当前位置:文档之家› 数值分析作业题

数值分析作业题

数值分析作业题
数值分析作业题

第一章 误差与算法

1. 误差分为有__模型误差___, _观测误差___, __方法误差____,___舍入误差____, Taylor 展开式近似表达函数产生的误差是_方法误差 .

2. 插值余项是插值多项式的 方法误差。

3. 作为1/4的近似值,有几位有效数字?

00.24990.249910,0m =?=即,

031

|0.2499|0.00010.5100.510,34

m n n ---=

22

3.1428751...,7

=作为圆周率的近似值,误差和误差限分别是多少,有几位有效数字?

213

3.142875 3.14159260.00126450.5100.510---=

* 有效数字与相对误差的关系 4. 利用递推公式计算积分

1

10

,1,2,...,9

n x n I x e dx n -==?, 建立稳定

的数值算法。

1

1

1

1

1

1

1110

11,n 2,...,9

n x n x n x n x n n I x e dx x de

x e

n x e dx nI ------===-=-=???

该算法是不稳定的。因为:

1

1()()...(1)!()n

n n I n I n I εεε-=-==- 111n n I I n n

-=

-, 101

10I =

5. 衡量算法优劣的指标有__时间复杂度,__空间复杂度_.

6. 时间复杂度是指:.算法需耗费时间的度量, 两个n 阶矩阵相乘的乘法次数是 3n ,

则称两个n 阶矩阵相乘这一问题的时间复杂

度为3()O n .

二 代数插值

1.根据下表数据建立不超过二次的Lagrange 和Newton 插值多项式,并写出误差估计式,以及验证插值多项式的唯一性。 x 0 1 4 f(x) 1 9 3 Lagrange:

设0120120,1,4;()1()9()3x x x f x f x f x ======则,, 对应i x 的标准基函数)(x l i 为:

1200102

()()(1)(x 4)1

()(1)(x 4)()()(01)(04)4x x x x x l x x x x x x ----===------

1()...l x =

2()...l x =

因此,所求插值多项式为:

2

20

()()()....i i i P x f x l x ===∑

(3)2()

()(0)(1)(x 4)3!

f R x x x ξ=---

Newton:

构造出插商表:

xi f(xi ) 一 二 三 0 1 1 9 8 4 3 -2 -5/2 所以, 所求插值多项式为:

2001001201()()[,]()[,,]()()

5

18(0)(0)(1)

2

...

P x f x f x x x x f x x x x x x x x x x =+-+--=+----=

插值余项:

2()[0,1,4,](0)(1)(x 4)R x f x x x =---

2. 已知函数f(0)=1,f(1)=3,f(2)=7,则f[0,1]=___2________, f[0,1,2]=____1______

)('],[000x f x x f =

3. 过0,1两节点构造三次Hermite 插值多项式,使得满足插值条件:f (0)=1, f ’(0)=0 , f (1) =2, f ’(1)=1

设0101010,1,()1()2'()0,'()1x x f x f x f x f x ======则,, 写出插商表:

xi f(xi) 一 二 三 0 1 0 1 0 1 a 1 1 1 a 1 0 a-1

因此, 所求插值多项式为:

222000000100011012232()()[,]()[,,]()[,,,]()()

10(0)1(0)1(0)(1)21

P x f x f x x x x f x x x x x f x x x x x x x x x x x x x x =+-+-+--=+-+----=-++插值余项:

22

2()[0,0,1,1,](1)

R x f x x x =-

4. 求f (x)=sin x 在[a,b]区间上的分段线性插值多项式,并写出误差估计式。

将[a,b]区间等分n 份,,,0,1,...,i b a

h x a ih i n n

-==+= 则插值标准基函数是:

1

0101

,()0,i x x x x x l x h

x x +-?≤≤?

=-??>?

1

11

1011,(),,1,...,1

0,[,)(,]i i i

i i i i i i n x x x x x h x x l x x x x i n h

x x x x x --++-+-?≤≤??

-?=≤≤=-?-?∈????

1

11

,()0,n n n n n x x x x x l x h x x ----?≤≤?

=??

10sin()()n

i i i P x l x ==∑

误差:221

14

2)('')()()(Ch h f x P x f x R <===ξ

第三章 数据拟合

1.已知数据如下: X : -2 -1 0 1 2 Y : 0 1 2 1 0 求二次多项式拟合函数

设所求二次多项式拟合函数为:2

2012P a a x a x =++, 则法方程

组为:

55

5

2211

1

02312

3

4221i

i i i i i i i i i i

i

i i i x x a y x x x a x y x x

x a x y ===?? ????? ? ? ? ?= ? ? ? ? ????? ? ??

