829110755411875e-001];

p2=[4.435068*********e-001,1.576123746148364e+000];

d3=-8.698644516247808e-001;

p3=-1.149604398860242e+000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%

% 3.分解层数确定

% 采用用户输入和自动给出最大层数两种方法N=length(x); % 矩阵大小

S=N; % 变量

s=log2(N); % 最大循环次数

n1=N/2; % 初始一半矩阵大小

n2=N; % 初始矩阵大小

u=0; % 初始值% 对非2的整数幂大小图像确定最大分解层数

for ss=1:s

if (mod(S,2)==0)

u=u+1;

S=S/2;

end;

end;

u=u-1; % 分解最大层数减1(后面的边界处理造成) % 最大层数确定

if (flag_max==0) % 手动输入

T=layer; % 用户输入值

else % 自动确定最大层数

T=u; % 分解最大层数

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%

% 4.最大层数和图像大小检查if (T>u) % 防止用户层数越界

errordlg('已超过最大分解层数!或者非偶数大小图像!');

error('已超过最大分解层数!或者非偶数大小图像!');

end; if (mod(N,2)~=0) % 防止图像大小错误

errordlg('非偶数大小图像!');

error('非偶数大小图像!');

end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%

% 5.提升法正变换if (flag_trans==0)

for time=1:T; % 行正变换

% d;

x1(n1,:)=x(n2,:)+d1(2)*x(n2-1,:)+d1(1)*x(1,:);

x1([1:n1-1],:)=x([2:2:n2-2],:)+d1(2)*x([1:2:n2-3],:)+d1(1)*x([3:2:n2-1],:);

% p;

x(1,:)=x(1,:)+p1(2)*x1(n1,:)+p1(1)*x1(1,:);

x([2:n1],:)=x([3:2:n2-1],:)+p1(2)*x1([1:n1-1],:)+p1(1)*x1([2:n1],:);

x([n1+1:n2],:)=x1([1:n1],:);

% d;

x(n1+1,:)=x(n1+1,:)+d2(2)*x(n1,:)+d2(1)*x(1,:);

x([n1+2:n2],:)=x([n1+2:n2],:)+d2(2)*x([1:n1-1],:)+d2(1)*x([2:n1],:);

% p;

x(n1,:)=x(n1,:)+p2(2)*x(n1+1,:)+p2(1)*x(n1+2,:);

x(n1-1,:)=x(n1-1,:)+p2(2)*x(n2,:)+p2(1)*x(n1+1,:);

x([1:n1-2],:)=x([1:n1-2],:)+p2(2)*x([n1+2:n2-1],:)+p2(1)*x([n1+3:n2],:);

% 归一

x([1:n1],:)=p3*x([1:n1],:);

x([n1+1:n2],:)=d3*x([n1+1:n2],:); clear x1;

% 列正变换

% d;

x1(:,[1:n1])=x(:,[2:2:n2]);

% p;

x(:,1)=x(:,1)-d1(1)*x1(:,n1)-d1(2)*x1(:,1);

x(:,[2:n1])=x(:,[3:2:n2-1])-d1(1)*x1(:,[1:n1-1])-d1(2)*x1(:,[2:n1]);

x(:,[n1+1:n2])=x1(:,[1:n1]);

% d;

x(:,n2)=x(:,n2)-p1(1)*x(:,n1)-p1(2)*x(:,1);

x(:,[n1+1:n2-1])=x(:,[n1+1:n2-1])-p1(1)*x(:,[1:n1-1])-p1(2)*x(:,[2:n1]);

% p;

x(:,n1,:)=x(:,n1)-d2(1)*x(:,n2)-d2(2)*x(:,n1+1);

x(:,[1:n1-1])=x(:,[1:n1-1])-d2(1)*x(:,[n1+1:n2-1])-d2(2)*x(:,[n1+2:n2]);

% d;

x(:,n1+1)=x(:,n1+1)-p2(1)*x(:,n1-1)-p2(2)*x(:,n1);

x(:,n1+2)=x(:,n1+2)-p2(1)*x(:,n1)-p2(2)*x(:,1);

x(:,[n1+3:n2])=x(:,[n1+3:n2])-p2(1)*x(:,[1:n1-2])-p2(2)*x(:,[2:n1-1]);

