当前位置:文档之家› 电力系统课程设计

电力系统课程设计

电力系统课程设计
电力系统课程设计

1 前言

电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。

对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定。它的接线方式能反映正常和事故情况下的供送电情况。电气主接线又称电气一次接线图。

2.负荷计算和无功功率补偿

号名称类别

设备容量需要系数计算负荷

1铸造车

间动力3800.40.65 1.17152177.7233.8355.3照明90.8 1.007.207.232.7小计389—159.2177.7238.6362.5

2锻压车

间动力3600.20.65 1.177284.2110.8168.3照明70.8 1.00 5.60 5.625.5小计367—77.684.2114.5174

3金工车

间动力3000.30.65 1.1790105.2138.5210.4照明80.9 1.007.207.232.7小计308—97.2105.2143.2217.6

4工具车

间动力3000.30.65 1.1790105.2138.5210.4照明90.8 1.007.207.232.7小计309—97.2105.2143.2217.6

5电镀车

间动力2800.60.750.88168148.2224340.3照明70.9 1.00 6.30 6.328.6小计287—174.3148.2228.8335.3

6热处理

车间动力1600.50.750.888070.6106.7162.1照明70.7 1.00 4.90 4.922.3小计167—84.970.6110.4167.7

7装配车

间动力1600.40.7 1.026465.391.4138.9照明80.9 1.007.207.232.7小计168—71.265.396.6146.8

8机修车

间动力1600.30.65 1.174856.173.8112.2照明30.8 1.00 2.40 2.410.9小计163—50.456.175.4114.6

9锅炉房动力600.60.750.883631.74872.9照明20.8 1.00 1.60 1.67.3

小计62—37.631.749.274.8

10仓库动力150.30.850.62 4.5 2.8 5.38照明20.7 1.00 1.40 1.4 6.4

小计17— 5.9 2.8 6.59.9

11生活区照明3000.80.90.48240116.2266.7344.4

总计(380V侧)

动力21751095.5963.2

照明362

计入=0.8

=0.85

0.73876.4818.711991821.7

2.2 无功功率补偿

由表2.1可知,该厂380V 侧最大负荷是的功率因数只有0.73。而供电部门要求该厂10KV 进线侧最大负荷是功率因数不应该低于0.91。考虑到主变压器的无功损耗远大于有功损耗,因此380V 侧最大负荷是功率因素应稍大于0.91,暂取0.92来计算380V 侧所需无功功率补偿容量:

Qc=P30(21tan tan ??-)=871.6×(0.94-0.42)=453.23kvar

故选PGJ1型低压自动补偿屏,并联电容器为BW0.4-14-3型,采用其方案1(主屏)1台与方案3(辅屏)5台相组合,总共容量84kvar ×6=504kvar 如图所示。

图2.1 PGJ1型低压自动补偿屏

因此无功补偿后工厂380V侧和10KV侧的负荷计算如表2.2所示。

表2.2 无功补偿后工厂的计算负荷

3 变电所位置和型式的选择

变电所的位置应尽量接近工厂的负荷中心.工厂的负荷中心按负荷功率矩法来确定.即在工厂平面图的下边和左侧,任作一直角坐标的X轴和Y轴,测出各车间和宿舍区负荷

点的坐标位置,例如P

1(x

1

,y

1

) 、P

2

(x

2

,y

2

) 、P

3

(x

3

,y

3

)等.而工厂的负荷中心设在P(x,y),P

为P

1+P

2

+P

3

+…=∑P

i

.因此仿照《力学》中计算重心的力矩方程,可得负荷中心的坐标:

i

i

i

3

2

1

3

3

2

2

1

1

P

)x

P(

P

P

P

x

P

x

P

x

P

x

=

+

+

+

+

=?

?

(3.1)

i

i

i

3

2

1

3

3

2

2

1

1

P

)y

P(

P

P

P

y

P

y

P

y

P

y

=

+

+

+

+

=?

?

(3.2)

图3.1 ××机械厂总平面图

3.1变电所位置的选择

变电所的位置应尽量接近工厂的负荷中心。

在工厂平面图的下边和左侧,分别作一条直角坐标的x轴和y轴,然

后测出各车间(建筑)和生活区负荷点的坐标位置p1(2.5,5.51);p2(3.6,3.54);p3(5.56,1.3);p4(4,6.7);p5(6.2,6.7)

p6(6.2,5);p7(6.2,3.4);p8(8.55,6.7);p9(8.55,5);p10(8.55,3.4);p0(1.2,1.1)(工厂生活区),如图3-1所示:而工厂的负荷中心假设在P (x ,y ),其中P=P1+P2+P3…=∑P i 。仿照《力学》计算重心的力矩方程,可得负荷中心的坐标如图3-1:

112233123159.2 2.577.6 3.697.2 5.5697.24174.3 6.284.9 6.271.2 6.2159.277.697.297.2174.384.971.2Px P x P x x P P P ++?+?+?+?+?+?+?=

=

+++++++++L L

50.48.5537.68.55 5.98.55240 1.250.437.6 5.9240+?+?+?+?=++++4745.9

4.33109

5.5

≈ 112233123159.2 5.5177.6 3.5497.2 1.397.2 6.7174.3 6.784.9571.2 3.4159.277.697.297.2174.384.971.2P y P y P y y P P P ++?+?+?+?+?+?+?==

+++++++++L L

50.4 6.737.65 5.9 3.4240 1.150.437.6 5.9240+?+?+?+?=++++4573.6

4.17109

5.5

≈ 由计算结果可知,x=4.33 y=4.17工厂的负荷中心在2号厂房的东北角。考虑的方便进出线及周围环境情况,决定在2号厂房的东侧紧靠厂房修建工厂变电所,其型式为附设式。

4 变电所主变压器和主结线方案的选择

4.1变电所主变压器的选择

根据工厂的负荷性质和电源情况,工厂变电所的主变压器可有下列两种方案:

⑴装设一台主变压器 型式采用S9,而容量根据式T N S ?≥30S 有1000>964.4,即选择一台S9-1000/10配电变压器。至于工厂二级负荷的备用电源,由与临近单位相连的高压联络线来承担。

⑵装设两台主变压器 形式采用S9,而每台容量根据下式选择,即:

T N S ?≈(0.6~0.7)?964.4=(578.64~675.08)KVA

而且T N S ?≥)21(30+S =(238.6+228.8+49.2)kVA=516.6KVA

因此选两台S9-800/10型低损耗配电变压器。工厂二级负荷的备用电源亦由与临近单位相联的高压联络线来承担。 4.2变电所主结线方案的选择

按上面考虑的两种主变压器的方案可设计以下两种主结线方案: (1)装设一台主变的主结线方案,如图4.1所示。 (2)装设两台主变的主结线方案,如图4.2所示。

图4.1 装设一台主变压器的主结线方案图4.2 装设两台主变压器的主结线方案

(3)两种主结线方案的技术经济比较如下表所示:

表4.1 两种主接线方案的比较

从上表可以看出,按技术指标,装设两台主变的主结线方案略优于装设一台主变的主结线方案,但按经济指标,则装设一台主变的主结线方案远优于装设两台主变的主结线方案,因此决定采用装设两台主变的主结线方案。

5 短路电流的计算

5.1绘制计算电路

图5.1 短路计算电路

5.2 确定基准值

设d S =100MVA, C d U U =,即高压侧1d U =10.5kV ,低压侧2d U =0.4kV ,则

1d I =

3

1d d U S =

kV MVA 5.103100?=5.5kA

2d I =

3

2d d U S =kV

MVA 4.03100?=144kA

5.3 计算短路电流中各元件的电抗标幺值 (1)电力系统 *1X =100MVA/400MVA=0.25

(2)架空线路 查表8-36,得LJ-95的0x =0.36Ω/km ,而线路长8km 故

*

2

X =(0.36?8)Ω?2

)

5.10(100kV MVA

=2.6 (3)电力变压器 查表2-8,得Z U %=4.5,故 *

3X =

kVA

MVA

8001001005.4?

