当前位置:文档之家› 信号系统方波与三角波的傅里叶的分解与合成

信号系统方波与三角波的傅里叶的分解与合成

信号系统方波与三角波的傅里叶的分解与合成
信号系统方波与三角波的傅里叶的分解与合成

实验<编号>

学号姓名分工

11350023 韦能龙编写代码

11350024 熊栗问题分析1.问题描述

实验二信号的合成与分解

2. 问题分析

此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。

3. 实验代码与实验结果

(1)周期性矩形波的系数表示

,.....7,5,3,1),2

sin(2==n npi kpi a k

代码:

t = -3:0.001:3;

M = 1;%M =1,7,29,99 T = 2;

W = 2*pi/T;

f1 = 0*ones(1,length(t)); for n= -M:2:M

a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end

plot(t,f1) xlabel('t') ylabel('f(t)')

title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on

plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7:

M = 29

M = 99

(2)三角波的系数表示:

??--==101)()(1dt

e t x dt e t x T a jkwt

T

jkwt k

)2

(sin 42

1

2

2

20npi pi n a a n

==

代码:

t = -3:0.001:3;

M = 1;%M =1,7,29,99 T = 1;

W = 2*pi/T;

G1= 0*ones(1,length(t)); for n= -M:M if n==0

a =1/2; else

a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end

G1 = G1+a*exp(j*n*W*t); end

G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)')

title('M=1时的三角波') ylim([-1.5 1.5]); hold on

plot(t , zeros(1,length(t))) hold off M=1 时

M=7

M=29

M=99

(3)

t = 1/2时,)

2

cos()

2sin(

2)21(npi npi npi

e a

f M

M n jnpit M M n n m

∑∑-=-===±=0

所以)(t f M 的值不受M 的影响 (4)

实验结果表明,该超量误差不随M 的增加而减小 (5)

实验表明,随着M 的增大,在t= 0处,)(t g M 逐渐收敛于1,呈现的最大误差|g(t) -)(t g M |随着M 的增大而减小,逐渐趋于0,与)(t f M 的超量误差不随M 的增大而减小的情况有所不同

4.结论

这个实验还是挺简单的,有了上个实验学习的matlab 基础,在完

成系数的求解之后,用matlab 也很快就求出来了。但是这过程发现个问题,系数如果保留复指数形式的时候,画出的图不一样,后来化简成正弦函数之后才得一样。在求级数的时候,看到了用matlab 求的图,一看就知道不是要求的,因为方波或者三角波不是那样的,所以很快就改正了。所以在这也说明了要懂得发现问题,要懂得自己所要实现的是什么。此次实验虽然没有第一次收获大, 但也需要付出时间和努力才能实现,总得来说就是每次都有收获,付出就有收获。

实验一 离散时间信号与系统的傅里叶分析

电子信息工程系实验报告 课程名称: 数字信号处理 实验项目名称:实验1 离散时间信号与系统的傅里叶分析 时间: 2012-3-17 班级:电信092 姓名:XXX 学号:910706201 实 验 目 的: 用傅里叶变换对离散时间信号和系统进行频域分析。 实 验 环 境: 计算机、MATLAB 软件 实 验 原 理: 对信号进行频域分析即对信号进行傅里叶变换。对系统进行频域分析即对其单位脉冲响应进行傅里叶变 换,得到系统的传输函数;也可由差分方程经过傅里叶变换直接求其传输函数,传输函数代表的就是频率响应特性。而传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,故可在0~2∏之间取许多点,计算这些点的传输函数的值,并取它们的包络,所得包络即所需的频率特性。 实 验 内 容 和 步 骤: 1、已知系统用下面差分方程描述:y (n )=x (n )+ay (n -1),试在a =0.95和a =0.5 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印|H (e j ω)|~ω曲线。 解:B=1;A=[1,-0.95]; [H,w]=freqz(B,A,'whole'); subplot(1,3,1);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); B=1;A=[1,-0.5];[H,w]=freqz(B,A,'whole'); subplot(1,3,3);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); 图形如下图1、2所示: 图1 a=0.95时的幅频响应特性 图2 a=0.5时的幅频响应特性 2、已知两系统分别用下面差分方程描述: y 1(n )=x (n )+x (n -1) y 2(n )=x (n )-x (n -1) 试分别写出它们的传输函数,并分别打印|H (e j ω)| ~ω曲线。 解:B=[1,1];A=1;[H,w]=freqz(B,A,'whole'); subplot(1,2,1);plot(w/pi,abs(H),'linewidth',2);grid on; 成 绩: 指导教师(签名):