% 归一

x(:,[1:n1])=d3*x(:,[1:n1]);

x(:,[n1+1:n2])=p3*x(:,[n1+1:n2]); clear x1;

n2=n2/2; % 原大小

n1=n2/2; % 一半大小

end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%

% 6.提升法反变换else

n2=N/(2.^(T-1)); % 分解最小子块维数

n1=n2/2;

for time=1:T; % 行反变换

% 去归一

x([1:n1],:)=x([1:n1],:)/p3;

x([n1+1:n2],:)=x([n1+1:n2],:)/d3; % 反p;

x(n1,:)=x(n1,:)-p2(2)*x(n1+1,:)-p2(1)*x(n1+2,:);

x(n1-1,:)=x(n1-1,:)-p2(2)*x(n2,:)-p2(1)*x(n1+1,:);

x([1:n1-2],:)=x([1:n1-2],:)-p2(2)*x([n1+2:n2-1],:)-p2(1)*x([n1+3:n2],:);

% 反d;

x(n1+1,:)=x(n1+1,:)-d2(2)*x(n1,:)-d2(1)*x(1,:);

x([n1+2:n2],:)=x([n1+2:n2],:)-d2(2)*x([1:n1-1],:)-d2(1)*x([2:n1],:);

% 反p;

x1(1,:)=x(1,:)-p1(2)*x(n2,:)-p1(1)*x(n1+1,:);

x1([2:n1],:)=x([2:n1],:)-p1(2)*x([n1+1:n2-1],:)-p1(1)*x([n1+2:n2],:);

% 反d;

x(n2,:)=x(n2,:)-d1(2)*x1(n1,:)-d1(1)*x1(1,:);

x([2:2:n2-2],:)=x([n1+1:n2-1],:)-d1(2)*x1([1:n1-1],:)-d1(1)*x1([2:n1],:);

% 偶数

x([1:2:n2-1],:)=x1([1:n1],:);

clear x1;

% 列反变换

% 归一

x(:,[1:n1])=x(:,[1:n1])/d3;

x(:,[n1+1:n2])=x(:,[n1+1:n2])/p3; % 反d;

x(:,n1+1)=x(:,n1+1)+p2(1)*x(:,n1-1)+p2(2)*x(:,n1);

x(:,n1+2)=x(:,n1+2)+p2(1)*x(:,n1)+p2(2)*x(:,1);

x(:,[n1+3:n2])=x(:,[n1+3:n2])+p2(1)*x(:,[1:n1-2])+p2(2)*x(:,[2:n1-1]);

% 反p;

x(:,n1,:)=x(:,n1)+d2(1)*x(:,n2)+d2(2)*x(:,n1+1);

x(:,[1:n1-1])=x(:,[1:n1-1])+d2(1)*x(:,[n1+1:n2-1])+d2(2)*x(:,[n1+2:n2]);

% 反d;

x(:,n2)=x(:,n2)+p1(1)*x(:,n1)+p1(2)*x(:,1);

x(:,[n1+1:n2-1])=x(:,[n1+1:n2-1])+p1(1)*x(:,[1:n1-1])+p1(2)*x(:,[2:n1]);

% 反p;

x1(:,1)=x(:,1)+d1(1)*x(:,n2)+d1(2)*x(:,n1+1);

x1(:,[2:n1])=x(:,[2:n1])+d1(1)*x(:,[n1+1:n2-1])+d1(2)*x(:,[n1+2:n2]); % 奇偶x(:,[2:2:n2])=x(:,[n1+1:n2]);

x(:,[1:2:n2-1])=x1(:,[1:n1]); clear x1;

n2=n2*2; % 原大小

n1=n2/2; % 一半大小end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%

% 7.结果输出y=x;

% 传输最后结果%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%

% 8.内存清理clear x;

clear flag_max;

clear layer;

clear flag_trans;

clear N;

clear n1;

clear n2;

clear s;

clear ss;

clear u;

clear d1;

clear d2;

clear d3;

clear p1;

clear p2;

clear p3;

clear sa;

clear sb;

