当前位置:文档之家› 完整版发动机排放污染物的生成机理

完整版发动机排放污染物的生成机理

完整版发动机排放污染物的生成机理
完整版发动机排放污染物的生成机理

发动机排放污染物的生成机理

主要内容:介绍了汽车尾气中的主要污染物

CO 、HC 、NO x 和微粒的生成机理。

1、一氧化碳

1.1 一氧化碳的生成机理

汽车尾气中CO 的产生是由于燃油在气缸中燃烧不充分所致, 是氧气不足而生成的中间

产物。

一般烃燃料的燃烧反应可经以下过程:

(2-3)

同时CO 还与生成的水蒸气作用,生成氢和二氧化碳。

可见,如果燃气中的氧气量充足时,理论上燃料燃烧后不会存在 CO 。但当氧气量不足

时,就会有部分燃料不能完全燃烧,而生成

CO 。

在非分层燃烧的汽油机中, 可燃混合气基本上是均匀的, 其CO 排放量几乎完全取决于

可燃混合气的空燃比

或过量空气系数

a 。图

2-1所示为11种H/C 比值不同的燃料在汽油

机中燃烧后,排气中 CO 的摩尔分数X CO 与 或a 的关系。

燃气中的氧足够时有

C m H n (2-1)

m 小 訂2

mCO

2H 2

2

2H 2O

(2-2)

2CO

2

2CO 2

由图2-1可以看出,在浓混合气中(

a <1), CO 的排放量随 a 的减小而增加,这是因

加。由于柴油机燃料与空气混合不均匀, 其燃烧空间总有局部缺氧和低温的地方, 以及反应

物在燃烧区停留时间较短,不足以彻底完成燃烧过程而生成

CO 排放,这就可以解释图 2-2

在小负荷时尽管 a 很大,CO 排放量反而上升。类似的情况也发生在柴油机起动后的暖机阶 段和怠速工况中。

2、碳氢化合物

车用柴油机中的未燃 HC 都是在缸内的燃烧过程中产生并随排气排放。 汽油发动机中未

燃HC 的生成与排放主要有以下三种途径。

(1) 在气缸内的燃烧过程中产生并随废气排出,此部分 HC 主要是燃烧过程中未燃烧 或

燃烧不完全的碳氢燃料。

(2) 从燃烧室通过活塞组与气缸之间的间隙漏入曲轴箱的窜气中含有大量未燃燃料, 如果排入大气中也构成 HC 排放物。

(3) 从汽油机的燃油系统蒸发的燃油蒸汽。

2.1碳氢化合物的生成机理

1. 车用汽油机未燃HC 的生成机理

车用发动机的碳氢排放物中有完全未燃烧的燃料,但更多的是燃料的不完全燃烧产物, 还有小部分由润滑油不完全燃烧而生成。

排气中未燃碳氢物的成份十分复杂, 其中有些是原

缺氧引起不完全燃烧所致。在稀混合气中(

a >1),CO 的排放量都很小,只有在 a =1.0

1.1时,CO 的排放量才随 a 有较复杂的变化。

在膨胀和排气过程中,气缸内压力和温度下降, 衡方程精确计算。受化学反应动力学影响,大约在 机和急加速、急减速时,CO 排放比较严重。

在柴油机的大部分运转工况下,其过量空气系数

CO 氧化成CO 2的过程不能用相应的平 1100K 时,CO 浓度冻结。汽油机起动暖

a 都在1.5?3之间,故其CO 排放量

要比汽油机低得多,只有在大负荷接近冒烟界限(

a =1.2 ?1.3)时,

CO 的排放量才大量增

h

L

.

lie

J-

-------

0 |5

005

过量空气系数a

图2-2典型的车用直喷式柴油机排放污染物量与过量空气系数

a 的关系

来燃料中不含有的成份,这是部分氧化反应所致。表2-1列出了车用汽油机中未燃碳氢化合

物成份的大致比例。

车用汽油机排气中的未燃碳氢化合物成份表2-1

车用发动机在正常运转情况下,HC的生成区主要位于气缸壁的四周处,故对整个气缸

容积来说是不均匀的,而且对排气过程而言HC的分布也是不均匀的。在发动机一个工作循环内,排气中HC的浓度出现两个峰值,一个出现在排气门刚打开时的先期排气阶段,另一个峰值出现在排气行程结束时。HC的生成主要由火焰在壁面淬冷、狭隙效应、润滑油膜的

吸附和解吸、燃烧室内沉积物的影响、体积淬熄及碳氢化合物的后期氧化所致。下面主要针

对汽油机分别进行讨论,但除了狭隙效应外,其余的均适用于柴油机。

1)火焰在壁面淬冷

火焰淬冷的形成方式有两种,即单壁淬冷和双壁淬冷。前者是火焰接近气缸壁时,由于

缸壁附近混合气温度较低,使气缸壁面上薄薄的边界层内的温度降低到混合气自燃温度以下,导致火焰熄灭,边界层内的混合气未燃烧或未燃烧完全就直接进入排气而形成未燃HC, 此边界层称为淬熄层,发动机正常运转时,其厚度在0.05?0.4mm之间变动,在小负荷时

或温度较低时淬熄层较厚;后者是在活塞顶部和气缸壁所组成的很小的环形间隙中,火焰传

不进去,使其中的混合气不能燃烧,在膨胀过程中逸出形成HC排放。

在正常运转工况下,淬熄层中的未燃HC在火焰前锋面掠过后,大部分会向燃烧室中心扩散并完成氧化反应,使未燃HC的浓度大大降低。但是在发动机冷起动、暖机和怠速等工

况下,因燃烧室壁面温度较低,形成的淬熄层较厚,同时已燃气体温度较低及混合气较浓,使后期氧化作用较弱,因此壁面火焰淬熄是此类工况下未燃HC的重要来源。

2)狭隙效应

在车用发动机的燃烧室内有如图2-7所示的各种狭窄的间隙,如活塞组与气缸壁之间的

间隙、火花塞中心电极与绝缘子根部周围狭窄空间和火花塞螺纹之间的间隙、进排气门与气

门座面形成的密封带狭缝、气缸盖垫片处的间隙等,当间隙小到一定程度,火焰不能进入便

会产生未燃HC。

在压缩过程中,缸内压力上升,未燃混合气挤入各间隙中,这些间隙的容积很小但具有

很大的面容比,进入其中的未燃混合气因传热而使温度下降。在燃烧过程中压力继续上升,又有一部分未燃混合气进入各间隙。当火焰到达间隙处时,火焰有可能传入使间隙内的混合

气得到全部或部分燃烧(在入口较大时),但也有可能火焰因淬冷而熄灭,使间隙中混合气

不能燃烧。随着膨胀过程开始,气缸内压力不断下降。大约从压缩上止点后15oCA开始,

间隙内气体返回气缸内,这时气缸内温度已下降,氧的浓度也很低,流回气缸的可燃气再氧

化的比例不大,一半以上的未燃HC直接排出气缸。狭隙效应产生的HC排放可占其总量的

50% ?70%。

图2-7汽油机燃烧室内未燃HC的可能来源

1-润滑油膜的吸附及解吸;2-火花塞附近的狭隙和死区;3-冷激层;4-气门座死区;