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

傅里叶与信号与系统

信 号 与 系 统 —走进傅里叶

目录 一.傅里叶生平 (2) 二.傅里叶的成就 (2) 1. 数学方面 (2) 2. 物理方面 (3) 三.傅里叶事迹 (4) 四.傅里叶变换算法的意义 (5) 五.感想.............................. 错误!未定义书签。

一.傅里叶生平 傅里叶全名让·巴普蒂斯·约瑟夫·傅里叶(1768年3月21日-1830年5月16日),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论上,傅里叶变换也以他命名。 傅里叶于1768年3月21日出生于法国约讷省欧塞尔的一个裁缝家庭。很早的时候他的父母就双亡,八岁时就沦为了孤儿,曾在军队中教授数学,在1795年他到巴黎高等师范教书,之后又在巴黎综合理工学院占一教席。1798年他跟随拿破仑东征,被任命为下埃及的总督。由于英国舰队对法国人进行了封锁,所以他受命在当地生产军火为远征部队提供军火。这个时期,他向开罗埃及学院递交了几篇有关数学的论文。1801年,拿破仑的远征军队远征失败后,他便被任命为伊泽尔省长官。1816年他回到巴黎,六年后他当选了科学院的秘书,并发表了《热的分析理论》一文,此文建立是在牛顿的热传导理论的速率和温度差成正比的基础上。1830年5月16日他病逝于巴黎,1831年他的遗稿被整理出版成书。 二.傅里叶的成就 1.数学方面 傅里叶在数学方面的主要贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函

Chirp信号的傅里叶变换的特征比较.

Chirp信号的傅里叶变换的特征比较 Chirp信号即线性调频信号是瞬时频率在某个范围内随时间变化的正弦波,因其良好的频带利用率,具有较强的抗干扰、抗多途效应和抗多普勒衰减以及良好的频带利用率等优点,因此在通信、声呐、雷达等领域具有广泛的应用。本文就瞬时频率范围(信号的调频宽度)和信号的持续时间(信号的周期)对傅里叶变换后的chirp函数的频谱函数的影响做出讨论,运用MATLAB仿真分析比较。 一.信号的调频宽度上下限对频谱函数的影响 1)高频宽度300情况下的频谱函数。信号的采样频率为43000,扫描时间为0.05,初始频率设为19700,结束频率位置为20000。 2)低频宽度300情况下的频谱函数。信号的采样频率为2000,信号的持续时间为0.05,初始频率设为40,结束频率设置为340。 由上面两幅图可以看出,当它们满足,幅度谱的大小基本都在 0.01和0.015之间,这是因为它们的调频上下限之差相同都是300,且时间周 期都为0.05。由公式可知,幅度与信号的调频宽度(表示傅里叶变换后的频带宽度)和时间周期有关。 二.信号的调频宽度对频谱函数的影响 1)高频宽度10000情况下的频谱函数。信号的采样频率为48000,扫描时间为0.05,初始频率设为10000,结束频率位置为20000。

2)低频宽度80情况下的频谱函数。信号的采样频率为1000,信号的持续时间为0.05,初始频率设为40,结束频率设置为120。 上面两图在频带宽度内的幅度谱差异很明显,这是因为只有当时,近似程度才更高。 三.信号的持续时间对频谱函数的影响 1)低频宽度80情况下的频谱函数。信号的采样频率为1000,chirp 脉冲为0.05,信号的持续时间为2,初始频率设为40,结束频率设置为120。 上图的信号周期是2,发射脉冲长度为0.05与之前其它参数相同的图4比较可知,频带宽度基本相同,在频带宽度内的幅度谱没有太大变化,只是频点上的曲线多了些波动。

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/a31217257.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

信号系统方波与三角波的傅里叶的分解与合成

实验<编号> 学号姓名分工 11350023 韦能龙编写代码 11350024 熊栗问题分析1.问题描述 实验二信号的合成与分解

2. 问题分析 此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。 3. 实验代码与实验结果 (1)周期性矩形波的系数表示 ,.....7,5,3,1),2 sin(2==n npi kpi a k 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 2; W = 2*pi/T; f1 = 0*ones(1,length(t)); for n= -M:2:M a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end plot(t,f1) xlabel('t') ylabel('f(t)') title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7: M = 29

M = 99 (2)三角波的系数表示:

?? --== 1 1)()(1dt e t x dt e t x T a jkwt T jkwt k )2 (sin 42 12 2 20npi pi n a a n == 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 1; W = 2*pi/T; G1= 0*ones(1,length(t)); for n= -M:M if n==0 a =1/2; else a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end G1 = G1+a*exp(j*n*W*t); end G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)') title('M=1时的三角波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off M=1 时

信号与系统实验报告3实验3傅里叶变换及其性质

信息工程学院实验报告 课程名称: 实验项目名称:实验3 傅里叶变换及其性质 实验时间:2015/11/17 班级:通信141 姓名: 学号: 一、实 验 目 的: 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实 验 设 备 与 器 件 软件:Matlab 2008 三、实 验 原 理 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ ==? , 傅里叶反变换定义为:1 1()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的 ω,即 ()()jvt F v f t e dt ∞ --∞ =?。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =?。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。

方波的傅里叶分解与合成

方波的傅里叶分解与合成 教 学 目 的 1、用RLC 串联谐振方法将方波分解成基波和各次谐波,并测量它们的振幅 与相位关系。 2、将一组振幅与相位可调正弦波由加法器合成方波。 3、了解傅立叶分析的物理含义和分析方法。 重 难 点 1、了解串联谐振电路的基本特性及在选频电路中的应用; 了解方波的傅立叶合成的物理意义。 2、选频电路将方波转换成奇数倍频正弦波的物理意义。 教 学 方 法 讲授与实验演示相结合。 学 时 3学时。 一、实验仪器 FD-FLY-I 傅立叶分解合成仪,DF4320示波器,标准电感,电容箱。 二、原理 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,即: ∑∞ =++=10) sin cos (21 )(n n n t n b t n a a t f ωω 其中:T 为周期,ω为角频率。ω=T π 2;第一项20a 为直流分量。 所谓周期性函数的傅里叶分解就是将周期性函数展开成直流分量、基波和所有n阶谐波的迭加。 如图1所示的方法可以写成: h (0≤t <2T ) )(t f = -h (-2T ≤t <0)

此方波为奇函数,它没有常数项。 数学上可以证明此方波可表示为: ) 7sin 715sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ ∑∞ =--1 ])12sin[()121 ( 4n t n n h ωπ 同样,对于如图2所示的三角波也可以表示为: t T h 4 (-4T ≤t ≤4T ) )(t f = 2h(1-T t 2) (4T ≤t ≤43T ) )7sin 715sin 513sin 31(sin 8)(2222 +-+- = t t t t h t f ωωωωπ ∑∞ =----1 2 1 2 )12sin()12(1 )1(8n n t n n h ωπ (a )周期性波形傅里叶分解的选频电路 我们用RLC 串联谐振电路作为选频电路,对方波或三角波进行频谱分解。在示波器上显示这些被分解的波形,测量它们的相对振幅。我们还可以用一参考正弦波与被分解出的波形构成李萨如图形,确定基波与各次谐波的初相位关系。 本仪器具有1KH z的方波和三角波供做傅里叶分解实验,方波和三角波的输出阻抗低,可以保证顺利地完成分解实验。 实验线路图如图3所示。这是一个简单的RLC 电路,其中R 、C 是可变的。L 一般取0.1H~1H 范围。 当输入信号的频率与电路的谐振频率相匹配时,此电路将有最大的响应。谐振频率0ω为: 0ω=LC 1 这个响应的频带宽度以Q 值来表示: Q =R L 0ω 当Q 值较大时,在0ω附近的频带宽度较狭窄,所以实验中我们应该选择Q 值足够大,大到足够将基波与各次谐波分离出来。 如果我们调节可变电容C ,在n 0ω频率谐振,我们将从 此周期性波形中选择出这个单元。它的值为: t n b t V n 0sin )(ω= 图3 波形分解的RLC 串联电路