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

基于小波包的图像压缩及matlab实现

基于小波包的图像压缩及matlab实现 摘要:小波包分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用,它在信号处理、模式识别、图像分析、数据压缩、语音识别与合成等等许多方面都取得了很有意义的研究成果。平面图像可以看成是二维信号,因此,小波包分析很自然地应用到了图像处理领域,如在图像的压缩编码、图像消噪、图像增强以及图像融合等方面都很好的应用。本文将对小波包分析在图像处理中的应用作以简单介绍。 关键词:小波包图像处理消噪 1.小波包基本理论 1.1 小波包用于图像消噪 图像在采集、传输等过程中,经常受到一些外部环境的影响,从而产生噪声使得图像发生降质,图像消噪的目的就是从所得到的降质图像中去除噪声还原原始图像。图像降噪是图像预处理中一项应用比较广泛的技术,其作用是为了提高图像的信噪比突出图像的期望特征。图像降噪方法有时域和频域两种方法。频率域方法主要是根据图像像素噪声频率范围,选取适当的频域带通过滤波器进行滤波处理,比如采用Fourier变换(快速算法FFT)分析或小波变换(快速算法Mallat 算法)分析。空间域方法主要采用各种平滑函数对图像进行卷积处理,以达到去除噪声的目的,如邻域平均、中值(Median)滤波等都属于这一类方法。还有建立在统计基础上的lee滤波、Kuan滤波等。但是归根到底都是利用噪声和信号在频域上分布不同进行的:信号主要分布在低频区域。而噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。所以,图像降噪的一个两难问题就是如何在降低图像噪声和保留图像细节上保持平衡,传统的低通滤波方法将图像的高频部分滤除,虽然能够达到降低噪声的效果,但破坏了图像细节。如何构造一种既能够降低图像噪声,又能保持图像细节的降噪方法成为此项研究的主题。在小波变换这种有力工具出现之后,这一目标已经成为可能。 基于小波包变换消噪方法的主要思想就是利用小波分析的多尺度特性,首先对含有噪声的图像进行小波变换,然后对得到的小波系数进行阈值化处理,得到