5-火焰熄灭(如混和气太稀、湍流太强);6-沉积物的吸附及解吸;7-活塞环和环岸死区;8-气缸盖衬垫缸孔死区

3)润滑油膜对燃油蒸汽的吸附与解吸

在进气过程中,气缸壁面和活塞顶面上的润滑油膜溶解和吸收了进入气缸的可燃混合气中的碳氢化合物蒸汽,直至达到其环境压力下的饱和状态,这种溶解和吸收过程在压缩和燃

烧过程中的较高压力下继续进行。在燃烧过程中,当燃烧室燃气中的HC浓度由于燃烧而下

降至很低时,油膜中的HC开始向已燃气解吸,此过程将持续到膨胀和排气过程。一部分解

吸的燃油蒸汽与高温的燃烧产物混合并被氧化;其余部分与较低温度的燃气混合,因不能氧

化而成为HC排放源。这种类型的HC排放与燃油在润滑油中的溶解度成正比。使用不同的燃料和润滑油,对HC排放的影响不同,使用气体燃料则不会生成这种类型的HC。润滑油

温度升高,使燃油在其中的溶解度下降,于是降低了润滑油在HC排放中所占的比例。由润

滑油膜吸附和解吸机理产生的未燃HC排放占其总量的25%左右。

4)燃烧室内沉积物的影响

发动机运转一段时间后,会在燃烧室壁面、活塞顶、进排气门上形成沉积物,从而使HC排放增加。对使用含铅汽油的发动机,HC排放可增加7%?20%。沉积物的作用机理可

用其对可燃混合气的吸附及解吸作用来解释,当然,由于沉积物的多孔性和固液多相性,其生成机理更为复杂。当沉积物沉积于间隙中,由于间隙容积的减少,可能使由于狭隙效应而生成的HC排放量下降,但同时又由于间隙尺寸减小而可能使HC排放量增加。这种机理所

生成的HC占总排放量的10%左右。

5)体积淬熄

发动机在某些工况下,火焰前锋面到达燃烧室壁面之前,由于燃烧室中压力和温度下降

太快,可能使火焰熄灭,称为体积淬熄,这也是产生未燃HC的一个原因。发动机在冷起动

和暖机工况下,由于发动机温度较低,混合气不够均匀,导致燃烧变慢或不稳定,火焰易熄灭;发动机在怠速或小负荷工况下,转速低、相对残余废气量大,使滞燃期延长、燃烧恶化,

也易引起熄火。更为极端的情况是发动机的某些气缸缺火,使未燃烧的可燃混合气直接排入

排气管,造成未燃HC排放急剧增加,故汽油机点火系统的工作可靠性对HC排放是至关重

要的。

6)碳氢化合物的后期氧化

在发动机燃烧过程中未燃烧的碳氢化合物,在以后的膨胀和排气过程中不断从间隙容积、润滑油膜、沉积物和淬熄层中释放出来,重新扩散到高温的燃烧产物中被全部或部分氧

化,称为碳氢化合物的后期氧化,包括:(1)气缸内未燃碳氢化合物的后期氧化:在排气门

开启前,气缸内的燃烧温度一般超过950CC。若此时气缸内有氧可供后期氧化(例如当过量

空气系数a>1 时),碳氢化合物的氧化将很容易进行。(2)排气管内未燃碳氢的氧化:排气

门开启后,缸内未被氧化的碳氢化合物将随排气一同排放到排气管内,并在排气管内继续氧化。其氧化条件为:①管内有足够的氧气;②排气温度高于600。C :③停留时间大于50ms。

2. 车用柴油机未燃HC 的生成机理

汽油机未燃HC 的生成机理也适用于柴油机,但由于两者的燃烧方式和所用燃料的不同,故柴油机的碳氢排放物有其自身的特点,柴油中的碳氢化合物比汽油中的碳氢化合物沸点要高、分子量大,柴油机的燃烧方式使油束中燃油的热解作用难以避免,故柴油机排气中未燃或部分氧化的HC 成份比汽油机的复杂。柴油机的燃料以高压喷入燃烧室后,直接在缸内形成可燃混合气并很快燃烧,燃料在气缸内停留的时间较短,生成HC 的相对时间也短,

故其HC 排放量比汽油机少。

3 氮氧化物

3.1 氮氧化物的生成机理

车用发动机排气中的氮氧化物NO x包含NO和NO2,其中大部分是NO,它们是N2在燃烧高温下的产物。

1. NO 的生成机理

从大气中的N2生成NO的化学机理是扩展的泽尔多维奇(Zeldovitch )机理。在化学计

量混合比(a=1)附近导致生成NO和使其消失的主要反应式为:

O2 T 2O

O+2-6)

N2 t NO+O

2-7)

N+O2 t NO+O

2-8)

N+OH t NO+H

(2-9 )

反应式( 2-9)主要发生在非常浓的混合气中, NO 在火焰的前锋面和离开火焰的已燃气中

生成。汽油机中的燃烧在高压下进行,并且燃烧过程进行得很快,反应层很薄(约0.1mm)且反应时间很短。早期燃烧产物受到压缩而温度上升, 使得已燃气体温度高于刚结束燃烧的火焰带的温度,因此除了混合气很稀的区域外,大部分NO 在离开火焰带的已燃气中发生, 只有很少部分NO 产生在火焰带中。也就是说,燃烧和NO 的产生是彼此分离的, 应主要考虑已燃气体中NO 的生成。

NO 的生成主要与温度有关。图2-8表示正辛烷与空气的均匀混合气在4MPa 压力下等压燃烧时,计算得到的燃烧生成的NO平衡摩尔分数x NOe与温度T及过量空气系数a的关系。

从图2-8中可以看出:在 a >1的稀混合气区,NOe随温度的升高而迅速增大;在一

定的温度下,NOe随混合气的加浓而减少。当a<1以后,由于氧不足,NOe随a的减小

而急剧下降。因此可以得出以下结论:在稀混合气区NO 的生成主要是温度起作用;在浓混合气区主要是氧浓度起作用。

图2-8中的虚线表示对应绝热火焰温度下的NO平衡摩尔分数。绝热温度指混合气燃烧

后释放的全部热量减去因自身加热和组成变化所消耗的热量而达到的温度,它是过程中可能

达到的最高燃烧温度。一般情况下,绝热火焰温度在稍浓混合气(a略小于1 )时达到最高值,但由于此时缺氧,故NO排放值不是最高,所以,NOe最大值出现在稍稀的混合气中