=5.6,因此得

图5.2 等效电路

5.4 算k —1点(10.5kV 侧)的短路电路总电抗及三相短路电流的短路容量

(1) 总电抗标幺值 *)1(∑

-k X =*1X +*

2X =0.25+2.6=2.85

(2)三相短路电流周期分量有效值 )3(1-k I =1d I /*

)1(∑-k X =5.5/2.85=1.9KA

(3)其他短路电流

)3(''I =)3(∞I =)3(1-k I =1.9 KA

)3(sh i =2.55)3(''I =2.55?1.9=4.9 KA )3(sh I =1.51)3(''I =1.51?1.9=2.9 KA

(4)三相短路容量

)3(1-k S =d S /*

)1(∑-k X =100MVA/2.85=35.09MVA

5.5 计算k —2点(0.4kV 侧)的短路电路总电抗及三相短路电流的短路容量

(1)总电抗标幺值 *****

(2)1234//0.25 2.6 2.8k X X X X X ∑-=++=++=5.65 (2)三相短路电流周期分量的有效值 )3(2-k I =2d I /*)2(∑-k X =144kA/5.65=25.5kA

(3)其它短路电流

)3(''I =)

3(∞I =)3(1-k I =25.5 KA

)

3(sh

i =1.84)3(''I =1.84?25.5=46.9 KA )

3(sh

I =1.09)3(''I =1.09?25.5=27.8KA (4)三相短路容量 )3(2-k S =d S /*

)2(∑-k X =100MVA/5.65=17.7MVA

表5.1 短路的计算结果

6 变电所一次设备的选择校验

6.1 10kV侧一次设备的选择校验

表6.1 10KV侧一次设备的选择校验

表6.1所选设备均满足要求。

6.2 380V侧一次设备的选择校验

表 6.2 380V侧一次设备的选择校验

表6.2所选设备均满足要求。

6.3 高低压母线的选择

参照表5-25,10kV母线选LMY-3(40?4),即母线尺寸为40mm?4mm;380V母线选LMY-3(120?10)+80?6,即母线尺寸为120mm?10mm,中性母线尺寸为80mm?6mm。

7 变电所进出线以及邻近单位联络线的选择

7.1 10kV 高压进线和引入电缆的选择

1.10kV 高压进线的选择校验 采用LJ 型铝绞线架空敷设,接往10kV 公用干线。 (1) 按发热条件选择 由30157.7N T I I A ?==及室外环境温度32C ?,查表8-35,初选LJ-16,其35C ?时的3093.5al I A I =>满足发热条件。

(2)校验机械强度 查表8-33,最小允许截面2min 35A mm =,因此按发热条件选择的LJ-16不满足机械强度要求,故改选LJ-35。由于此线路很短,不需校验电压损耗。 2.由高压配电室至主变的一段引入电缆的选择校验 采用YJL22-10000型交联聚乙烯绝缘的铝芯电缆直接埋地敷设。

(1)按发热条件选择 由30157.7N T I I A ?==及土壤温度25C ?查表8-43,初选缆芯截面为2min 25A mm =的交联电缆,其3090al I A I =>,满足发热条件。 (2)校验短路热稳定 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)

222min 190021.425A I mm A mm ∞

===<= 式中C 值由表5-12查得;ima t 按终端变电所保护动作时间0.5s ,加断路器断路时间0.2s ,再加0.05s 计,故0.75ima t s =。

因此YJL22-10000-3*25电缆满足要求。 7.2 380V 低压出线的选择

1.馈电给1号厂房(铸造车间)的线路采用VV22-1000型聚氯乙烯绝缘铜芯电缆直埋地敷设。

(1)按发热条件选择 由30359.92I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面2240mm ,其30411.51al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至1号厂房距离约为36m ,而由表8-41查得2240mm 的铝芯电缆00.1R km =Ω(按缆芯工作温度75C ?计),

00.07X =km Ω,又1号厂房的30159.2P kW =,30177.7var Q k =,因此按式

()N

pR qX U U +?=

∑得: 159.2(0.10.036)177.7var (0.070.036) 2.690.38kW k U V kV

??Ω+??Ω

?=

=

2.69%100%0.70%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 (3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)

22min 19600223.3A I mm ∞

=== 故选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铜芯电缆,中性线芯按不小于相线芯一半选择。

2.馈电给2号厂房(锻压车间)的线路 由于锻压车间就在变电所旁边,而且共一建筑物,因此采用的聚氯乙烯绝缘的铝芯导线BLV-1000型(见表8-30)5根(包括3根相线、一根N 线、1根PE 线)穿硬塑料管埋地敷设。

(1)按发热条件选择 由30174I A =及环境温度(年最热月平均气温)32C ?,查表8-40,相线截面初选2185mm ,其30183al I A I ≈>,满足发热条件。

按规定,N 线和PE 线也都选为2185mm ,与相线截面相同,即选用

2BLV-1000-14mm ?塑料导线5根穿内径25mm 的硬塑管埋地敷设。

(2)校验机械强度 查表8-34,最小允许截面积2min 2.5A mm =,因此上面所选

2185mm 的导线满足机械强度要求。

(3) 校验电压损耗 所穿选管线,估计长18m ,而由查8-38查得

0R =0.19km Ω,0X =0.081km Ω,又锻压车间的30P =77.6kW ,30Q =84.2kvar ,因此

77.6(0.190.018)84.2var (0.0810.018) 1.020.38kW k U V kV

??Ω+??Ω

?=

=

1.02%100%0.2%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。

3.馈电给3号厂房(金工车间)的线亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由30217.6I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面2150mm ,其30242al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至3号厂房距离约为34m ,而由表8-41查得2150mm 的铝芯电缆00.25R km =Ω(按缆芯工作温度75C ?计),

00.07X =km Ω,又3号厂房的3097.2P kW =,30105.2var Q k =,因此按式

()N

pR qX U U +?=

∑得: 97.2(0.250.034)105.2var (0.070.034) 2.830.38kW k U V kV

??Ω+??Ω

?=

=

2.83%100%0.74%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)

22min 19600223.376

A I mm mm ∞

==?= 由于前面按发热条件所选2150mm 的缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铝芯电缆,中性线芯按不小于相线芯一半选择。