基于Tchebichef矩和小波提升的数字水印算法

—113— 基于Tchebichef 矩和小波提升的数字水印算法 赵 杰,王 晅,何 冰 (陕西师范大学物理学与信息技术学院,西安 710062) 摘 要:提出一种基于Tchebichef 矩和小波提升的抵抗几何攻击的内容认证水印算法,对图像进行一次小波提升分解,计算其低频成分的Tchebichef 低阶矩不变量来构建水印系统。水印认证过程只须计算图像的几个低阶Tchebichef 矩不变量。将该算法与基于几何矩不变量的算法进行比较。结果表明,该算法简单、有效,对旋转、缩放、剪切等几何攻击以及JPEG 压缩等攻击具有较高的稳健性。 关键词:数字水印;Tchebichef 矩;小波提升 Digital Watermark Algorithm Based on Tchebichef Moments and Wavelet Lifting ZHAO Jie, WANG Xuan, HE Bing (School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062) 【Abstract 】The watermark based on Tchebichef moments and wavelet lifting is used in an authentication context. After the discrete lifting wavelet transform, the lower order Tchebichef invariant moments of the sub band coefficients are computed. The processing of the encoder and the decoder is simple, and a few low order moments need to be calculated. The algorithm is compared with the algorithm based on the geometric moments.Results show that the scheme is simple, effective. It has high stabilities of geometrical attacks of rotation, scaling, shearing, and JPEG compression.【Key words 】digital watermark; Tchebichef moments; wavelet lifting 计 算 机 工 程Computer Engineering 第35卷 第11期 Vol.35 No.11 2009年6月 June 2009 ·安全技术· 文章编号:1000—3428(2009)11—0113—03 文献标识码:A 中图分类号:TP391 1 概述 媒体的数字化方便了信息的存取和传播,但同时也使盗版和非法窜改等行为难以认证,水印技术是解决版权保护问题的一个有效途径。目前已提出许多数字水印的算法,但现有的数字水印技术大多难以抵抗几何变换类攻击,如旋转、平移和尺度变换等,其中一个最主要的原因是:几何变换虽然并未去除图像中的水印信息,但却使水印的检测与嵌入之间失去同步,从而导致水印检测的失效。因此,同步问题被认为是抗几何攻击水印技术中有待解决的关键技术。常见抵抗几何攻击的水印算法有文献[1-2]提出的基于Fourier- Mellin 变换的算法。 矩函数可以描述物体形状的全局特征,并提供大量该物体特有的几何信息。矩函数的这种特性被广泛应用于图像编码压缩与重构、模式识别、目标状态与方位估计等方面,数字水印技术是其应用领域之一。文献[3]提出基于Zernike 矩的数字图像水印算法,文献[4]提出基于几何矩不变量的数字水印算法。随着图像处理研究的深入,引入了许多新的矩函数,离散Tchebichef 矩便是其中具有较好性能的一种[5]。由于该矩本身是离散的,因此其计算精度较高,可直接应用于离散图像,无须对定义域进行归一化处理,并且Tchebichef 多项式的计算具有递推关系和对称性,可以加快运算。 本文提出一种基于小波提升和Tchebichef 矩的水印算法,并将其与几何矩的算法进行比较。 2 小波提升方案 由于传统小波变换的滤波器输出是浮点数,而图像的像 素值均为整数,小波系数量化时存在舍入误差,并且图像的 重构质量与变换时延拓边界的方式有关。文献[6]对小波的构造提出一种新的观点:整数小波提升方案(lifting scheme),也称为第2代小波变换。整数小波提升格式具有真正意义上的可逆性,可不用考虑边界效应。提升方案基于传统小波变换的思想,但效率更高。与传统小波变换相比,提升方案主要有以下几个优点:(1)完全是基于空域的构造方法,运算速度快,节省存储空间。(2)不依赖于平移、伸缩的概念,也不需要傅里叶变换进行频谱分析。(3)可直接将整数映射成为整数,无须再进行量化。最低频子带包含了图像的基本信息,占据了原始图像的大部分的能量,是鲁棒水印嵌入的合适位置。图像的小波分解过程如图1所示。 图1 图像的小波分解 3 Tchebichef 矩 假设(,)f x y 表示大小为N ×N 的原始图像,则离散Tchebichef 多项式为32()(1)(,,1;1;1)n n t x N F n x n N =?×??+?, 作者简介:赵 杰(1984-),男,硕士研究生,主研方向:图像处理,数字水印;王 晅,副教授;何 冰,硕士研究生 收稿日期:2008-10-06 E-mail :zhaojie261134@https://www.doczj.com/doc/a31508064.html,

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

小波包基搜索算法。 程序设计

10. 4编程实现有限长信号的小波包分解算法并选择一个信息代价函数,实现最佳小波包基搜索算法。 程序设计 实验的程序采用C语言编写,自己实现小波包的分解和重构,选用了Haar,D4等小波进行实验,分解算法采用递归的方法,沿树结构进行深度优先的分解,重构的时候也采用类似的方法。实验数据采用的是lena图像的第一行进行,长度为256。程序中可以选用几种代价函数进行最优基的选择(范数集中度,对数熵,信息熵)。程序读如lena图像的第一行后,并将这行数据存入文件in.dat,进行小波包分解,然后进行最优基的选取,在最优基下相应的系数存入文件out.dat。函数说明: void readbmp(char * file,int n,double * c) //读入lena.bmp的第一行 void dwt(Node * root)//按深度优先进行完全小波包分解void idwt(Node * root)//进行小波包重构 double entroy(double a) //计算每个节点的代价 double total_entroy(Node *root) //寻找最优小波基 root) //输出最优小波基下的系数 * void show(Node 实验结果与分析 读如的一行数据 横坐标为图像横坐标(0-255),纵坐标为像素点的灰度值(0-255). 以下个图是在利用相应的小波和相应的代价函数选择出的最佳小波基对应的小波分解系数 利用haar小波进行小波包分解 (1) 利用范数集中度为代价函数 横坐标表示256个小波分解系数,纵坐标表示每个小波分解系数的值