(a稍大于1)中。若混合气过稀,火焰温度大大下降,使NO排放降低。

图2-9温度对总量化学反应N2 + O2- 2NO进展快慢的影响(过量空气系数a =1.1,压力为10MPa)

生成NO的过程中,达到NO的平衡摩尔分数需要较长时间。图2-9表示在不同温度下

NO生成的总量化学反应式N2 + O2 —2NO的进展快慢,用NO摩尔分数的瞬时值NO与其

平衡值NOe之比表示。从图中可以看出,反应温度越低,则达到平衡摩尔分数所需时间越长,并且NO 的生成反应比发动机中的燃烧反应慢。可见温度越高,氧浓度越高,反应时间越长,NO的生成量越多。所以对NO的主要控制方法就是降低最高燃烧温度。发动机在运转中因为燃烧经历时间极短(只有几毫秒),温度的上升和下降都很迅速,故NO的生成不

能达到平衡状态,且分解所需的时间也不足,所以在膨胀过程初期反应就冻结,使NO以不

平衡状态时的浓度被排出。从燃料燃烧过程看,最初燃烧部分(火花塞附近)产生的NO约

占其最大浓度的50% (其中有相当部分后来被分解);随后燃烧的部分所产生的NO浓度很

小且几乎不再分解,因此NO的排放不能按平衡浓度的方法计算,只能由局部的燃烧温度及

其持续时间决定。

2. NO2的生成机理

汽油机排气中的NO?浓度与NO的浓度相比可忽略不计,但在柴油机中NO2可占到排气中总

NO x的10%?30%。目前对NO2生成机理的研究还不透彻,大致上认为NO在火焰区可以迅速转变成NO2,反应机理如下:

NO + HO2 —NO2 + OH

(2-10)

然后NO2又通过下述反应式转变为NO

NO2+ O —NO+ O2 (2-11)只有在NO2生成后,火焰被冷的空气所激冷,NO2才能保存下来,因此汽油机长期怠

速会产生大量NO 2。柴油机在小负荷运转时,燃烧室中存在很多低温区域,可以抑制NO 2

向NO的再转化而使NO2的浓度增大。NO2也会在低速下在排气管中生成,因为此时排气在有氧条件下停留较长时间。

点燃式发动机汽车排气污染物排放限值及测量方法

点燃式发动机汽车排气污染物排放限值及测量方法 GB18285-2005 前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,控制汽车污染物排放,改善环境空气质量,制定本标准。 本标准是对GBl4761.5-93《汽油车怠速污染物排放标准》和GB/T3845-93《汽油车排气污染物的测量怠速法》的修订与合并。本标准规定了点燃式发动机汽车怠速和高怠速工况排气污染物排放限值及测量方法,同时规定了稳态工况法、瞬态工况法和简易瞬态工况法等三种简易工况测量方法。本次修订增加了高怠速工况排放限值和对过量空气系数(λ)的要求。 按照有关法律规定,本标准具有强制执行的效力。 本标准由国家环境保护总局科技标准司提出。 本标准起草单位:中国环境科学研究院、交通部公路科学研究所 本标准国家环境保护总局2005年5月30日批准。 本标准自2005年7月1日起实施,《汽油车怠速污染物排放标准》(GBl4761.5-93)、《汽油车排气污染物的测量怠速法》(GB/T3845-93)和《在用汽车排气污染物排放限值及测量方法》(GB18285-2000)同时废止。 本标准由国家环境保护总局解释。 1 范围 本标准规定了点燃式发动机汽车怠速和高怠速工况下排气污染物排放限值及测量方法。本标准也规定了点燃式发动机轻型汽车稳态工况法、瞬态工况法和简易瞬态工况法三种简易工况测量方法。 本标准适用于装用点燃式发动机的新生产和在用汽车。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。 GB l4762-2002 车用点燃式发动机及装用点燃式发动机汽车排气污染物排放限值及测 量方法 GB 18352.1-2001 轻型汽车污染物排放限值及测量方法(Ⅰ) GB l8352.2-2001 轻型汽车污染物排放限值及测量方法(Ⅱ) GB 17930-1999 车用无铅汽油 GB/T15089-2001 机动车辆及挂车分类 GB 5181-2001 汽车排放术语和定义 GB l8047 车用压缩天然气 GB l9159 车用液化石油气 HJ/T3-1993 汽油机动车怠速排气监测仪技术条件 3 术语和定义

焦炉加热燃烧时氮氧化物的形成机理分析解析

焦炉加热燃烧时氮氧化物的形成机理及控制 钟英飞 燃气在焦炉立火道燃烧时会产生氮氧化物(NO x ),氮氧化物通常多指NO 和NO 2 的混合物,大气中的氮氧化物破坏臭氧层,造成酸雨,污染环境。上世纪80代中期,发达国家就视其为有害气体,提出了控制排放标准。目前发达国家 控制标准基本上是氮氧化物(废气中O 2 含量折算至5%时),用焦炉煤气加热的 质量浓度以NO x 计不大于500mg/m3,用贫煤气(混合煤气)加热的质量浓度不大于 350mg/m3(170ppm) 。 随着我国经济的快速发展,对焦炉排放氮氧化物的危害也日益重视,并准备制订排放控制标准。本文将对氮氧化物在焦炉燃烧过程中的形成机理及控制 措施进行论述。研究表明,在燃烧生成的NO x 中,NO占95%, NO 2 为5%左右,在 大气中NO缓慢转化为NO 2,故在探讨NO x 形成机理时,主要研究NO的形成机理。 焦炉燃烧过程中生成氮氧化物的形成机理有3种类型:一是温度热力型NO;二是碳氢燃料快速型NO;三是含N组分燃料型NO。也有资料将前两种合称温度型NO。 1 温度热力型NO形成机理及控制 燃烧过程中,空气带入的氮被氧化为NO N 2+O 2 = 2NO NO的生成由如下一组链式反应来说明,其中原子氧主要来源于高温下O 2 的离解: O+N 2 = NO+N N+O 2 = NO+O 由于原子氧和氮分子反应,需要很大的活化能,所以在燃料燃烧前和燃烧火焰中不会生成大量的NO,只有在燃烧火焰的下游高温区(从理论上说,只有火焰的下游才积聚了全部的热焓而使该处温度最高,燃烧火焰前部与中部都不 是高温区),才能发生O 2 的离解,也才能生成NO。