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

实验四方波的傅里叶分解与合成

实验四方波的傅里叶分 解与合成 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

实验四方波的傅里叶分解与合成 一、实验目的 1.用RLC 串联谐振方法将方波分解成基波和各次谐波,并测量它们的振幅与相位关系。 2.将一组振幅与相位可调正弦波由加法器合成方波。 3.了解傅里叶分析的物理含义和分析方法。 二、实验仪器 FD-FLY-A 型傅里叶分解与合成,示波器,电阻箱,电容箱,电感。 三、实验原理 1.数学基础 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,即: 其中:T 为周期,ω为角频率。ω= T π 2;第一项20a 为直流分量。 图1方波图2波形分解的RLC 串联电路 所谓周期性函数的傅里叶分解就是将周期性函数展开成直流分量、基波和所有n阶谐波的迭加。如图1所示的方法可以写成: 此方波为奇函数,它没有常数项。数学上可以证明此方波可表示为: = ∑∞ =--1 ])12sin[()1 21 ( 4n t n n h ωπ 2.周期性波形傅里叶分解的选频电路 我们用RLC 串联谐振电路作为选频电路,对方波或三角波进行频谱分解。在示波器上显示这些被分解的波形,测量它们的相对振幅。我们还可以用一参考正弦波与被分解出的波形构成李萨如图形,确定基波与各次谐波的初相位关系。 本仪器具有1KH z的方波和三角波供做傅里叶分解实验,方波的输出阻抗低,可以保证顺利地 完成分解实验。实验原理图如图2所示。这是一个简单的RLC 电路,其中R 、C 是可变的。L 一般取0.1H ~H 范围。 当输入信号的频率与电路的谐振频率相匹配时,此电路将有最大的响应。谐振频率0ω为: 0ω= LC 1。这个响应的频带宽度以Q 值来表示:Q = R L 0ω。当Q 值较大时,在0ω附近的频带宽度 较狭窄,所以实验中我们应该选择Q 值足够大,大到足够将基波与各次谐波分离出来。

用Matlab对信号进行傅里叶变换实例

目录 用Matlab对信号进行傅里叶变换 (2) Matlab的傅里叶变换实例 (5) Matlab方波傅立叶变换画出频谱图 (7)

用Matlab对信号进行傅里叶变换 1.离散序列的傅里叶变换DTFT(Discrete Time Fourier Transform) 代码: 1 N=8; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号)'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT变换') 结果: 分析:可见,离散序列的dtft变换是周期的,这也符合Nyquist采样定理的描述,连续时间信号经周期采样之后,所得的离散信号的频谱是原连续信号频谱的周期延拓。 2.离散傅里叶变换DFT(Discrete Fourier Transform)

与1中DTFT不一样的是,DTFT的求和区间是整个频域,这对 结果图:

分析:DFT只是DTFT的现实版本,因为DTFT要求求和区间无穷,而DFT只在有限点内求和。 3.快速傅里叶变换FFT(Fast Fourier Transform) 虽然DFT相比DTFT缩减了很大的复杂度,但是任然有相当大的计算量,不利于信息的实时有效处理,1965年发现的DFT解决了这一问题。 实现代码: 1 N=64; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 Xk=fft(xn,N); 5 subplot(221); 6 stem(n,xn); 7 title('原信号'); 8 subplot(212); 9 stem(n,abs(Xk)); 10 title('FFT变换') 效果图: 分析:由图可见,fft变换的频率中心不在0点,这是fft算法造成的,把fft改为fftshift可以将频率中心移到0点。

典型信号的地傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

图9.3 方波信号 图9.4 三角波信号 例9.2 试求图9.4所示三角波信号的傅里叶级教。 解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。因此,其傅里叶级数仅由正弦奇次谐波分量组成。由于 ()404 4242 A T t t T f t A T T t A t T ???=??-+??≤≤≤≤ 故有 2044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω??= -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图

常用傅里叶变换

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大,则 会收缩到原 点附近,而 会扩 散并变得扁平.当 | a | 趋向无穷 时,成为狄拉克δ 函数。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质

7 变换6的频域对应8 表示和 的卷积—这就是卷 积定理 9 变换8的频域对应。[编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数 11 变换10的频域对 应。矩形函数是理 想的低通滤波器, sinc函数是这类 滤波器对反因果 冲击的响应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第一 类贝塞尔函数。 21 上一个变换的推 广形式; T n(t)是第 一类切比雪夫多 项式。 22 U n (t)是第二类切 比雪夫多项式。[编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数 分布.这个变换展示了狄 拉克δ函数的重要性:该 函数是常函数的傅立叶 变换 24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

傅里叶变换

傅里叶变换 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复 杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先 由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数 形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。连续傅里 叶变换的逆变换 (inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里

叶变换对(transform pair)。除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数; 而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。 当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform). 另一个值得注意的性质是,当f(t)为纯实函数时,F(?ω) = F*(ω)成立. 傅 里叶级数 连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积 分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

常用傅里叶变换

常用傅里叶变换 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大, 则会收缩 到原点附近,而 会扩 散并变得扁平.当 |?a?|?趋向无穷 时,成为。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质 7 变换6的频域对应