可见系数能量分布较均匀,说明代价函数不起作用 (2) 利用对数熵为代价函数 横坐标表示256个小波分解系数,纵坐标表示每个小波分解系数的值 可见能量集中在前10 个系数上,大多数系数的绝对值较小,可以认为,基的选择是合适的. (3)利用信息熵为代价函数 横坐标表示256个小波分解系数,纵坐标表示每个小波分解系数的值

小波去噪三种方法

小波去噪常用方法 目前,小波去噪的方法大概可以分为三大类:第一类方法是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。基于这一思想,在众多小波系数中,把绝对值较小的系数置为零,而让绝对值较大的系数保留或收缩,得到估计小波系数,然后利用估计小波系数直接进行信号重构,即可达到去噪的目的。 1:小波变换模极大值去噪方法 信号与噪声的模极大值在小波变换下会呈现不同的变化趋势。小波变换模极大值去噪方法,实质上就是利用小波变换模极大值所携带的信息,具体地说就是信号小波系数的模极大值的位置和幅值来完成对信号的表征和分析。利用信号与噪声的局部奇异性不一样,其模极大值的传播特性也不一样这些特性对信号中的随机噪声进行去噪处理。 算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,非常适合于低信噪比的信号去噪。这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。 2:小波系数相关性去噪方法 信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关

提升小波变换的弱小目标算法研究分析(文献综述)

文献综述 基于提升小波变换地弱小目标检测算法研究 前言 目标检测在计算机视觉,雷达跟踪,红外制导,电视跟踪等研究领域有着极其重要地地位,目标地实时检测已成为现在图像处理地关键技术之一,其中运动目标地检测是当今研究地热点. b5E2RGbCAP 基于小波变换地目标检测算法,这些算法在弱小目标检测上有很大优势. 但计算量大是这些算法应用地瓶颈,寻找快速鲁棒地算法是科研人员不懈努力地方向.1997 年Sweldens 等人提出地提升框架地小波变换(第二代小波)给小波地研究和应用又迎来了一次新地高峰. 提升算法地特点是避免了传统小波算法地卷积操作,彻底摆脱了对傅立叶变换地依赖,计算过程可以在空域中完成,能够通过简单地并行计算快速实现. 并且逆变换具有与前向变换完全相同地变换模式与计算复杂度,无需重新设计. 它使我们能够用一种简单地方法去解释小波地基本理论. 提升小波和基于提升框架地整数小波在图像压缩方面取得了巨大成功,并且被新一代静止图像压缩标准JPEG 正式纳入了核心框架之中. p1EanqFDPw 正文 长期以来人们根据具体情况提出了多种多样地目标检测方法,每种方法在满足各自地条件下均取得很好地效果,有些成熟经典地算法已经被广泛地应用于实际中了. 根据查阅地国外文献报道将序列目标检测方法分成基于像素分析地检测方法、基于特征地检测方法和机遇地变换地检测方法等. DXDiTa9E3d 2.1 基于小波地目标检测方法变换域中检测目标较典型地一种方法是基于傅立叶变换地方法. 对图像序列进行傅立叶变换,运动目标地傅立叶变换地频谱幅度不变而相位谱为一个常数,利用这一性质,可以通过相位相关算法来估计运动特性,计算相邻帧间地相位角差来估计空间域中目标地位置,它要求在图像序列中背景不变且只有一个运动目标Mahmoud对运动目标地变换方法进行了广泛地研究,除了FFT 方法,他还提出了快速 Hartley 变换(FHT)进行多目标跟踪,该方法是先对图像序列进行频域处理,再进行峰值检测,Fourier 谱或Hartley 谱地峰值位置则对应于运动目标地速度.该方法地独到之处是对多运动目标地n 阶遮挡分别用冲击函数地对应次乘积求和表示,从而在一定程度上反映和解决了多目标遮挡地问题. 傅立叶变换是一种纯频域地分析方法,它在频域地定位性是完全准确地,即频域地分辨率高,而在时域则没有任何定位性或分辨能力,也就是说傅立叶变换反映地是整个信号全部时间下地整体频域特征,而不能提供局部时间段上地频率信息. 在其基础上产生地短时傅立叶变换,也称为加窗傅立叶变换,虽然能研究信号在局部时间范围地频域特征,但其窗函数地大小和形状