发动机排放污染物的影响因素

发动机排放污染物的影响因素 要紧内容:介绍了汽车尾气中的要紧污染物CO、HC、NO X和微粒的生成机理及其阻碍因素。 1 一氧化碳 1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的 中间产物。 阻碍一氧化碳生成的因素 理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不平均,在排气中还含有少量CO。即使混合气混合的专门平均,由于燃烧后的温度专门高,差不多生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,因此,排气中总会有少量CO存在。可见,凡是阻碍空燃比的因素,即为阻碍CO生成的因素。 1. 进气温度的阻碍 一样情形下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情形有专门大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。 进气温度/℃海拔高度/m 怠速 转速/(r/min) 图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的阻碍

V/(km/h) 图2-6 某汽油机等速工况排气成分实测结果 2. 大气压力的阻碍 大气压力P 随海拔高度而变化,由体会公式 () 5.256010.02257 kPa P P h =- (2-4) 式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。 当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示: ()32731.293 kg/m 273760 P T ρ=+ (2-5) 式中:T -温度,℃。 能够认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密 度的平方根成正比,因此进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。 3. 进气管真空度的阻碍 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。 4. 怠速转速的阻碍 图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,然而,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。假如这些问题得到解决,一样从净化的观点,期望怠速转速规定高一点较好。 5. 发动机工况的阻碍 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 专门快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

汽车排放主要的污染物

汽车排放治理技术指导>>培训班教学课件 北京市交通局汽车维修管理处 北京市交通学校

汽车排放污染物的生成机理 北京理工大学 车辆工程学院 郝利君

第二章汽车排放污染物的生成机理 第1节汽车排气污染物的主要成分与危害 第2节汽油车排放污染物的生成机理 第3节柴油车排放污染物的生成机理 第4节汽车排气污染物净化措施

第1节汽车排气污染物的主要成分与危害 1. 排气污染物主要来源 2. 污染物的主要成分 3. 排气污染物的危害

第1节汽车排气污染物的主要成分与危害 1. 排气污染物的主要来源 2. 污染物的主要成分 3. 排气污染物的危害(1)一氧化碳(CO):不完全燃烧产物。汽油机排放量为1;则LPG发动机为1/2;而柴油机为1/100。 (2)碳氢化合物(HC):未燃和未完全燃烧的燃油、润滑油及其裂解产物。 (3)氮氧化合物(NOx):在燃烧过程中和排入大气后造成的氮的各种氧化物(NO、NO2为主)的总称。 (4)颗粒排放物(PM):主要是碳烟、未燃燃油和润滑油液态颗粒,以及其他碳氢化合物、硫化物、含金属的灰分等。 (5)二氧化碳(CO2):完全燃烧产物。

第1节汽车排气污染物的主要成分与危害 1.排气污染物的主要来源 2.污染物的主要成分 CO、HC、NOx、PM、CO2 3. 排气污染物的危害 一氧化碳(CO) 是一种无色、无味的有毒气体,吸入人体后,能以比氧强300倍的亲和力同血液中的血红蛋白结合,形成碳氧血红蛋白,阻碍血液向心脏、脑等器官输送氧气,从而引起头痛、头晕等各种中毒症状,直至使人窒息死亡。 碳氢化合物(HC) 对眼和呼吸道粘膜有刺激作用,可引起结膜炎、鼻炎、支气管 炎等症状。 还是光化学烟雾形成的重要物质。

(环境管理)发动机排放污染物的影响因素

发动机排放污染物的生成机理和影响因素 主要内容:介绍了汽车尾气中的主要污染物CO、HC、NO X和微粒的生成机理及其影响因素。 1 一氧化碳 1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的 中间产物。 影响一氧化碳生成的因素 理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不均匀,在排气中还含有少量CO。即使混合气混合的很均匀,由于燃烧后的温度很高,已经生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,所以,排气中总会有少量CO存在。可见,凡是影响空燃比的因素,即为影响CO生成的因素。 1. 进气温度的影响 一般情况下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情况有很大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。 进气温度/℃海拔高度/m 怠速 转速/(r/min) 图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的影响

V/(km/h) 图2-6 某汽油机等速工况排气成分实测结果 2. 大气压力的影响 大气压力P 随海拔高度而变化,由经验公式 () 5.256010.02257 kPa P P h =- (2-4) 式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。 当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示: ()32731.293 kg/m 273760 P T ρ=+ (2-5) 式中:T -温度,℃。 可以认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密 度的平方根成正比,所以进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。 3. 进气管真空度的影响 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。 4. 怠速转速的影响 图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,但是,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。如果这些问题得到解决,一般从净化的观点,希望怠速转速规定高一点较好。 5. 发动机工况的影响 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 很快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

发动机排放污染物地生成机理

发动机排放污染物的生成机理 主要内容:介绍了汽车尾气中的主要污染物CO 、HC 、NO X 和微粒的生成机理。 1、 一氧化碳 1.1 一氧化碳的生成机理 汽车尾气中CO 的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的中间产物。 一般烃燃料的燃烧反应可经以下过程: 22n m H 2 n mCO O 2m H C +→+ (2-1) 燃气中的氧足够时有 O 2H O 2H 222→+ (2-2) 222CO O 2CO →+ (2-3) 同时CO 还与生成的水蒸气作用,生成氢和二氧化碳。 可见,如果燃气中的氧气量充足时,理论上燃料燃烧后不会存在CO 。但当氧气量不足时,就会有部分燃料不能完全燃烧,而生成CO 。 在非分层燃烧的汽油机中,可燃混合气基本上是均匀的,其CO 排放量几乎完全取决于可燃混合气的空燃比α或过量空气系数a φ。图2-1所示为11种H/C 比值不同的燃料在汽油机中燃烧后,排气中CO 的摩尔分数x CO 与α或a φ的关系。 空燃比α 过量空气系数a φ a ) b)