?

∑∑∑∑∑∑∑∑∑∑∑∑ 即:

012501040101801018342a a a ?????? ??? ?= ??? ? ??? ??????? 解之得: 。。。。

第四章 数值积分与微分

0. 确定系数使得求积公式的代数精度尽可能高 )()0()()(101h f A f A h f A dx x f h

h

++-≈--?

令:2()1,,f x x x =, 求得A1,A0,A-1 , 验证 34(),...f x x x = 1.用梯形、Simpson 公式求?1

0dx e x

1

01011

()(1)22x

e dx e e e ≈+=+?

2.确定Gauss 积分?+=1

01100)()()(x f A x f A dx x f x (1) 先求积分区间[0,1]上带权函数的正交多项式的零点。

令2()f x x bx c =++,由正交多项式性质:

00

()0()0x x dx x x xdx ?=???=??? 解之得:b= c= , f(x)的零点为:x0, x1 (2)再积分系数。

由该积分公式对1次、2次多项式精确成立,令f(x)=1,x

0100011021325x dx A A xxdx A x A x ?==+????==+??

??, 解之得:A0,A1

* 复化梯形公式的推导, 积分余项。

第五章

1.用Doolittle 分解求解???

?

?

??=????? ??????? ??-1116582754312321x x x

(2)2

(1)1(3)3(4)2(5)3(7)1(2)1(8)3(5)5?? ? ? ?--??

100210131L ??

?= ?

?-??

213031005U ?? ?= ?

???

再用前推和回代解出x1,x2,x3

Chapter 6

1.方程组???

?

? ??=????? ??????? ??251113108481044410321x x x

求:

(1)写出Jacobi 迭代公式、Gauss-Seidal 迭代公式。

(1)()()

1

23(1)

2

(1)

3

1(4413)10

k k k k k x x x x x +++?=--+???=??=???

(2)判断两种迭代公式的收敛性 求迭代矩阵的谱半径,判断是否<1

1.求向量和矩阵1,2,∞的范数,

x=(2,-3,-1,7)T

????

?

??-=210121012A 2.求Cond ∞(A ),???

? ??=75107A

1

71057A --??= ?-??

1()||||||||1717289cond A A A -∞∞∞==?=

Chapter 7

1.设X 0≠0,计算a

1

的迭代公式

)2(1k k k ax x x -=+ k=0,1,2.....

证明:

(1)该格式二阶收敛

(2)格式收敛的充要条件是1|1|0<-ax 由题意知,该迭代公式的迭代函数是:

()(2)x x ax φ=-,因为

1

'()22,'()220

''()20x ax a

x a φφφ=-=-==-≠

由定理知,该格式是二阶收敛的。 (2).

1122

2

11

(2)

1(21)1

(1)k k k k k k k e x x ax a a a x ax a ax a

++=-=--=-+=- 因此,

2211

0(1)0(1)0k k k e ax ax a

+→?-→?-→ 设

22

1112

2222001

11(2)(1) (1)

k k

k k k k k k k r ax ax ax ax r

r r ax -----=-=--=-=====-所以,

21000(1)0|1|1k

k e ax ax +→?-→?-<

2.不用除法运算计算c

1,求出迭代公式。

令21

x x c c =

=则,令21()f x c x =-,则3

2

'()f x x =-

由牛顿迭代法:

2

3

13

21

()2'()20.5(3)

k k k k k k k k k k k k c f x x x cx x x x x f x x x cx +--=-=-=+

-=-

因此,迭代格式为:

0210.7

0.5(3),0,1,2,....k k k x x x cx k +==-=

给定ODE ,写出EULER 公式,梯形公式,收敛阶。

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数有几位有效数字?(有效数字的计算) 解:2*103400.0-?=x ,325* 102 1 1021---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0?= π,欲使其近似值* π具有4位有效数字,必需 41*1021 -?≤-ππ,3*3102 11021--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 解:3* 1021-?≤ -a a ,2*102 1 -?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2 123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b b a ab 故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知 δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差限与相对误差 限。(误差限的计算) 解: * 2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 π ππ252.051.02052)5,20(),(2=??+????≤-v r h v