基于提升算法的二维53和97小波变换的MATLAB仿真与DSP实现

基于提升算法的二维5/3和9/7小波变换的MATLAB 仿真与DSP 实现 王靖琰,刘蒙 中国科学院上海应用物理研究所,上海 (201800) E-mail :wjycas@https://www.doczj.com/doc/a31508064.html, 摘 要:本文讨论了基于提升算法的二维5/3和9/7小波的原理,对算法进行了MATLAB 仿真,并在浮点型DSP TMS320C6713B 上实现了图像的二维5/3、9/7小波提升变换和逆变换。实验结果证明了方法的有效性。 关键词:小波提升,二维9/7、5/3小波,MATLAB ,TMS320C6713B 1.引言 随着人们对多媒体信息需求的日益增长,数码相机、移动电话、MP4 等多媒体信息处理系统蓬勃发展。基于通用DSP 处理器的此类系统设计以灵活性强、扩展性好、可升级和易维护的优点成为系统开发的首选方案 [1]。 由于良好的时频局部特性和多分辨分析特性,小波已广泛应用于图像处理领域,并且被吸收进新的一些国际标准中成为了标准算法。文中在MATLAB 平台上对基于小波提升的二维离散5/3和9/7小波变换算法进行了仿真,并在浮点型DSP TMS320C6713B 上实现了算法,该程序运算速度快,可充分利用硬件资源,特别适用于嵌入式系统的需求。 2.小波变换提升算法基本原理 1994年Sweldens 提出了小波的提升算法,有效地解决传统的基于Mallat 的塔式分解小波变换算法计算量大、对存储空间的要求高的问题,从算法方面提高了小波变换的实现效率 [2]。 2.1 5/3小波提升格式 小波提升算法的基本思想是通过由基本小波(lazy wavelet)逐步构建出一个具有更加良好性质的新小波,其实现步骤有3个:分解(split)、预测(predict)和更新(update)。分解是将数据分为偶数序列和奇数序列2个部分,预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量,更新是由预测误差来更新偶数序列,得到变换的低频分量。在J PEG2000中,5/3提升小波变换的算法为[3]: (2)(22)(21)(21)(1)2(21)(21)2(2)(2)(2) 4x n x n c n x n c n c n d n x n ++??+=+????? ?+++??=+???? 由其正变换的反置即可得到逆变换的算法为 c(2n-1) + c(2n+1)+2x (2n) = d (2n) - (3)4x(2n)+x(2n+2)x(2n+1)=c(2n)+(4) 2?????? ?????? 从算式可以得出,提升算法是原位计算,即进行小波变换时在原位计算各个系数,计算

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波包及能量频谱的MATLab算法

一根断条: >> %采样频率 fs=10000; nfft=10240; %定子电流信号 fid=fopen('duantiao.m','r');%故障 N=2048; xdata=fread(fid,N,'int16'); fclose(fid); xdata=(xdata-mean(xdata))/std(xdata,1); %功率谱 figure(1); Y=abs(fft(xdata,nfft)); plot((0:nfft/2-1)/nfft*fs,Y(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); %3层小波包分解 T=wpdec(xdata,3,'db4'); %重构低频信号 y1=wprcoef(T,[3,1]); %y1的波形

figure(2); subplot(2,2,1); plot(1:N,y1); xlabel('时间t/n'); ylabel('电流I/A'); %y1的功率谱 Y1=abs(fft(y1,nfft)); subplot(2,2,2); plot((0:nfft/2-1)/nfft*fs,Y1(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因