图2-1汽油机CO 排放量x CO 与空燃比α及过量空气系数a φ的关系 由图2-1可以看出,在浓混合气中(a φ<1),CO 的排放量随a φ的减小而增加,这是因缺氧引起不完全燃烧所致。在稀混合气中(a φ>1),CO 的排放量都很小,只有在a φ=1.0~ 1.1时,CO 的排放量才随a φ有较复杂的变化。 在膨胀和排气过程中,气缸内压力和温度下降,CO 氧化成CO 2的过程不能用相应的平衡方程精确计算。受化学反应动力学影响,大约在1100K 时,CO 浓度冻结。汽油机起动暖机和急加速、急减速时,CO 排放比较严重。 在柴油机的大部分运转工况下,其过量空气系数a φ都在1.5~3之间,故其CO 排放量要比汽油机低得多,只有在大负荷接近冒烟界限(a φ=1.2~1.3)时,CO 的排放量才大量增加。由于柴油机燃料与空气混合不均匀,其燃烧空间总有局部缺氧和低温的地方,以及反应物在燃烧区停留时间较短,不足以彻底完成燃烧过程而生成CO 排放,这就可以解释图2-2在小负荷时尽管a φ很大,CO 排放量反而上升。类似的情况也发生在柴油机起动后的暖机阶段和怠速工况中。 过量空气系数a φ 图2-2典型的车用直喷式柴油机排放污染物量与过量空气系数a φ的关系 2、 碳氢化合物 车用柴油机中的未燃HC 都是在缸内的燃烧过程中产生并随排气排放。汽油发动机中未燃HC 的生成与排放主要有以下三种途径。 (1)在气缸内的燃烧过程中产生并随废气排出,此部分HC 主要是燃烧过程中未燃烧或燃烧不完全的碳氢燃料。 (2)从燃烧室通过活塞组与气缸之间的间隙漏入曲轴箱的窜气中含有大量未燃燃料,如果排入大气中也构成HC 排放物。 (3)从汽油机的燃油系统蒸发的燃油蒸汽。 2.1 碳氢化合物的生成机理 1. 车用汽油机未燃HC 的生成机理 车用发动机的碳氢排放物中有完全未燃烧的燃料,但更多的是燃料的不完全燃烧产物,还有小部分由润滑油不完全燃烧而生成。排气中未燃碳氢物的成份十分复杂,其中有些是原来燃料中不含有的成份,这是部分氧化反应所致。表2-1列出了车用汽油机中未燃碳氢化合

汽车发动机排放污染物的生成机理、影响因素及危害

汽车排放物CO、HC、NOx、PM的 生成、影响因素及危害 随着我国汽车工业的发展,车辆越来越多,车辆向大气排放的污染物也越来越多。汽车排放是指从废气中排出的CO(一氧化碳)、HC、NOx(碳氢化合物和氮氧化物)、PM(微粒,碳烟)等有害气体。它们都是发动机在燃烧作功过程中产生的有害气体。这些有害气体在强烈阳光照射下发生光化学反应,产生大量的光化学烟雾,严重的威胁着人类的人生健康和生态环境。 一、生成: 这些有害气体产生的原因各异。CO是燃油氧化不完全的中间产物,当氧气不充足时会产生CO,混合气浓度大及混合气不均匀都会使排气中的CO增加。HC是燃料中未燃烧的物质,由于混合气不均匀、燃烧室壁冷等原因造成部分燃油未来得及燃烧就被排放出去。NOx是燃料(汽油)在燃烧过程中产生的一种物质。PM也是燃油燃烧时缺氧产生的一种物质,其中以柴油机最明显。因为柴油机采用压燃方式,柴油在高温高压下裂解更容易产生大量肉眼看得见的碳烟。 二、影响因素: 汽车废气中CO、HC和NOx三种有害气体的影响因素比较多,主要为可燃混合气的空燃比,点火提前角、发动机的负荷和转速以及发动机的内部结构等。 1、可燃混合气空燃比(即混合气成分)的影响 在理论空燃比附近,CO曲线有一个拐点,当A/F减少时,可燃混合气过浓,燃油无法充分燃烧,CO生成物便急剧增加;当MF增大时,氧含量充足,燃油可以充分燃烧.使CO生成量减少,而且比较稳定。 HC曲线在ME为17一18附近有一个拐点,此时废气中的HC含量最低。除此之外.HC的生成量都有所增加。其原因是当MF少于17时.混合气过浓,燃烧不彻底.当A/F大于18时,混合气过稀,燃烧速度缓慢同样会出现燃烧不彻底现象,HC都会增加。 NO曲线在A/F为15—16附近有—个波峰,此时生成的NO量最多,除此之外,过浓或过稀的空燃比都会降低燃烧速度和燃烧温度,使NO的生成量都有所下降。 2、点火提前角的影响 点火提前角对CO的生成量影响不大。但对HC和NOx的影响较大。

NOX形成机理,如何控制NOX浓度

NOX形成机理,如何控制NOX浓度 1、NOx的危害: 氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。 2、NOx生成机理和特点 2.1 NOx生成机理 在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种: (1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即 O2+N→2O+N, O+N2→NO+N, N+O2→NO+O 在高温下总生成式为 N2+O2→2NO, NO+0.5O2→NO2 随着反应温度T的升高,其反应速率按指数规律增加。当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。 (2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。

(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。 2.2 NOx生成特点 在这3种途径中,快速型NOx所占的比例不到5%,在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。由NOx的生成机理可以看出,NOx的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况,其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等; ⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。 3、降低NOx的主要控制技术 降低NOx排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx的产生,从源头上减少NOx生成量;二级脱氮技术则是利用各种措施,尽可能减少已生成NOx的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。 3.1、级脱氮技术 3.1.1、气分级 3.1.1.1、根据NOx的生成机理,燃烧区的氧浓度对各种类型的NOx生成都有很大影响。当过量空气系数α<1,燃烧区处于“缺氧燃烧”状态时,抑制NOx的生成量有明显效果[6]。根据这一原理,将燃料的燃烧过程分阶段完成,把供给燃烧区的空气量减少到全部燃

发动机排放污染物的影响因素

发动机排放 污染物的生成机理和影响因素 主要内容:介绍了汽车尾气中的主要污染物 CO 、HC 、NO x 和微粒的生成机理及其影 响因素。 1 一氧化碳 1.1汽车尾气中CO 的产生是由于燃油在气缸中燃烧不充分所致, 是氧气不足而生成的 中间产物。 影响一氧化碳生成的因素 理论上当a 在14.7以上时,排气中不存在 CO ,而只生成CO 2。实际上由于燃油和空气 混合不均匀,在排气中还含有少量 CO 。即使混合气混合的很均匀, 由于燃烧后的温度很高, 已经生成的CO 2也会由于一小部分分解成 CO 和O 2, H 2O 也会部分分解成 02和H 2,生成 的H 2也会使CO 2 还原成CO ,所以,排气中总会有少量 CO 存在。可见,凡是影响空燃比 的因素,即为影响 CO 生成的因素。 1. 进气温度的影响 一般情况下,冬天气温可达零下 20 C 以下,夏天在30 C 以上,爬坡时发动机罩内进气 温度超过80C 。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供 给的混合气的空燃比 a 随吸入空气温度的上升而变浓, 排出的CO 将增加。因此,冬天和夏 天发动机排放情况有很大的不同。图 2-3为一定运转条件下,进气温度与空燃比的关系,大 致和绝对温度的方根成反比的理论相一致。 怠速 图2-4海拔高度与大气压力的关系 进气温度 图2-3进气温度与空燃比的关系 图2-5怠速转速 对CO 和HC 排放的影响