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析课后习题答案

习 题 一 解 答 1.取3.14,3.15, 227,355113 作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016 ()0.51103.14r e x e x x -==≈? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159… 所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311 101022 --?=? 所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085 ()0.27103.15r e x e x x --==≈-? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407… 所以│π-3.15│=0.008407……≤0.05=0.5×10-1 =11211101022 --?=? 所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22 () 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:

数值计算习题(1)

第5章 MATLAB 数值计算 1.选择和填空。 (1)下列变量名中的________是合法变量。 A. char_1 , i , j B. x*y , a.1 C. x\y , a1234 D. end , 1bcx (2)已知x 为1个向量,计算ln(x)的运算为________。 A. ln(x) B. log(x) C. Ln(x) D. log10(x) (3)已知a=0:4,b=1:5,下面的运算表达式出错的为_______。 A. a+b B. a./b C. a ’*b D. a*b 2.用“from:step:to ”方式和linspace 函数分别得到从0到4π,步长为0.4π的变量x1和从0到4π分成10点的变量x2。 3.输入矩阵A =123456789?????????? ,使用全下标方式取出元素“3” ,使用单下标方式取出元素“8”,取出后2行子矩阵块,使用逻辑矩阵方式取出1379?????? 。 4.输入A 为3×3的魔方阵,B为3×3的单位阵,由小矩阵组成3×6的大矩阵C 和6×3的大矩阵D ,将D 矩阵的最后1行构成小矩阵E 。 5.输入字符串变量a 为“hello ”,将a 的每个字符向后移4个,例如“h ”变为“l ”,然后再逆序排放赋给变量b 。 6.求矩阵1234?????? 的转置矩阵、逆矩阵、矩阵的秩、矩阵的行列式值、矩阵的三次幂、矩阵的特征值和特征向量。 7.求解方程组12341241 23412342x 3x x 2x 8x 3x x 6 x x x 8x 77x x 2x 2x 5 -++=??++=??-++=??+-+=? 8.计算数组A =123456789?????????? ,B =111222333??????????的左除、右除以及点乘和点除。 9. 计算函数2()sin(4)-=t f t t 的值,其中t 的范围为0~2π,步长取0.1π;z 为0.707;1()f t 为()0>=f t 的部分,计算1()f t 的值。 作业题:3、5、9(写到作业纸上,待通知交时再交上来) 其余为练习题(大家上机练习一下,课堂上可能会提问)

北航数值分析大作业一

《数值分析B》大作业一 SY1103120 朱舜杰 一.算法设计方案: 1.矩阵A的存储与检索 将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] . 由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是: A的带内元素a ij=C中的元素c i-j+2,j 2.求解λ1,λ501,λs ①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。λmin即为λs; 如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。 ②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求 出对应的按摸最大的特征值λ,max, 如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。 3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。 使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。 4.求解A的(谱范数)条件数cond(A)2和行列式d etA。 ①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和 最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。 二.源程序 #include #include #include #include #include #include #include #define E 1.0e-12 /*定义全局变量相对误差限*/ int max2(int a,int b) /*求两个整型数最大值的子程序*/ { if(a>b) return a; else return b; } int min2(int a,int b) /*求两个整型数最小值的子程序*/ { if(a>b) return b; else return a; } int max3(int a,int b,int c) /*求三整型数最大值的子程序*/ { int t; if(a>b) t=a; else t=b; if(t