4.馈电给4号厂房(工具车间)线路亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由30217.6I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面2150mm ,其30242al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至4号厂房距离约为42m ,而由表8-41查得2150mm 的铝芯电缆00.25R km =Ω(按缆芯工作温度75C ?计),

00.07X =km Ω,又4号厂房的3097.2P kW =,30105.2var Q k =,因此按式

()N

pR qX U U +?=

∑得: 97.2(0.250.042)105.2var (0.070.042) 4.310.38kW k U V kV

??Ω+??Ω

?=

=

4.31%100% 1.13%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 (3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)

22min 19600223.3A I mm ∞

=== 由于前面按发热条件所选2150mm 的缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铝芯电缆,中性线芯按不小于相线芯一半选择。

5.馈电给5号厂房(电镀车间)线路亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由30335.3I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面2300mm ,其30347al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至5号厂房距离约为64m ,而由表8-41查得2240mm 的铝芯电缆00.16R km =Ω(按缆芯工作温度75C ?计),

00.07X =km Ω,又5号厂房的30174.3P kW =,30148.2var Q k =,因此按式

()N

pR qX U U +?=

∑得:

174.3(0.160.064)148.2var (0.070.064) 6.40.38kW k U V kV

??Ω+??Ω

?=

=

6.4%100% 1.68%%5%380al V

U U V

?=

?=

W

δ=

计算满足短路热稳定的最小截面

(3)

22min 19600223.3A I mm ∞

=== 故选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铝芯电缆,中性线芯按不小于相线芯一半选择。

6.馈电给6号厂房(热处理车间)的线路亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由30167.76I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面295mm ,其30189al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至6号厂房距离约为50m ,而由表8-41查得295mm 的铝芯电缆00.4R km =Ω(按缆芯工作温度75C ?计),

00.07X =km Ω,又6号厂房的3084.9P kW =,3070.6var Q k =,因此按式

()N

pR qX U U +?=

∑得: 84.9(0.40.05)70.6var (0.070.05) 5.10.38kW k U V kV

??Ω+??Ω

?=

=

5.1%100% 1.3%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 (3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)

22min 19600223.376

A I mm mm ∞

==?= 由于前面按发热条件所选295mm 的缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铝芯电缆,中性线芯按不小于相线芯一半选择。

7.馈电给7号厂房(装配车间)的线亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由30146.87I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面270mm ,其30157al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至7号厂房距离约为56m ,而由表8-41查得270mm 的铝芯电缆00.54R km =Ω(按缆芯工作温度75C ?计),

00.07X =km Ω,又7号厂房的3071.2P kW =,3065.3var Q k =,因此按式

()N

pR qX U U +?=

∑得: 71.2(0.540.056)65.3var (0.070.056) 6.340.38kW k U V kV

??Ω+??Ω

?=

=

6.34%100% 1.6%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 (3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)

22min 19600223.376

A I mm mm ∞

==?= 由于前面按发热条件所选270mm 的缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铝芯电缆,中性线芯按不小于相线芯一半选择。

8.馈电给8号厂房(机修车间)线路亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由30114.6I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面250mm ,其30134al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至8号厂房距离约为108m ,而由表8-41查得250mm 的铝芯电缆00.76R km =Ω(按缆芯工作温度75C ?计),

00.071X =km Ω,又8号厂房的3050.4P kW =,3056.1var Q k =,因此按式

()N

pR qX U U +?=

∑得: 50.4(0.760.108)56.16var (0.0710.108)12.010.38kW k U V kV

??Ω+??Ω

?=

=

12.01%100% 3.1%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 (3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

(3)22min 19600223.3A I

mm ∞

=== 由于前面按发热条件所选250mm 的缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2240mm 的电缆,即选VLV22-1000-3 240+1120??的四芯聚氯乙烯绝缘的铝芯电缆,中性线芯按不小于相线芯一半选择。

9.馈电给9号厂房(锅炉房)的线路 亦采用VLV22-1000的四芯聚氯乙烯绝缘的铝芯电缆直埋敷设。

(1)按发热条件选择 由3074.8I =及地下0.8m 土壤温度25C ?,查表8-42,初选缆芯截面225mm ,其3090al I A I =>,满足发热条件。

(2)校验电压损耗 由图11-1所示工厂平面图量得变电所至9号厂房距离约为98m ,而由表8-41查得225mm 的铝芯电缆0 1.51R km =Ω(按缆芯工作温度75C ?计),

00.075X =km Ω,又9号厂房的3037.6P kW =,3031.7var Q k =,因此按式

()N

pR qX U U +?=

∑得: 37.6(1.510.098)31.7var (0.0750.098)15.30.38kW k U V kV

??Ω+??Ω

?=

=

15.3%100% 4.01%%5%380al V

U U V

?=?=

故满足允许电压损耗的要求。 (3) 短路热稳定度校验 按式C M

W

δ=

计算满足短路热稳定的最小截面

电力系统规划课程设计

机电工程学院 《电力系统规划》课程设计 第二组 题目:某地区电网规划初步设计 专业:电气工程及其自动化 年级: 学号: 姓名: 指导教师: 日期: 云南农业大学机电工程学院

目录 摘要 (2) 课程设计任务书 (3) 第一章原始资料的分析 (5) 1.1发电厂技术参数 (5) 1.2发电厂和变电所负荷资料 (5) 1.3 负荷合理性校验 (5) 第二章电力网电压的确定和电网接线的初步选择 (7) 2.1电网电压等级的选择 (7) 2.2 电网接线方式的初步比较 (9) 2.2.1电网接线方式 (9) 2.2.2 方案初步比较的指标 (11) 第三章方案的详细技术经济比较 (12) 3.1导线截面参考数据 (12) 3.2方案(B)中的详细技术经济计算 (12) 3.2.1先按均一网对其进行粗略潮流分布的计算 (13) 3.2.2导线截面面积的选择 (13) 3.2.3根据查阅的导线截面面积,计算线路的阻抗 (15) 3.2.4计算正常运行时的电压损失 (15) 3.2.5投资费用(K) (15) 3.3方案(C)中的详细技术经济计算 (17) 3.3.1先按均一网对其进行粗略潮流分布的计算 (17) 3.3.2 导线截面的选择 (19) 3.3.3、线路阻抗计算 (20) 3.3.4正常运行时的电压损失 (20) 3.3.5投资(K) (21) 3.3.6、年运行费用(万元)年运行费用包括折旧费和损耗费 (21) 第四章最终方案的选定 (23) 第五章课程设计总结 (25) 参考资料 (26) 课程设计指导教师评审标准及成绩评定 (27)

摘要 该课程设计是进行地方电网规划设计。规划设计一个容量为5×25MW+1×50MW的发电厂和4个变电站的地方电力网。 本设计根据地方电力网规划的要求,在对原始资料系统负荷、电量平衡分析的基础上,运用传统的规划方法,并结合优化规划的思想,从拟定的五种可行方案中,通过技术和经济的比较,选择出两个较优的方案作进一步的深入分析:先对电网进行潮流计算,然后根据潮流计算结果,从最大电压损耗、网络电能损耗、线路和变电站的一次投资及电力网的年运行费用等角度,详细的分析两个较优方案,以此确定最优规划设计。 【关键词】方案拟定潮流计算导线截面选择投资年运行费用