当海平面P0 =100kPa 时,可作出海拔高度和大气压力变化关系的曲线, 当忽略空气中饱和水蒸气压时,空气密度 P 可用下式表示: P =1.293——273P —— kg/m 3 (273 +T )760 式中:T —温度,C 。 可以认为空气密度 P 和大气压力P 成正比,从简单化油器理论可知, 度的平方根成正比,所以进气管压力降低时,空气密度下降,则空燃比下降, 增大。 3. 进气管真空度的影响 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。 CO 浓度将显著 增加到怠速时的浓度。 4. 怠速转速的影响 图2-5表示了怠速转速和排气中 CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%, 700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中 CO 浓 度,但是,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。如果这些 问题得到 解决,一般从净化的观点,希望怠速转速规定高一点较好。 5. 发动机工况的影响 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的 CO 浓度的变化。当车速增加时, CO 很快降低, 至中速后变化不大,这是由于化油器供给发动机的空燃比, 随流量增加接近于理论空燃比的 结果。 图2-6 2.大气压力的影响 大气压力P 随海拔高度而变化, 由经验公式 5.256 P = Po(1—0? kPa (2-4) 式中:h 一海拔高度, km 。 如图 2-4所示。 (2-5) 空燃比和空气密 CO 排放量将 0 g 2 V/(km/h) 某汽油机等速工况排气成分实测结果

汽车排放污染物的生成机理和影响因素2

汽车排放污染物的生成机理和影响因素 摘要:汽车保有量的增长直接导致了石油燃料的大量消耗,并由此产生了大量的有害排放物,尤其在一些大中城市汽车排气造成的环境污染问题日趋严重。目前,大气污染已逐渐成为世界性的问题,应当引起足够重视。分析汽车排放污染物的生成机理和影响因素,提出控制的方法。 关键词:污染物生成机理影响因素 前言随着汽车的普及,汽车的排气污染问题已日益严重,它破坏了地球生态平衡环境及温室效应等。在各大城市的市区,汽车排出的污染物CO、H C占总量的6()%一70%,N o x占30%左右。为了降低汽油机的排污和燃油消耗量,我们必须了解汽车的排放污染物的形成因素,这样才能准确采取措施、或者引进先进技术来减少、治理汽车的尾气排放物。 1.污染物的生成机理 1)一氧化碳(CO)的形成机理:CO是燃料不完全燃烧的产物,主要受混合气浓度的影响。当发动机过量空气系数小于1时,混合气中氧气不足,燃料不能充分燃烧而形成。混合气浓度越大,排气中的CO含量越高。当降低混合气浓度时,排放的CO明显减少。 在稀混合气下CO产生的平衡过程为:CO2+H2O→CO+H2+O2 在浓混合气下的平衡过程为:CO2+H2→H2O+CO 2)碳氢化合物(HC)的形成机理:碳氢化合物中含有多种成份,生成原因复杂,但主要是未燃和燃烧不充分的燃料。燃料在燃烧室中燃烧时,火焰在离壁面 0.15~0.37mm处迅速熄灭,导致这一薄层内残留下未反应和反应不充分的混合气,这一现象被称为壁面激冷效应,碳氢化合物就是在这厚度仅为几十微米的激

冷层内被保存下来;发动机燃烧室中各种很狭窄的缝隙也留有未燃或未完全燃烧的气体,储存着大量的碳氢化合物;另外混合气不均匀、 过浓、过稀、点火系统不良、转速低等情况也会造成部分燃料燃烧不充分,使排出的碳氢化合物增加。 3)氮氧化合物(NOX)的形成机理:汽车燃烧过程中主要形成NO和少量的NO2。NO的形成主要受三个因素的影响,温度、氧的浓度和滞留时间。随着温度的增高,NO的形成速度加快。混合气浓度越高;氧的浓度越大,滞留时间越长,NO生成的越多。但在氧气不足的情况下,即使温度高,其生成也会被抑制;另外由于NO 的反应慢,生成时间长,如果气体停留时间短,NO和O2不能离解而引起连锁反应,NO的生成也将被抑制。0+N2→NO+N;N+O2→NO+O. 2.汽车排放污染物的影响因素 当混合气混合不均匀时,汽油机是预先混和混合气的,所以即使在>1时混合气也不可能绝对的均匀,总会有过浓区,加上进气管壁面上有汽油膜的存在,油膜也会随着进气边流动边蒸发,也会造成混合气不均匀,而且各缸的均匀性也不相等,所以实际上即使在>1时也会产生CO。 二氧化碳和水在高温时离解,即使在稀混合气燃烧时,有足够的氧气,但是由于发动机缸内温度很高,当温度超过2000C时CO2时就会发生高温离解反应;HO2在高温时也会分解成H2和O2,H2参加反应,使CO2还原成CO。 1.进气温度的影响:一般情况下,冬天气温可达零下20C以下,夏天在30 C以上,同时爬坡时发动机罩内温度有时也会超过80C。所以随着环境温度的上升,空气密度变小,但是汽油的密度几乎不变,所以化油器供给的混合气的空燃比就会随着吸入空气温度的上升而变浓,使排出的CO将增加。因此,冬

汽车排放污染物的测量方法

汽车排放污染物测试的发展方向——车载排放测试

样的。作为一个整体,PEMS按照图1所示的PEMS结构图,将各测量仪器集中到一起,利用PITOT管直采的方法,对尾气进行直接取样,分析各污染物的瞬时排放浓度。车辆排放的气体,在PEMS的各个分析仪内经过分析之后,和环境参数、GPS参数一起进入数据整合系统,之后输入到记录和存储数据的PC中。 安装PEMS也是相当容易的。对于乘用车和卡车,可以将系统安装在被测车辆的副驾座位上,这样就使监视屏幕和控制器面向驾驶员,并且所有的连接器面向副驾一侧的车门。系统也能安装在小轿车的后座上,小型厢式车的地板上,掀背式轿车或者皮卡的货箱里,或者车上其他任何安全、方便的地方。将该系统放置在座位上时,最好在座位上铺上保护垫或者油布,这样是为了防止对座位的损坏。当测试重型车辆时,可以将设备放置在对车辆运行和用户使用来说认为安全的地方。 二、各污染物分析原理及分析仪 (一)CO与CO2测量仪器 非透视红外线分析仪(NDIR,Nondispersive Infrared Analyzer)是目前用来试验和评价内燃机排气中有害排放物的一种广泛使用的标准仪器,这种仪器主要用来测定CO和CO2浓度。对于在红外线领域中具有吸收带的非对称气体分子,如HC,原则上也能进行测量。 非扩散红外分析仪是通过测定试样中对象成分的红外光的吸收能,来测定它的成分浓度。它的基本构造如图2所示。它由两个相同的红外光源、试样室、