基于小波变换的去噪方法

文章编号:1006-7043(2000)04-0021-03 基于小波变换的去噪方法 林克正 李殿璞 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘 要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法 用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关 键 词:小波变换;去噪;奇异性检测;多尺度分析 中图分类号:TN911.7 文献标识码:A Denoising Method Based on Wavelet Transform Lin Ke-zheng Li Dian-pu (Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China ) Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective. Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis 提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号 效果最明显[2-5] ,并且在概念上也有别于其它方 法,其主要思想有局部极大值阈值法、全局单一阈 值法[3]和局部SURE 多阈值法[4] .在此基础上,本文首先分析了信号和噪声在小波变换下的不同特 性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法. 1 小波分析基础 1.1 信号的小波变换 [1] 设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t ) 定义为!a , 6(t )=1! a !(t -6 a )(1)式中,6"R ,a "R -{0}. 函数f (t )" 2 (R ) 的小波变换W a ,6(f )定义为 W a ,6(f )==1!a # - f (t )!(t -6 a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2 (R ) 在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件 !=# 0I ^!(")I 2" d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f ) 重构f (t )的小波逆变换# 收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理. 第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进

第二代小波提升步骤

第二代小波提升步骤 小波分析2009-10-12 15:14:31 阅读663 评论5 字号:大中小订阅 l 提升原理 小波提升是一种构造紧支集双正交小波的新方法。 1)步骤 由提升构成第二代小波变换的过程分为如下3个步骤: (1) 分裂 分裂(Split)是将原始信号sj = { sj,k }分为两个互不相交的子集和。每个子集的长度是原子集的一半。通常是将一个数列分为偶数序列ej-1和奇数序列oj-1,即 Split (sj) = (ej-1, oj-1 ) 其中,ej-1 = { ej-1, k = sj, 2 k },oj-1 = { oj-1, k = sj, 2 k +1}。 (2) 预测 预测(Predict)是利用偶数序列和奇数序列之间的相关性,由其中一个序列(一般是偶序列ej-1)来预测另一个序列(一般是奇序列oj-1)。实际值oj-1与预测值P (ej-1)的差值dj-1反映了两者之间的逼近程度,称之为细节系数或小波系数,对应于原信号sj的高频部分。一般来说,数据的相关性越强,则小波系数的幅值就越小。如果预测是合理的,则差值数据集dj-1所包含的信息比原始子集oj-1包含的信息要少得多。预测过程如下: dj-1 = oj-1 – P (ej-1) 其中,预测算子P可用预测函数Pk来表示,函数Pk可取为ej-1中的对应数据本身: Pk (ej-1, k ) = ej-1, k = sj, 2 k 或ej-1中的对应数据的相邻数据的平均值: Pk (ej-1) = (ej-1, k + ej-1, k+1) / 2 = (sj, 2 k + sj, 2 k +1) / 2 或其他更复杂的函数。 (3) 更新 经过分裂步骤产生子集的某些整体特征(如均值)可能与原始数据并不一致,为了保持原始数据的这些整体特征,需要一个更新(Update)过程。将更新过程用算子U来代替,其过程如下: sj-1 = ej-1 + U (d j-1) 其中,sj-1为sj的低频部分;与预测函数一样,更新算子也可以取不同函数,如 U k (dj-1) = dj-1, k / 2 或 U k (dj-1) = (dj-1, k -1 + dj-1, k) / 4 + 1 / 2。 P与U取不同的函数,可构造出不同的小波变换。 2) 分解与重构 经过小波提升,可将信号sj分解为低频部分sj-1和高频部分dj-1;对于低频数据子集sj-1 可以再进行相同的分裂、预测和更新,把sj-1 进一步分解成dj-2和sj-2;…;如此下去,经过n次分解后,原始数据sj的小波表示为{sj-n, dj-n, dj-n+1, …, dj-1}。其中sj-n代表了信号的低频部分,而{dj-n, dj-n+1, …, dj-1}则是信号的从低到高的高频部分系列。 每次分解对应于上面的三个提升步骤——分裂、预测和更新: Split (sj) = (ej-1, oj-1 ),dj-1 = oj-1 – P (ej-1),sj-1 = ej-1 + U (d j-1) 小波提升是一个完全可逆的过程,其反变换的步骤如下: ej-1 = sj-1 - U (d j-1 ),oj-1 = dj-1 + P (ej-1),sj = Merge (ej-1, oj-1 )

相关主题
文本预览
相关文档 最新文档