微波电路课程设计报告(DOC)

重庆大学本科学生课程设计指导教师评定成绩表 说明:1、学院、专业、年级均填全称。 2、本表除评语、成绩和签名外均可采用计算机打印。 重庆大学本科学生课程设计任务书

2、本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页码。 摘要 本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。

在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。 在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。 对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。 设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。为了达到所要求的增益,采用两级放大。其中第一级放大为低噪声放大,第二级放大为双共轭匹配放大。 由于在微波领域,很多时候要用经验值,而不是理论值,来达到所要求的元件特性,因此在算出理论值之后,常常需要进行一些调整来达到设计要求。 关键词:低通原型Kuroda规则功率分配比匹配网络微带线 课程设计正文 1.切比雪夫低通滤波器的设计 1.1 设计要求: 五阶微带低通滤波器: 截止频率2.5GHZ 止带频率:5GHZ 通带波纹:0.5dB 止带衰减大于42dB

电力系统课程设计

《 电力系统课程设计《三相短路故障分析计算机算法设计》 一. 基础资料 1. 电力系统简单结构图如图 25MW cos 0.8N ?=cos 0.85 N ?=''0.13 d X =火电厂 110MW 负载 图1 电力系统简单结构图 '' 0.264 d X = 2.电力系统参数 如图1所示的系统中K (3) 点发生三相短路故障,分析与计算产生最大可能的故障电流 和功率。 (1)发电机参数如下: 发电机G1:额定的有功功率110MW ,额定电压N U =;次暂态电抗标幺值'' d X =,功率因数N ?cos = 。 … 发电机G2:火电厂共两台机组,每台机组参数为额定的有功功率25MW ;额定电压U N =; 次暂态电抗标幺值'' d X =;额定功率因数N ?cos =。 (2)变压器铭牌参数由参考文献《新编工厂电气设备手册》中查得。 变压器T1:型号SF7-10/,变压器额定容量10MV ·A ,一次电压110kV ,短路损耗59kW ,

空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 变压器T2:型号,变压器额定容量·A ,一次电压110kV ,短路损耗148kW ,空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 变压器T3:型号SFL7-16/,变压器额定容量16MV ·A ,一次电压110kV ,短路损耗86kW ,空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 (3)线路参数由参考文献《新编工厂电气设备手册》中查得。 线路1:钢芯铝绞线LGJ-120,截面积120㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 对下标的说明 X 0(1)=X 单位长度(正序);X 0(2)=X 单位长度(负序)。 / 线路2:钢芯铝绞线LGJ-150,截面积150㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 线路3:钢芯铝绞线LGJ-185,截面积185㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 (4)负载L :容量为8+j6(MV ·A ),负载的电抗标幺值为=* L X ** 22 *L L Q S U ;电动机为2MW ,起动系数为,额定功率因数为。 3.参数数据 设基准容量S B =100MV ·A ;基准电压U B =U av kV 。 (1)S B 的选取是为了计算元件参数标幺值计算方便,取S B -100MV ·A ,可任意设值但必须唯一值进行分析与计算。 (2)U B 的选取是根据所设计的题目可知系统电压有110kV 、6kV 、10kV ,而平均额定电压分别为115、、。平均电压U av 与线路额定电压相差5%的原则,故取U B =U av 。 / (3)'' I 为次暂态短路电流有效值,短路电流周期分量的时间t 等于初值(零)时的有效值。满足产生最大短路电流的三个条件下的最大次暂态短路电流作为计算依据。 (4)M i 为冲击电流,即为短路电流的最大瞬时值(满足产生最大短路电流的三个条件 及时间K t =)。一般取冲击电流M i =2×M K ×''I ='' I 。 (5)M K 为短路电流冲击系数,主要取决于电路衰减时间常数和短路故障的时刻。其范围为1≤M K ≤2,高压网络一般冲击系数M K =。 二.设计任务及设计大纲 1.各元件参数标幺值的计算,并画电力系统短路时的等值电路。 (1)发电机电抗标幺值 N B G G P S 100%X X ?= N ?cos 公式①

数字电路课程设计总结报告

数字电路课程设计总结报告题目:交通灯控制器 班级:08通信工程1班 学号:0810618125 姓名:廖小梅 指导老师:张红燕 日期:2010年12月

目录 1、设计背景 2、设计任务书 3、设计框图及总体描述 4、各单元设计电路设计方案与原理说明 5、测试过程及结果分析 6、设计、安装、调试中的体会 7、对本次课程设计的意见及建议 8、附录 9、参考文献 10、成绩评定表格

一、设计背景 随着经济的快速发展,城市交通问题日益凸显严重,尤其在城市街道的十字叉路口,极其容易发生交通问题,为了保证交通秩序和人们的安全,一般在每条街上都有一组红、黄、绿交通信号灯。交通灯控制电路自动控制十字路口的红、黄、绿交通灯。交通灯通过的状态转换,指挥车辆行人通行,保证车辆行人的安全,实现十字路口交通管理自动化。 二、设计任务书 1、设计一个十字路口的交通灯控制电路,要求南北方向(即 A车道)和东西方向(即B车道)两条交叉道路上的车辆 交替运行,每次通行时间都为30秒; 2、在绿灯转红灯时,先由绿灯转为黄灯,黄灯亮6秒后,再 由黄灯转为红灯,此时另一方向才由红灯转为绿灯,车辆 才开始通行。 三、设计框图及总体描述 1、分析系统的逻辑功能,画出其框图 交通灯控制系统的原理框图如图1所示。它主要由控制器、定时器、译码器和秒脉冲信号发生器等部分组成。秒脉冲发生器是该系统中定时器和控制器的标准时钟信号源,译码器输出两组信号灯的控制信号,经驱动电路后驱动信号灯工作,控制器是系统的主要部分,由它控制定时器和译码器的工作。

图1交通灯控制系统原理框图 在图中, T30: 表示甲车道或乙车道绿灯亮的时间间隔为30秒,即车辆正常通行的时间间隔。定时时间到,T30 =1,否则,T30 =0。 T6:表示黄灯亮的时间间隔为6秒。定时时间到,T6=1,否则,T6=0。 S T:表示定时器到了规定的时间后,由控制器发出状态转换信号。 由它控制定时器开始下个工作状态的定时。 交通系统的车道信号灯的工作状态转换如下所述: 状态1:A车道绿灯亮,B车道红灯亮。表示A车道上的车辆允许通行,B车道禁止通行。绿灯亮满规定的时间隔T30时, 控制器发出状态信号S T,转到下一工作状态。 状态2:A车道黄灯亮,B车道红灯亮。表示A车道上未过停车线的车辆停止通行,已过停车线的车辆继续通行,B车 道禁止通行。黄灯亮足规定时间间隔TY时,控制器发 出状态转换信号S T,转到下一工作状态。 状态3:A车道红灯亮,B车道黄灯亮。表示A A车道禁止通行,B车道上的车辆允许通行绿灯亮满规定的时间间隔T30 时,控制器发出状态转换信号S T,转到下一工作状态。