比较室、检测室、截光室,以及信号放大器和记录仪器等部分组成。 在图2中,比较室中充满了惰性气体(通常为N2),这种气体不吸收待测气体波长的红外线能,不会影响测量结果。两个红外光源辐射出的红外线分别是经过试样室和比较室进入由弹性膜片隔开的检测室的上下两个腔内,在检测室的两个腔内充入等量的纯待测气体,弹性膜片与金属电极共同组成可变电容器,其电量的大小与其间距离成正比变化。当红外线同时通过试样室和比较室时,由于试样室的气体吸收红外光能,而比较室的气体不吸收红外光能,结果使检测室的两个腔所受的红外能不同,由此造成两个腔内温度变化的不同,使左右两个腔内压力不等而使膜片发生位移,于是电容电量发生变化。根据电容量的变化即可确定待测气体的浓度。 试样室中吸收的红外光能与被测气体浓度的关系可以按式1表示: 式中:E a—所吸收的能量 E i—入射能量 k—光能吸收系数 c—被测气体浓度 L—试样管长度 当浓度变化越大时,转换成检测室电容量变化越大,得到的电输出信号越大。NDIR就是根据输出电信号的大小得出样气中CO和CO2的浓度。

柴油机排放污染物生成机理与治理措施总结

柴油机主要排放污染物的生成机理、影响因素与治理措施 摘要:通过分析柴油机在实际运行过程中CO、HC、NO X、PM等主要污染物的生成机理,总结归纳出影响这些污染物生成的主要因素,并以此为依据介绍现有的降低柴油机排放污染物的主要措施 关键词:柴油机排放物生成机理影响因素治理措施 1.问题描述 随着科学技术的不断发展深入,更多种类和形式的能源动力机械不断问世并投入应用,但是内燃机由于其应用的稳定性和广泛的适用性在如此环境下依旧在能源动力领域占据着龙头位置。因此内燃机仍然是能源动力领域中首选的动力机械。而内燃机中最典型突出的代表则为车用的往复式活塞内燃机。根据其使用燃料种类的不同可以分为汽油机和柴油机两种。相比于汽油机,柴油机具有燃油消耗低、耐久性好、寿命长、高扭矩输出、功率范围广等优点,因此柴油机在各行业里得到广泛的应用:在重型动力装置中,柴油机应用领域已经占绝对统治地位,在小型轿车等轻型车辆中,柴油机的应用也逐渐渗透。但是由于柴油机的广泛应用而带来的环境污染问题也越来越严重并且越发受到世人关注。柴油机排气污染物主要成分有一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NO X)、硫化物以及颗粒物(PM)等。由于柴油机采取的质调节方式,因此其混合气的平均空燃比远大于理论空燃比,故其CO与HC排放明显低于汽油机,所以柴油机排放控制的重点在于NO X和PM。由于各排放物生成机理不同,因此在它们各自的控制与净化措施也存在差异。本文接下来将叙述各主要排放污染物的生成机理、影响措施与治理措施。 2.柴油机主要排放污染物的生成机理 2.1.CO生成机理 CO的生成主要有三种途径:一是柴油机进气与柴油喷雾混合不均匀导致局部混合气过量空气系数Φa <1,局部燃烧缺氧导致不完全燃烧生成CO;二是已成为燃烧产物的CO2和H2O在高温条件下产生热解反应进而生成CO;三是排气过程中HC未完全氧化生成CO。 2.2.HC生成机理 排放的HC一般是未燃HC,是指没有燃烧或部分燃烧的碳氢化合物的总称。一般认为柴油机中HC的产生主要有两种途径:一是由于滞燃期中形成的过稀混合气在燃烧室内不能满足自燃或扩散火焰传播的条件,导致HC的氧化反应无法开始或瞬间终止,生成未燃HC;二是燃烧过程后期低速离开喷油嘴的燃油与进气不良好混合形成的过浓混合气不能着火及燃烧,生成未燃HC。 2.3.NO X生成机理 柴油机排放的NO X主要是NO和NO2,其中NO占据了NO X排放的85% - 95%。NO本身无毒无害,但NO 随着排气进入大气后会缓慢氧化成有毒的NO2,因此NO X生成机理主要针对NO讨论。NO的生成途径有三个:一是激发NO的生成;二是燃料NO的生成;三是高温NO的生成。前两者NO的生成量极少,可以忽略不计,因此NO的主要生成方式为高温NO的生成。其反应机理如下: N2+O→NO+N N+O2→NO+O N+OH→H+NO 由上式可以知道影响NO生成的因素为高温、富氧和反应时间。 2.4.PM生成机理 柴油机排放的PM主要成分有碳粒、硫酸盐、可溶性有机成分和含金属元素的灰分等。其中碳粒的生成是一个非平衡过程,现在比较流行的理论认为生成碳粒的过程是燃油分子大量分解和原子分子重新排列的过程。当燃油喷射到高温空气中时,轻质烃很快蒸发气化,而重质烃会以液态暂时存在,液态的烃在高温缺氧条件下直接脱氢碳化,成为焦炭状的液相析出型碳粒,粗度一般较大。而已气化的轻质烃,经过不同途径,产生气相析出型碳粒,粒度相对较小。气相的燃油分子在高温缺氧的情况下发生部分氧化和热裂解,

重型车用汽油发动机与汽车排气污染物排放限值及-中国汽车工业协会

附件三: 《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》 (GB 14762-2008)修改方案 (征求意见稿)编制说明 《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)修改方案编制组 二〇一二年五月

目录 1. 修改标准的目的 (1) 2. 相关背景介绍 (1) 2.1 原标准情况 (1) 2.2 重型汽油车行业状况 (1) 3.修改内容及其依据 (2) 3.1关于OBD要求及试验方法的确定 (2) 3.2 关于耐久性要求和试验方法的确定 (2) 附1国内重型汽油车(机)行业概况 (4) 附2国外重型汽油车(机)排放标准中的OBD和耐久性要求简介 (6)

1. 修改标准的目的 补充完善《重型车用汽油发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ阶段)》(GB14762-2008)标准中第四阶段车载诊断(OBD)系统和排气污染物控制系统耐久性要求。 2. 相关背景介绍 2.1 原标准情况 2008年4月,我国发布了国家标准《重型车用汽油发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ阶段)》(GB14762-2008)。该标准规定了重型汽油车及其发动机第三、四阶段排放限值和相应的测量方法,第四阶段氮氧化物和碳氢化合物限值比第三阶段收紧了30%左右。第三、四阶段排放限值的提出,明确了重型汽油车各阶段污染物减排的目标,引导汽车和发动机生产企业为提升排放控制水平早做准备。同时,为了确保车辆在实际使用过程中污染物排放持续达标,该标准还规定了第三阶段车载诊断(OBD)系统和排气污染物控制系统耐久性(简称:耐久性)等内容;由于当时国内外可参考的技术内容有限,对于第四阶段的OBD、耐久性没有提出规定(见GB14762-2008标准前言第二段和标准第7.4.3条),计划在第四阶段标准实施前进行确认或另行规定。 重型汽油车国家第三阶段标准已于2009年7月1日开始实施,第四阶段将于今年7月1日开始实施型式核准。因此,亟需对第四阶段的OBD和耐久性要求进行确定。 2.2 重型汽油车行业状况 由于重型汽油车燃油消耗量和CO2排放较高,在全世界范围内均已逐渐被柴油车所替代。欧盟多年来几乎没有重型汽油车生产销售;因而也就未制定重型汽油车相关排放法规;美国和日本的重型汽油车产量也已非常少,所占汽车总产量的份额很小,虽然仍保留了重型汽油车排放法规,但近年来已几乎没有新认证的车型。国内近年来重型汽

氮氧化物的产生机理及脱氮技术原理.