数值分析试题

《计算机数学基础(下)》数值分析试题 2000、8 之六(2002、7已用) 一、单项选择题(每小题3分,共15分) 1.数值x *的近似值x =0.1215×10- 2,若满足≤-*x x ( ),则称x 有4位有效数字. (A) 21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 2 1×10-6 2. 设矩阵A =?? ?? ? ?????------52111021210,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( ) (A)??????????04.02.01.002.01.02.00 (B) ???? ? ?? ???14.02 .01.012.01.02.01 (C) ??????????------04.02.01.002.01.02.00 (D) ???? ??????021 102120 3. 已知y =f (x )的均差f (x 0,x 1,x 2)=314,f (x 1,x 2,x 3)=315,f (x 2,x 3,x 4)=15 91,f (x 0,x 2,x 3)=318 , 那么均差f (x 4,x 2,x 3)=( ) (A) 315 (B) 318 (C) 1591 (D) 3 14 4. 已知n =4时牛顿-科茨求积公式的科茨系数,15 2,4516,907)4(2)4(1) 4(0===C C C 那么 )4(3C =( ) 90 39 152********)D (152)C (4516)B (907)A (=--- 5.用简单迭代法求方程的近似根,下列迭代格式不收敛的是( ) (A) e x -x -1=0,[1,1.5],令x k +1=1e -k x (B) x 3-x 2-1=0,[1.4,1.5], 令211 1k k x x +=+ (C) x 3-x 2-1=0,[1.4,1.5], 令32 11k k x x +=+ (D) 4-2x =x ,[1,2], 令)4(log 21x x k -=+ 二、填空题(每小题3分,共15分) 6.sin1有2位有效数字的近似值0.84的相对误差限是 . 7.设矩阵A 是对称正定矩阵,则用 迭代法解线性方程组A X =b ,其迭代解数列一定收敛. 8. 已知f (1)=1,f (2)=3,那么y =f (x )以x =1,2为节点的拉格朗日线性插值多项式为 . 9. 用二次多项式2210)(x a x a a x ++=?,其中a 0, a 1, a 2是待定参数,拟合点(x 1,y 1),(x 2,y 2),…,(x n ,y n ). 那么参数a 0, a 1, a 2是使误差平方和 取最小值的解. 10. 设求积公式 ∑?=≈n k k k b a x f A x x f 0 )(d )(,若对 的多项式积分公式

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

计算机数值方法测试题二

计算机数值方法测试题二 Prepared on 22 November 2020

《计算机数值方法》测试题 一.判断题(1分×10=10分)(对打√,错打×) 1.数值方法是指解数值问题的计算机上可执行的系列计算公式。( ) 2.……计算R=≈是截断误差。( ) 3.不同的矩阵三角分解对应着不同的解法,但在本质上,都是经过A=LU 的分 解计算,再解Ly=b 和Ux=y 的线性方程组。( ) 4.一般不用n 次多项式做插值函数。( ) 5.Runge 现象说明并非插值多项式的次数越高其精度就越高。( ) 6.Romberg 算法是利用加速技术建立的。( ) 7.从复合求积的余项表达式看,计算值的精度与步长无关。( ) 8.可用待定系数法和函数值或公式的线性组合构造新的数值函数求解微分方程。 ( ) 9.局部截断误差e k (h )与y (x k )的计算值y k 有关。( ) 10.对大型线性方程组和非线性方程采用逐次逼近更为合适。( ) 二.填空题(2分×5=10分) 1. 设x ∈[a,b],x ≠x 0,则一阶均差f (x )= 。 2. 矩阵A 的F-范数||A||F = 。 3. Euler 公式为 。 4. 矩阵 A 的条件数Cond (A )∞= 。 5. 设x 为准确值,x *为x 的一个近似值,近似值x *的相对误差E r (x *) = 。 三.选择题(2分×5=10分) 1.设x=Pi ;则x *=有( )位有效数字。 (A) 4位 (B)5位 (C)6位 2.顺序主元a ii ≠0(i=1,2……k )的充要条件是A 的顺序主子式D i (i=1,2……n- 1)( )。 (A) 不全为0 (B) 全不为0 (C) 全为0 3.若存在实数P ≥1和c >0,则迭代为P 阶收敛的条件是( )。 (A) ∞ ?→?k lim p k k e e ||||1+=c (B) O(h p ) (C) O(h p+1) 4.方程x 3-x 2-1=0在x 0=附近有根,则迭代格式x k+1=在x 0=附近( )。 (A) 不收敛 (B) 局部收敛 (C)不确定 5.下面哪个公式的局部截断误差为O (h 3)。( ) (A )Euler 公式 (B )三阶Runge —Kutta 公式 (C )梯形公式 四.计算题(7分×6=42分)

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

2014-2015数值分析考试试题卷

太原科技大学硕士研究生 2014/2015学年第1学期《数值分析》课程试卷 一、填空题(每空4分,共32分) 1、设?????≤≤-++<≤+=2 1,1321 0,)(2 323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组12312312388 92688 x x x x x x x x x -++=-?? -+=??-+-=? 的Jacobi 迭代格式(分量形式)为 ?? ???+--=++-=++=+++)(2)(1)1(3) (3)(1)1(2) (3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为??????????-0812/102/9810。 3、方程03 =-a x 的牛顿法的迭代格式为__3 12 3k k k k x a x x x +-=-__________,其收敛的阶为 2 。 4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-? 解:x 1≈0.937, 31102 1 )(-?≤ x ε 3 31111 10(x )2 (x )0.53410x 0.937 r εε--?=≤=? 5、用列主元高斯消去法解线性方程组 ??? ??=--=++=++2333220221 321321x x x x x x x x 作第1次消元后的第2,3个方程分别为? ? ?=+--=-5.35.125 .15.03232x x x x 6、设???? ??-=3211A ,则=∞)(A Cond __4____.