电力系统综合课程设计

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

数字电路课程设计报告

目录 一.课程设计题目 二.设计的任务和要求 三.设计与调试 四.系统总体设计方案及系统框图 五.设计思路 六.电路连接步骤 七.电路组装中发生的问题及解决方案 八.所选方案的总电路图 九.实验结果 十.心得体会

一、课程设计题目 交通灯控制系统设计 二、设计的任务和要求 1)在严格具有主、支干道的十字路口,设计一个交通灯自动控制装置。要求:在十字路口的两个方向上各设一组红黄绿灯;顺序无要求; 2)设置一组数码管,以倒计时的方式显示允许通行或禁止通行时间。红(主:R,支:r)绿(主:G,支:g)黄(主:Y,支:y)三种颜色灯,由四种状态自动循环构成(Gr→Yr→Rg→Ry);并要求不同状态历时分别为:Gr:30秒,Rg:20秒,Yr,Ry:5秒 三、设计与调试 1、按照任务要求,设计电路,计算相关参数,选择电子元器件 2、根据所设计的电路和所选择的器件搭接安装电路 3、接步骤进行调试电路 4、排除故障,最终达到设计要求 四、系统总体设计方案及系统框图 方案一:芯片设计 (1)芯片功能及分配 交通灯控制系统主要由控制器、定时器、译码器、数码管和秒脉冲信号发生器等器件组成。秒脉冲发生器是该系统中定时器和控制器的标准时钟信号源,译码器输出两组信号灯的控制信号,经驱动电路后驱动信号灯工作,控制器是系统的主要部分,由它控制定时器和译码器的工作。 1)系统的计时器是由74LS161组成,其中应因为绿灯时间为30秒,所以绿灯定时器由两块74LS161级联组成.74LS161是4位二进制同步计数器,它具有同步清零,同步置数的功能。 2)系统的主控制电路是由74LS74组成,它是整个系统的核心,控制信号灯的工作状态。 3)系统的译码器部分是由一块74LS48组成,它的主要任务是将控制器的输出翻译成6个信号灯的工作状态。整个设计共由以上三部分组成。 2)各单元电路的设计: 1. 秒脉冲信号发生器

电力系统分析-课程设计

河南城建学院 《电力系统分析》课程设计任务书 班级0912141-2 专业电气工程及其自动化 课程名称电力系统分析 指导教师朱更辉、何国锋、芦明 电气与信息工程学院 2015年12月

《电力系统分析》课程设计任务书 一、设计时间及地点 1、设计时间:2015年12月 2、设计地点:2号教学楼 二、设计目的和要求 1、设计目的 通过课程设计,使学生加强对电力体统分析课程的了解,学会查寻资料、方案比较,以及设计计算、分析等环节,进一步提高分析解决实际问题的能力。 2、设计要求 (1)培养学生认真执行国家法规、标准和规范及使用技术资料解决实际问题的能力; (2)培养学生理论联系实际,努力思考问题的能力; (3)进一步理解所学知识,使其巩固和深化,拓宽知识视野,提高学生的综合能力; (4)懂得电力系统分析设计的基本方法,为毕业设计和步入社会奠定良好的基础。 三、设计课题和内容 课题一:110KV 电网的潮流计算 (一)基础资料 导线型号:LGJ-95,km x /429.01Ω=,km S b /1065.261-?=; 线段AB 段为40km ,AC 段为30km ,BC 段为30km ; 若假定A 端电压U A =115kV ,变电所负荷S B =(20+j15)MVA ,S C =(10+j10)MVA 。 某110KV 电网 (二)设计任务 1、不计功率损耗,试求网络的功率分布,和节点电压; 2、若计及功率损耗,试求网络的功率分布,和节点电压,并将结果与1比较。 课题二:某电力系统的对称短路计算 (一)基础资料 如图所示的网络中,系统视为无限大功率电源,元件参数如图所示,忽略变压器励磁支路和线路导纳。

数字电路课程设计

数字电路课程设计 一、概述 任务:通过解决一两个实际问题,巩固和加深在课程教学中所学到的知识和实验技能,基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力,为今后从事生产和科研工作打下一定的基础。为毕业设计和今后从事电子技术方面的工作打下基础。 设计环节:根据题目拟定性能指标,电路的预设计,实验,修改设计。 衡量设计的标准:工作稳定可靠,能达到所要求的性能指标,并留有适当的裕量;电路简单、成本低;功耗低;所采用的元器件的品种少、体积小并且货源充足;便于生产、测试和维修。 二、常用的电子电路的一般设计方法 常用的电子电路的一般设计方法是:选择总体方案,设计单元电路,选择元器件,计算参数,审图,实验(包括修改测试性能),画出总体电路图。 1.总体方案的选择 设计电路的第一步就是选择总体方案。所谓总体方案是根据所提出的任务、要求和性能指标,用具有一定功能的若干单元电路组成一个整体,来实现各项功能,满足设计题目提出的要求和技术指标。 由于符合要求的总体方案往往不止一个,应当针对任务、要求和条件,查阅有关资料,以广开思路,提出若干不同的方案,然后仔细分析每个方案的可行性和优缺点,加以比较,从中取优。在选择过程中,常用框图表示各种方案的基本原理。框图一般不必画得太详细,只要说明基本原理就可以了,但有些关键部分一定要画清楚,必要时尚需画出具体电路来加以分析。 2.单元电路的设计 在确定了总体方案、画出详细框图之后,便可进行单元电路设计。 (1)根据设计要求和已选定的总体方案的原理框图,确定对各单元电路的设计要求,必要时应详细拟定主要单元电路的性能指标,应注意各单元电路的相互配合,要尽量少用或不用电平转换之类的接口电路,以简化电路结构、降低成本。

电气电力系统分析课程设计

—、设计要求 根据“电力系统分析”课程所学理论知识和电力系统规划设计的基本任务,在电源及负荷大小及其相对地理位置已确定的情况下,完成一个区域电力网络的设计。要求对多个方案进行技术经济比较和分析,选择出最优方案,并对所选方案进行必要的技术计算(如调压计算、稳定性计算),提出解决技术问题的措施。 二、原始资料 1.电源点和负荷点的相对地理位置; 2.发电厂装机容量、额定电压和功率因数; 3.各负荷点的最大最小负荷、最大负荷利用小时数和额定电压等。 三、电力网规划设计的基本内容 根据前述课程设计的要求,在电源和负荷大小及其相对地理位置已确定的情况下,完成以下设计内容: 1.制订网络可能的接线方案,选择电力网的电压等级; 2.选择各方案发电厂及变电站的主接线,根据电网运行的可靠性、灵活性和经济性,比较各方案的负荷矩、线路长度和高压开关数等指标,摒弃显然不合理的方案; 3.对待选的各方案,确定其输电线路的导线截面及发电厂、变电站的主要电气设备(变压器及断路器); 4.计算各方案的一次投资,对待选方案进行工程经济计算。进行技术经济比较,选定最优设计方案; 5.对所选方案进行调压或稳定性计算,提出调压或提高稳定性的措施。 6.物资统计,列出设备清单。 四、设计成果 1.设计说明书 2.全网主接线图 3.潮流计算结果及潮流分布图 4.设备清单 题目一. 110KV变电站设计 原始资料 本地区的供电系统是主要由水电供电,即使在最枯的月份,系统供电也能满足本地区的负荷需要。 建站模式 (1)变电站类型:110kv变电工程 (2)主变台数:两台 (3)电压等级:110kv、35kv、10kv (4)出线回数和传输容量