氮氧化物的产生机理及脱氮技术原理: 一、氮氧化物的产生机理 在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(Zeldovich反应式表示。 随着反应温度T的升高,其反应速率按指数规律。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。 热力型氮氧化物生成机理(Zeldovich反应式 在高温下总生成式为 (b瞬时反应型(快速型 快速型NOx是1971年Fenimore通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。 由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。 上述两种氮氧化物都不占NOx的主要部分,不是主要来源。 (c燃料型NOx 由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。

在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN 和等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份和焦炭中剩余氮的氧化(焦炭两部分组成。 燃料中氮分解为挥发分N和焦炭N的示意图 二、低NOx燃烧技术原理 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。 1在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取: (1减少燃烧的过量空气系数; (2控制燃料与空气的前期混合; (3提高入炉的局部燃料浓度。 2热力型NOx:是燃烧时空气中的N2和O2在高温下生成的NOx,产生的主要条件是高的燃烧温度使氮分子游离增加化学活性;然后是高的氧浓度,要减少热力型NOX的生成,可采取: (1减小燃烧最高温度区域范围; (2降低锅炉燃烧的峰值温度; (3降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成:

汽车排放污染物的生成机理和影响因素

班级:汽服1101 姓名:袁嘉俊学号:15 摘要:为了解决日益严重的城市大气污染,实现可持续发展,开发新能源汽车和低排放汽车已经成为汽车工业发展的方向之一。分析汽车发动机排放污染物的生成机理及影响因素,假设其它条件一定时,某一或几个参数变化的情况下,定性分析汽车主要排放污染物C0、HC、NO,等的变化趋势,从而建立起控制汽车排放的有效措施达到降低汽车排放、净化城市大气环境的目的。 关键词:排放污染物生成机理影响因素 1、绪论 随着居民收人的提高,汽车价格的下降和消费环境的改善,中国汽车市场的规模将持续扩大增长;同时随着汽车保有量的持续增长,我国汽车排放污染物总量也将持续攀升。汽车排放污染已经成为我国城市大气的主要污染源。因此控制汽车污染的排放关系到人类社会的可持续发展,和人民生活的质量。 2、汽车排放污染物成分 主要污染物CO、HC、NOX和微粒的生成机理及其影响因素。 汽车排放污染物生成机理 一氧化碳的生成机理 汽车尾气中CO的产生是燃烧不充分所致,是氧气不足而生成的中间产物。燃气中的氧气量充足时,理论上燃料燃烧后不会存在CO。但当氧气量不足时,就会有部分燃料不能完全燃烧,而生成CO。 1)汽油机一氧化碳的生成机理 Φa <1时,因缺氧引起不完全燃烧,CO的排放量随Φa的减小而增加。 Φa >1时,CO的排放量都很小。 Φa =~时,CO的排放量变化较复杂。 2)柴油机一氧化碳的生成机理 Φa =~3,CO排放量要比汽油机低得多。 Φa =~,CO的排放量才大量增加。 影响一氧化碳生成的因素:1. 进气温度的影响2. 大气压力的影响 3. 进气管真空度的影响4. 怠速转速的影响 5. 发动机工况的影响 碳氢化合物的生成机理 1)车用汽油机未燃HC的生成机理 车用发动机的碳氢排放物中有完全未燃烧的燃料,但更多的是燃料的不完全燃烧产物,还有小部分由润滑油不完全燃烧而生成。排气中未燃碳氢物的成份十分复杂,其中有些是原来燃料中不含有的成份,这是部分氧化反应所致。 车用发动机在正常运转情况下,HC的生成区主要位于气缸壁的四周处,故对整个气缸容积来说是不均匀的,而且对排气过程而言HC的分布也是不均匀的。在发动机一个工作循环内,排气中HC的浓度出现两个峰值,一个出现在排气门刚打开时的先期排气阶段,另一个峰值出现在排气行程结束时。HC的生成主要由火焰在壁面淬冷、狭隙效应、润滑油膜的吸附和解吸、燃烧室内沉积物的影响、体积淬熄及碳氢化合物的后期氧化所致。 氮氧化物的生成机理 汽油机未燃HC的生成机理也适用于柴油机,但由于两者的燃烧方式和所用燃料的不同,故柴油机的碳氢排放物有其自身的特点,柴油中的碳氢化合物比汽油中的碳氢化合物沸点要高、分子量大,柴油机的燃烧方式使油束中燃油的热解

氮氧化物的产生机理及脱氮技术原理

一、氮氧化物的产生机理 在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a)热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。 随着反应温度T的升高,其反应速率按指数规律。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。 热力型氮氧化物生成机理(Zeldovich反应式) 在高温下总生成式为 (b)瞬时反应型(快速型) 快速型NOx是1971年Fenimore通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。 由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力次方成正比,与温度的关系不大。 上述两种氮氧化物都不占NOx的主要部分,不是主要来源。 (c)燃料型NOx 由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。 在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。燃料中氮分解为挥发分N和焦炭N的示意图 二、低NOx燃烧技术原理 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。 1)在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取: (1)减少燃烧的过量空气系数; (2)控制燃料与空气的前期混合; (3)提高入炉的局部燃料浓度。 2)热力型NOx:是燃烧时空气中的N2和O2在高温下生成的NOx,产生的主要条件是高的燃烧温度使氮分子游离增加化学活性;然后是高的氧浓度,要减少热力型NOX的生成,可采取:(1)减小燃烧最高温度区域范围; (2)降低锅炉燃烧的峰值温度; (3)降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成: 1、低过量空气燃烧 使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15~20%。但如炉内氧浓度过低(3%以下),会增加化学不完全燃烧热损失,引起飞灰含碳量增加,使锅炉燃烧效率下降。因此,在锅炉运行时,应选取最合理的过量空气系数。 2、空气分级送入炉膛

相关主题
文本预览
相关文档 最新文档