8 表示和 的卷积—这就是9 变换8的频域对 应。 []平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 和归一化的 11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,是这类滤波 器对冲击的响 应。 12 tri?是 13 变换12的频域对 应

14 exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是。 21 上一个变换的推广形式;?T n(t)?是。 22 ???? U n?(t)是。

[]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表分布.这个变换 展示了狄拉克δ函数的 重要性:该函数是常函 数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应 用了:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个.δ(n)(ω)是 狄拉克δ函数分布的n 阶微分。这个变换是根 据变换7和24得到的。 将此变换与1结合使 用,我们可以变换所 有。

实验四 方波的傅里叶分解与合成

实验四 方波的傅里叶分解与合成 一、实验目的 1.用RLC 串联谐振方法将方波分解成基波和各次谐波,并测量它们的振幅与相位关系。 2.将一组振幅与相位可调正弦波由加法器合成方波。 3.了解傅里叶分析的物理含义和分析方法。 二、实验仪器 FD-FLY-A 型傅里叶分解与合成,示波器,电阻箱,电容箱,电感。 三、实验原理 1.数学基础 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,即: ∑∞ =++=1 0)sin cos (21 )(n n n t n b t n a a t f ωω 其中:T 为周期,ω为角频率。ω= T π 2;第一项20a 为直流分量。

图1 方 波 图2 波形分解的RLC 串联电路 所谓周期性函数的傅里叶分解就是将周期性函数展开成直流分量、基波和所有n阶谐波的迭加。如图1所示的方法可以写成: ?? ?? ? <≤-< ≤-=)02()20()(t T T t h h t f 此方波为奇函数,它没有常数项。数学上可以证明此方波可表示为: )7sin 7 1 5sin 513sin 31(sin 4)(ΛΛ++++= t t t t h t f ωωωωπ = ∑∞ =--1 ])12sin[()1 21 ( 4n t n n h ωπ 2.周期性波形傅里叶分解的选频电路 我们用RLC 串联谐振电路作为选频电路,对方波或三角波进行频谱分解。在示波器上显示这些被分解的波形,测量它们的相对振幅。我们还可以用一参考正弦波与被分解出的波形构成李萨如图形,确定基波与各次谐波的初相位关系。 本仪器具有1KH z的方波和三角波供做傅里叶分解实验,方波的输出阻抗低,可以保证顺利地 完成分解实验。实验原理图如图2所示。这是一个简单的RLC 电路,其中R 、C 是可变的。L 一般取~H 范围。 当输入信号的频率与电路的谐振频率相匹配时,此电路将有最大的响 应。谐振频率0ω为: 0ω=LC 1。这个响应的频带宽度以Q 值来表示:Q = R L 0ω。

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

信号与系统傅里叶变换

实验二 连续信号频域分析(FT ) 一、实验目的 1.掌握连续时间周期信号的频谱分析方法; 2.掌握连续时间信号的频域分析方法; 3.熟悉通过调用fft ()函数求解连续信号的傅立叶变换的数值分析方法。 二、实验原理 连续时间周期信号)(t f 可展开成傅立叶级数,即三角函数形式 0001 ()cos sin n n n f t a a n t b n t ωω∞ ==++∑ 其中:dt t f T a T T ?-=2 /2/0)(1, tdt n t f T a T T n 02 /2/cos )(2ω?-= n=1,2,3… tdt n t f T b T T n 02 /2/sin )(2ω?-= n=1,2,3… 当取指数形式: 0()jn t n n f t F e ω∞ =-∞ = ∑ 00a F = 2 n n n jb a F -= n ≠0 则 dt e t f T F T t jn n ? -= 1)(1ω MATLAB 的符号积分函数int()可以帮助我们求出连续时间周期信号的截断傅立叶级数及傅立叶表示。 连续时间信号)(t f 的傅立叶变换定义为 dt e t f F t j ?∞ ∞ --=ωω)()( MATLAB 的Symbolic Math Toolbox 提供了能直接求解傅立叶变换及逆变换的函数fourier()及ifourier()。 另外,连续时间信号的傅立叶变换可以利用MA TLAB 提供的快速傅立叶变换函数fft()进行数值计算。 连续信号)(t f 进行离散化后得到序列)(?k f 记作)(k f ,则N 点离散序列的离散傅立叶变换(DFT )和反变换(IDFT )为: )1(1,2,1,0)()(21 -???==--=∑N n e k f n F kn N j N k π )2(1 ,2,1,0)(1)(21 -???==∑-=N k e n F N k f kn N j N n π

相关主题
文本预览
相关文档 最新文档