电力系统分析课程设计

广东工业大学华立学院课程设计(论文) 课程名称电力系统分析 题目名称复杂网络N-R法潮流分析与计算设计学生学部(系)电气工程系 专业班级08电气2班 学号12030802020 学生姓名 指导教师罗洪霞

2011 年 6 月12 日 目录 一. 基础资料 (3) 1.1 系统图的确定 (3) 1.2 各节点的初值及阴抗参数 (4) 二. 基本公式和变量分类 (5) 三. 设计步骤 (7) 3.4基本步骤 (8) 3.4方案选择及说明 (8) 四. 程序设计 (9) 4.1 MATLAB编程说明及元件描述 (9) 4.2源程序 (10) 4.3结果显示 (11) 五. 实验结论 (12) 六.参考文献 (13)

复杂网络N-R 法潮流分析与计算设计 一. 基础资料 1. 系统图的确定 选择六节点、环网、两电源和多引出的电力系统,简化电力系统图如图(1)所示,等值阻抗图如图(2)所示。运用以直角坐标表示的牛顿—拉夫逊计算如图(1)系统中的潮流分布。计算精度要求各节点电压的误差与修正量不大于510ε-=。

2.各节点的初值及阻抗参数 该系统中,节点①为平衡节点,保持 11.050 U j =+为定值,节点⑥为PV节点,其他四个节点都是PQ节点。给定的注入电压标幺值、线路阻抗标幺值、输出功率标幺值分别为表a、表b、表c中的数据。 线路对地导纳标幺值一半 00.25 Y j =及线路阻抗标幺值、输出功率标幺值和变压器变比标幺值如图(2)所示的注释。 表a 各节点电压标幺值参数

二. 基本公式和变量分类 本例所需公式有以下几类: (1).节点电压U 和节点导纳矩阵Y 。 (2).变量分类。在潮流问题中,任何复杂的电力网和电力系统都可以归结为以下元件(参数)组成。 1).发电机(注入电流或功率)。 2).负载(负的注入电流或功率)。 3).输电线支路(电抗、电阻)。 4).变压器支路(电阻、电抗、变化)。 5).变压器对地支路(导纳和感纳,本例中忽略)。 6).母线上的对地支路(阻抗或导纳,本例中忽略)。 7).线路上的对地支路(一般为线路电容导纳)。 (3).功率方程。电力系统的潮流方程的一般形式为: 1 n i ij i i i i i j j S P jQ U I U Y U * * * ==+=?=?∑ 1 ()(123n i i i ij j j i P jQ I Y U i U * ** =+===∑、、、...、n) (1-1) 潮流方程具有的特点是:①他能表征电力系统稳态运行特性; ②其为一组非线性方程,只能用迭代方法求其数值解;③方程中的电压U 和导纳Y 即可表示为直角坐标,又可表示为极坐标。因而潮流方

福州大学模拟电路课程设计报告

模拟电路课程设计报告 设计课题:程控放大器设计 班级:电子科学与技术 姓名:1111111 学号:1111111 指导老师:杨 设计时间:2015年6月24日~26日 学院:物理与信息工程学院

目录 一、摘要及其设计目的 (3) 二、设计任务和要求 (4) 三、方案论证及设计方案 (5) 四、单元电路的设计、元器件选择和参数计算 (8) 五、总体电路图,电路的工作原理 (10) 六、组装与调试,波形电路实际图及数据 (12) 七、所用元器件及其介绍 (16) 八、课程设计心得与体会 (18)

一、摘要 本次课程设计的目的是通过设计与实验,了解实现程控放大器的方法,进一步理解设计方案与设计理念,扩展设计思路与视野。程控放大器的组成结构:1.利用3个运放OP07构成的耳机放大电路;2.芯片CD4051八位的选择器通过片选端的控制调节R1电阻值的大小,从而改变放大倍数。实现最大放大60db的目的。 A summary The purpose of this course design is to design and experiment, to understand the method of program control amplifier, to further understand the design scheme and design concept, to expand the design idea and the visual field. The structure of programmable amplifier: 1. The three operational amplifier OP07 constitute the headset amplifier circuit; chip CD4051 eight selector through the chip selection terminal control regulating resistor R1 value of size, thus changing the magnification. The purpose of achieving maximum amplification of 60db.

模拟电路课程设计报告

模拟电路课程设计报告设计课题:立方根运算电路 专业班级: 10电气技术教育 学生姓名:李俊 学号:100805006 指导教师:刘玲丽老师 设计时间: 2011.12.15

立方根运算电路 一.设计任务与要求 1、用模拟乘法器设计一个立方根运算电路; 2、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源 (±12ⅴ)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(± 12V),为运算电路提供偏置电源。实验分为两个测试部分,为直流电源电路和功能电路的测试。直流电源整流部分要求采用桥式整流电路设计,输出端直流电压分别为+12ⅴ和-12ⅴ,功能部分要求用模拟乘法器设计一个立方根运算电路。 方案一:分别用1个Ua741实现对数运算电路,指数运算电路和集成运放电路;再用四个Ua741接成一个乘法器,将对数运算电路,指数运算电路和乘法器接成一个N次幂运算电路;最后将N次幂运算电路作为集成运放的反向通路,就可以实现立方根运算电路。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复 杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 电路图如下

图6 图7 令 () 2 1 3 2K k k+ = ,y x v v=1=a,得 2 1 x o v v= 可得:对数运算电路如图所示:

R T I R U R R 31520U n 1 u I ????? ?+= 指数运算电路如图所示: R I S T 1u u 0 e -u = 图8 方案二:用两个ID6332接成一个三次方电路,然后用一片Ua741接一个集成运算电路,再将三次方电路作为结成运放的反馈通路,就可以实现立方根运算电路。 优点:只需用到三个芯片,电路简单,相对误差较小。 流程图如下: 电路图如下

电力系统课程设计

信息工程系 2011-2012学年度下学期电力系统分析课程设计 电力系统短路故障的计算机 算法程序设计 姓名 学号 班级K0309414 指导教师钟建伟

信息工程学院课程设计任务书

电力系统短路故障的计算机算法程序设计 目录 1前言 (4) 1.1短路的原因 (4) 1.2短路的类型 (4) 1.3 短路计算的目的 (4) 1.4 短路的后果 (5) 2电力系统三相短路电流计算 (6) 2.1电力系统网络的原始参数 (6) 2.2制定等值网络及参数计算 (6) 2.2.1标幺制的概念 (6) 2.2.2有三级电压的的网络中各元件参数标幺值的计算 (7) 2.2.3计算各元件的电抗标幺值 (7) 2.2.4系统的等值网络图 (10) 3程序设计 (11) 3.1主流程图 (11) 3.2详细流程图 (12) 3.2.1创建系统流程图 (12) 3.2.2加载系统函数流程图 (13) 3.2.3计算子函数流程图 (14) 3.2.4改变短路点流程图 (15) 3.3数据及变量说明 (15) 3.4程序代码及注释 (16) 3.5测试例子 (17) 4结论 (23) 5参考文献 (24)