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

数值计算方法 练习题

数值计算方法练习题 习题一 1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。 (1);(2);(3); (4);(5);(6); (7); 2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字? 3. 设均为第1题所给数据,估计下列各近似数的误差限。 (1);(2);(3) 4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么? (1);(2);(3) (4) 5. 序列满足递推关系式

若(三位有效数字),计算时误差有多大?这个计算过程稳定吗? 6. 求方程的两个根,使其至少具有四位有效数字(要求利用 。 7. 利用等式变换使下列表达式的计算结果比较精确。 (1);(2) (3);(4) 8. 设,求证: (1) (2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。 9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 11.下列公式如何才比较准确? (1) (2) 12.近似数x*=0.0310, 13.计算取 四个选项:

习题二 1. 已知,求的二次值多项式。 2. 令求的一次插值多项式,并估计插值误差。 3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。

4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。 5. 已知,求及的值。 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。 7. 已知函数的如下函数值表,解答下列问题 (1)试列出相应的差分表; (2)分别写出牛顿向前插值公式和牛顿向后插值公式。 8. 下表为概率积分的数据表,试问: (1)时,积分 (2)为何值时,积分?

(参考资料)数值分析课后答案1

1第一章 习题解答 1 设x >0,x 的相对误差限为δ,求 ln x 的误差。 解:设 x 的准确值为x *,则有 ( | x – x * | /|x *| ) ≤ δ 所以 e (ln x )=| ln x – ln x * | =| x – x * | ×| (ln x )’|x=ξ·≈ ( | x – x * | / | x *| ) ≤ δ 另解: e (ln x )=| ln x – ln x * | =| ln (x / x *) | = | ln (( x – x * + x *)/ x *) | = | ln (( x – x * )/ x * + 1) |≤( | x – x * | /|x *| ) ≤ δ 2 设 x = – 2.18 和 y = 2.1200 都是由准确值经四舍五入而得到的近似值。求绝对误差限ε( x ) 和 ε( y ) 。 解:| e (x ) | = |e (– 2.18)|≤ 0.005,| e (y ) | = |e ( 2.1200)|≤ 0.00005,所以 ε( x )=0.005, ε( y ) = 0.00005。 3 下近似值的绝对误差限都是 0.005,问各近似值有几位有效数字 x 1=1.38,x 2= –0.0312,x 3= 0.00086 解:根据有效数字定义,绝对误差限不超过末位数半个单位。由题设知,x 1,x 2, x 3有效数末位数均为小数点后第二位。故x 1具有三位有效数字,x 2具有一位有效数字,x 3具有零位有效数字。 4 已知近似数x 有两位有效数字,试求其相对误差限。 解:| e r (x ) | ≤ 5 × 10– 2 。 5 设 y 0 = 28,按递推公式 y n = y n-1 – 783/ 100 ( n = 1,2,…) 计算到y 100。若取≈78327.982 (五位有效数字),试问,计算 y 100 将有多大的误差? 解:由于初值 y 0 = 28 没有误差,误差是由≈78327.982所引起。记 x = 27.982,783?=x δ。则利用理论准确成立的递推式 y n = y n-1 – 783/ 100 和实际计算中递推式 Y n = Y n-1 – x / 100 (Y 0 = y 0) 两式相减,得 e ( Y n ) = Y n – y n = Y n-1 – y n-1 – ( x – 783)/ 100 所以,有 e ( Y n ) = e ( Y n-1) – δ / 100 利用上式求和 δ?=∑∑=?=100111001)()(n n n n Y e Y e 化简,得 e ( Y 100) = e ( Y 0) – δ = δ 所以,计算y 100 的误差界为 4100105001.05.0)(?×=×=≤δεY 6 求方程 x 2 – 56x + 1 = 0的两个根,问要使它们具有四位有效数字,D=ac b 42 ?至少要取几位有效数字? 如果利用韦达定理,D 又应该取几位有效数字? 解:在方程中,a = 1,b = – 56,c = 1,故D=4562?≈55.96427,取七位有效数字。

相关主题
文本预览
相关文档 最新文档