1前言 因为它们会破坏对用户的供电和电气设备的正常工作,而且还可能对人生命财产产生威胁。从在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常运行的情况,电力系统的实际运行情况看,这些故障绝大多数多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。 短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。 1.1 短路的原因 产生短路的原因很多,主要有如下几个方面:(1)元件损坏,例如绝缘材料的自然老化、设计、安装及维护不良所带来的设备缺陷发展成短路等;(2)气象条件恶劣,例如雷击造成的网络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌等;(3)违规操作,例如运行人员带负荷拉闸,线路或设备检修后未拆除接地线就加上电压等;(4)其他,如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 1.2 短路的类型 在三相系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相接地短路。三相短路也称为对称短路,系统各项与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。 电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。三相短路虽然很少发生,但情况较严重,应给予足够的重视。况且,从短路计算方法来看,一切不对称短路的计算,在采用对称分量法后,都归结为对称短路的计算。因此,对三相短路的的研究是具有重要意义的。 1.3 短路计算的目的 在电力系统的设计和电气设备的运行中,短路计算是解决一系列问题的不可缺少的基本计算,这些问题主要是: (1)选择有足够机械稳定度和热稳定度的电气设备,例如断路器、互感器、瓷瓶、母线、电缆等,必须以短路计算作为依据。这里包括计算冲击电流以校验设备的电动力稳定度;计算若干时刻的短路电流周期分量以校验设备的热稳定度;计算指定时刻的短路电流有效值以校验断路器的断流能力等。 (2)为了合理地配置各种继电保护和自动装置并确定其参数,必须对电力网中发生的各种短路进行计算和分析。在这些计算中不但要知道故障支路中的电流值,还必须知道电流在网络中的分布情况。有时还要知道系统中某些节点的电压值。 (3)在设计和选择发电厂和电力系统主接线时,为了比较各种不同方案的接线图,确定是否需要采取限制短路电流的措施等,都要进行必要的短路电流计算。 (4)进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也含有一部分短路计算的内容

电力系统分析课程设计报告完整版

课程设计报告书题目:电力系统分析课程设计 院(系)电气工程学院 专业电气工程及其自动化 学生姓名 学生学号 指导教师 课程名称电力系统课程设计 课程学分 1 起始日期 2020.1.2—2020.1.6

电力系统分析课程设计任务书

一、设计目的和要求 1、设计目的 通过课程设计,使学生加强对电力体统分析课程的了解,学会查寻资料、以及分析计算等环节,进一步提高分析解决实际问题的能力。 2、设计要求 (1)培养学生认真执行国家法规、标准和规范及使用技术资料解决实际问题的能力; (2)培养学生理论联系实际,努力思考问题的能力; (3)进一步理解所学知识,使其巩固和深化,拓宽知识视野,提高学生的综合能力; (4)懂得电力系统分析设计的基本方法,为毕业设计和步入社会奠定良好的基础。 二、设计课题和内容 各元件参数标幺值如下(各元件及电源的各序阻抗均相同): 接线,非标准变比侧Δ接T1:电阻0,电抗0.2,k=1.1,标准变比侧Y N 线; 接线,非标准变比侧ΔT2:电阻0,电抗0.15,k=1.05,标准变比侧Y N 接线; L24: 电阻0.03,电抗0.08,对地容纳0.04; L23: 电阻0.023,电抗0.068,对地容纳0.03; L34: 电阻0.02,电抗0.06,对地容纳0.032;

G1和 G2:电阻0,电抗0.15,电压1.1;负荷功率:S1=0.5+j0.2; 任务要求:当节点2发生B、C两相金属性接地短路时, 1 计算短路点的A、B和C三相电压和电流; 2 计算其它各个节点的A、B和C三相电压和电流; 3 计算各条支路的电压和电流。 三、设计工作要求 1、理解设计任务书,原始设计资料。 3、掌握以下设计内容及方法:电力系统组成、标幺制的原理、短路类型、短路原因、短路危害与短路计算的目的;同步发电机暂态过程、系统元件各序(正、负和零)参数计算、对称分量法原理、电力系统各序网络、不对称故障边界条件确定以及正序等效定理。最后撰写设计报告,绘图工程图,考核。 4、认真独立完成课程设计,若有抄袭他人设计课程设计或找他人代画设计图纸、代做等行为的弄虚作假者一律按不及格记成绩,并依据学校有关规定进行处理。 5、在设计周内完成所规定的设计任务,提交《课程设计报告书》一份。 四、成绩评定 1、考核办法:提交课程设计报告;回答教师所提出的问题;考勤情况。 2、成绩构成:平时考核20%,口试考核占40%,设计报告书占40%。 3、成绩评定: 成绩评定采取五级记分制,分为优、良、中、及格和不及格。由指导教师根据学生在设计中的综合情况和评分标准确定成绩。 4、评分标准 (1)优秀:遵守纪律,设计报告详实、内容认真,报告内容条理清晰,认识深刻、具体; (2)良好:遵守纪律,设计报告完整,内容完整无缺,报告充实,分析较具体; (3)中等:遵守纪律,设计报告较完整,内容比较详细,分析较具体;(4)及格:遵守纪律,设计报告完整,内容简单,分析粗浅;

射频通信电路课程设计报告

射频通信电路课程设计报告 引言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。 常用的振幅检波电路有包络检波和同步检波两类。输出电压直接反映调幅包络变化规律的检波电路,称为包络检波电路,它适用于普通调幅波的检波。通常根据信号大小的不同,将检波器分为小信号平方律检波和大信号峰值包络检波两信号检波。 目前, 在应用较广泛的电路仿真软件中, Pspice是应用较多的一种。Psp ice 能够把仿真与电路原理图的设计紧密得结合在一起。广泛应用于各种电路分析,可以满足电路动态仿真的要求。其元件模型的特性与实际元件的特性十分相似,因而它的仿真波形与实验电路的测试结果相近,对电路设计有重要的指导意义。 由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 [3]

目录 引言 (2) 一.概述 (3) 二. 方案分析 (4) 三.单元电路的工作原理 (6) 1.LC正弦波振荡器 (6) 2.模拟乘法器电路 (8) 3.谐振电路 (9) 4.包络检波 (12) 四.电路性能指标的测试 (16) 五.课程设计体会..................................................................................................... 错误!未定义书签。参考文献..................................................................................................................... 错误!未定义书签。

电力系统稳态课程设计(1)

课程设计(论文) 题目名称潮流计算 课程名称电力系统稳态分析 学生姓名 学号10412010 系、专业电气工程系 指导教师 2013年1月3 日

邵阳学院课程设计(论文)任务书 年级专业 10电气工程及其自动化 学生姓名 学 号 10412010 题目名称 电力系统潮流计算 设计时间 2013.12.21- 2012.1.3 课程名称 潮流计算课程设计 课程编号 121202306 设计地点 综合仿真实验室 一、课程设计(论文)目的 1.掌握电力系统潮流计算的基本原理; 2.掌握并能熟练运用PSCAD 仿真软件; 3.采用PSCAD 软件,做出系统接线图的潮流计算仿真结果。 二、已知技术参数和条件 在图1所示的简单电力系统中,系统中节点1、2为PQ 节点,节点3为PV 节点,节点4为平衡节点,已给定3.04.01j s --=,2.03.02j s --=,4.03=P ,02.13=V ,05.14=V , 04=θ,网络各元件参数的标幺值如表2所示,给定电压的初始值如表2所示,收敛系数 00001.0=ε。试求: ~1 2 3 4 1 :k 4 4θ∠V 1 1jQ P +2 2jQ P +3 V 3P 图1 简单电力系统 三、任务和要求 1.按学校规定的格式编写设计论文。 2.论文主要内容有:①课题名称。②设计任务和要求。③PSCAD 的应用以及仿真结果。④收获体会、存在问题和进一步的改进意见等。 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

四、参考资料 何仰赞主编.电力系统分析. 高教出版社出版.第三版.2002年 刘明波主编.大电网最优潮流计算.科学出版社出版.第一版.2010年 陈珩主编.电力系统稳态分析.中国电力出版社.第三版.2007年 韩祯祥主编.电力系统分析.浙江大学出版社.第三版.2005年 五、进度安排 2012年12月21日:下达课程设计的计划书,任务书,设计题目及分组情况 2012年12月22日-28日:学生熟悉PSCAD软件和建模 2013年1月29日-30日:上机调试程序,建立系统接线图的仿真模型和得出仿真结果 2013年1月31日-2日:写出报告(A4打印稿)和PPT报告(用于答辩) 2013年1月6日:组织学生答辩 六、教研室审批意见 教研室主任(签字):年月日七|、主管教学主任意见 主管主任(签字):年月日八、备注 指导教师(签字):学生(签字):

电力系统课程设计

电力系统综合自动化 课程设计 题目: 两相负调差电路设计 院系名称:电气工程学院 专业班级:电气0803 学生姓名:郭荣翔 学号: 200848720303 指导教师:邵锐

目录 1 概述……………………………………………………………………………… 2 调差系数调整原理……………………………………………………………… 3 两相负调差电路……………………………………………………………………设计心得…………………………………………………………………………… 参考文献……………………………………………………………………………

1概述 对自动励磁调节器进行调整,主要是为了满足运行方面的要求。这些要求是:①保证并列发电机组间无功电流的合理分配,即改变调差系数;②保证发电机能平稳地投入和退出工作,平稳地改变无功负荷,而不发生无功功率冲击的现象,即上下平移无功调节特性。 在实际运行中,发电机一般采用正调差系数,因为它具有系统电 压下降而发电机的无功电流增加这一特性,这对于维持稳定运行是十 分必要的。至于负调差系数,一般只能在大型发电机-变压器组单元 接线时采用,这时发电机外特性具有负调差系数,但考虑变压器阻抗 降压以后,在变压器的高压侧母线上看,仍具有正调差系数。因此负 调差系数主要用来补偿变压器阻抗上的压降,使发电机-变压器组的 外特性下倾度不至于太厉害,这对于大型机组是必要的。 2调差系数调整原理 图a 发电机调差系数与外特性 当调差系统δ>0,即为正调差系统时,表示发电机外特性下倾,即发电机无功电流增加,其端电压降低;当调差系统δ<0,即为负调

差系统时,表示发电机外特性上翘,即发电机无功电流增加,其端电压上升;当调差系统δ=0,即为无差调节。图a表明了上述情况。 图b 调差系数调整原理框图 正、负调差系数可以通过改变调差接线极性来获得,调差系数一般在±5%以内。调差系统的调差系统的调节原理如下。 在不改变调压器内部元件结构的条件下,在测量元件的输入量中,除UG外,再增加一个与无功电流IQ成正比的分量,就获得了调整调差系数的效果。 在图b中,测量单元的内部结构并未改变,其放大倍数仍为K1,只是将输入量改为UG±KδIQ 于是测量输入变为UBEF-(UG±KδIQ)=UG KδIQ 由于测量单元的放大倍数K1并未变化,所以可适当选择系数Kδ,就可以改变调差系数δ的大小。

电力系统分析课程设计

1前言 (2) 1.1短路的原因 (2) 1.2短路的类型 (2) 1.3短路计算的目的 (2) 1.4短路的后果 (3) 2电力系统三相短路电流计算 (4) 2.1电力系统网络的原始参数 (4) 2.2制定等值网络及参数计算 (5) 2.2.1标幺制的概念 (5) 2.2.2有三级电压的的网络中各元件参数标幺值的计算 (6) 2.2.3计算各元件的电抗标幺值 (8) 2.2.4系统的等值网络图 (9) 2.3短路电流计算曲线的应用 (9) 2.4故障点短路电流计算 (10) 2.4.1f1点三相短路 (10) 2.4.2f3点短路 (12) 3电力系统不对称短路电流计算 (15) 3.1对称分量法的应用 (15) 3.2各序网络的制定 (16) 3.2.1同步发电机的各序电抗 (16) 3.2.2变压器的各序电抗 (16) 3.3不对称短路的分析 (17) 3.3.1不对称短路三种情况的分析 (17) 3.3.2正序等效定则 (20) 3.3.3不对称短路时短路点电流的计算 (21) 4结论 (27) 5总结与体会 (28) 6谢辞 (29) 7参考文献 (30)

1前言 在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常运行的情况,因为它们会破坏对用户的供电和电气设备的正常工作,而且还可能对人生命财产产生威胁。从电力系统的实际运行情况看,这些故障绝大多数多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。 短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。 1.1 短路的原因 产生短路的原因很多,主要有如下几个方面:(1)元件损坏,例如绝缘材料的自然老化、设计、安装及维护不良所带来的设备缺陷发展成短路等;(2)气象条件恶劣,例如雷击造成的网络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌等;(3)违规操作,例如运行人员带负荷拉闸,线路或设备检修后未拆除接地线就加上电压等;(4)其他,如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 1.2 短路的类型 在三相系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相接地短路。三相短路也称为对称短路,系统各项与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。 电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。三相短路虽然很少发生,但情况较严重,应给予足够的重视。况且,从短路计算方法来看,一切不对称短路的计算,在采用对称分量法后,都归结为对称短路的计算。因此,对三相短路的的研究是具有重要意义的。 1.3 短路计算的目的 在电力系统的设计和电气设备的运行中,短路计算是解决一系列问题的不可缺少的基本计算,这些问题主要是: (1)选择有足够机械稳定度和热稳定度的电气设备,例如断路器、互感器、瓷瓶、母线、电缆等,必须以短路计算作为依据。这里包括计算冲击电流以校验设备的电动力稳定度;计算若干时刻的短路电流周期分量以校验设备的热稳定度;计算指定时刻的短路电流有效值以校验断路器的断流能力等。 (2)为了合理地配置各种继电保护和自动装置并确定其参数,必须对电力网中发生的各种短路进行计算和分析。在这些计算中不但要知道故障支路中的电流值,还必须知道电流在网络中的分布情况。有时还要知道系统中某些节点的电压值。

相关主题
文本预览
相关文档 最新文档