机械类本科毕业设计外文资料
- 格式:doc
- 大小:349.00 KB
- 文档页数:21
攀枝花学院本科毕业设计(论文)外文译文院(系):机电工程学院专业:机械设计制造及其自动化姓名:**************学号:ZJD02043外语文献翻译摘自: 《制造工程与技术(机加工)》(英文版)《Manufacturing Engineering and Technology—Machining》机械工业出版社2004年3月第1版页P560—564美s. 卡尔帕基安(Serope kalpakjian)s.r 施密德(Steven R.Schmid) 著原文:20.9 MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、Surface finish and integrity of the machined part;2、Tool life obtained;3、Force and power requirements;4、Chip control.Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.20.9.1 Machinability Of SteelsBecause steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-calledfree-machining steels.Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primaryshear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on thetool-side face of chips when machining leaded steels.When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “low carbon,” a condition that improves their corrosion resistance.)However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interfaceand wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. Atroom temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.20.9.2 Machinability of Various Other MetalsAluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.Tantalum is very work-hardening, ductile, and soft. It produces a poor surfacefinish; tool wear is high.Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.Tungsten is brittle, strong, and very abrasive, so its machinability is low,although it greatly improves at elevated temperatures.Zirconium has good machinability. It requires a coolant-type cutting fluid,however, because of the explosion and fire.20.9.3 Machinability of Various MaterialsGraphite is abrasive; it requires hard, abrasion-resistant, sharp tools.Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, andproper support of the workpiece. Tools should be sharp.External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved w ith a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from C ︒80 to C ︒160 (F ︒175to F ︒315), and then cooled slowly and uniformly to room temperature.Thermosetting plastics are brittle and sensitive to thermal gradients duringcutting. Their machinability is generally similar to that of thermoplastics.Because of the fibers present, reinforced plastics are very abrasive and aredifficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.20.9.4 Thermally Assisted MachiningMetals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.SUMMARYMachinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and controlof process variables.译文:20.9 可机加工性一种材料的可机加工性通常以四种因素的方式定义:1、分的表面光洁性和表面完整性。
附录B 翻译原文Electronic design automation Keyword EDA; IC;VHDL language; FPGAPROCESS DESCRIPTIONThree obstacles in particular bedevil ic designers in this dawn of the system on a chip. The first is actually a shortfall-the hardware and software components of the design lack a unifying language. Then, as the number of logic gates per chip passes the million marks, verification of a design's correctness is fast becoming more arduous than doing the design itself. And finally, not only gate counts but chip frequencies also are climbing, so that getting a design to meet its timing requirements without too many design iterations is a receding goal.As is the wont of the electronic design automation (EDA) community, these concerns are being attacked by start-up companies led by a few individuals with big ideas and a little seed money. PARLEZ-VOUS SUPERLOG?A system on a chip comprises both circuitry and the software that runs on it. Such a device may contain an embedded processor core running a software modem. Most often, after the chip'sfunctionality is spelled out, usually on paper, the hardware com- potent is handed off to the circuit designers and the software is given to the pro- grammars, to meet up again at some later date.The part of the chips functionality that will end up as logic gates and transistors is writ- ten in a hardware design language-Virology or VHDL, while the part that will end up as software is most often described in the programming language C or C++. The use of these disparate languages hampers the ability to describe, model, and debug the circuitry of the IC and the software in a coherent fashion.It is time, many in the industry believe, for a new design language that can cope with both hardware and software from the initial design specification right through to final verification. Just such a new language has been developed by Co-Design Automation Inc., San Jose, Calif.Before launching such an ambitious enterprise, cofounders Simon Davidmann, who is also chief operating officer, and Peter Flake ruled out the usefulness of extending an existing language to meet system-on-chip needs. Among the candidates for extension were C, C++, Java, and Verilog.A design language should satisfy three requirements, maintained Davidmann. It should unify the design process. It should make designing more efficient. And it should evolve out of an existing methodology. None of the existing approaches filled the bill. So Davidmann and Flake set about developing new co-design language called Superlog.A natural starting point was a blend of Virology and C since "from an algorithm point of view, a lot of Virology is built on C," explained Davidmann. Then they spiced the blend with bits and pieces of VHDL and Java. From Virology and VHDL, Superlog has acquired the ability to describe hardware aspects of the design, such as sequential, combinatorial, and multivalued logic. From C and Java it inherits dynamic processes and other software constructs. Even functions like interfaces, protocols, and state machines, which till now have often been done on paper, can be described in the new language. To support legacy code written in a hardware description or programming language, Superlog allows both Virology and C modules to be imported and used directly.It is important for the language to be in the public domain, according to Davidmann. The company has already begun to work with various standards organizations to this end.Not to be overlooked is the need for a suite of design tools based on the language. Recently Co-Design identified a number of electronic design automation companies, among them Magma Design Automation, Sente, and Viewlogic, that will develop tools based on Superlog. Co-Design will also develop products for the front end of the design process.ARACE TO THE FINISHNot everyone is convinced that a new language is needed. SystemC, a modeling platform that extends the capabilities andadvantages of C/C++ into the hardware domain has been proposed as an alternative. Such large and powerful companies as Synopsys, Coware, Lucent Technologies, and Texas Instruments have banded together under the Open SystemC Initiative to promote their version of the next-generation design platform. To get SystemC off to a running start, the group offers a modeling platform for download off their Web site free of charge. Their hope is also to make their platform the de facto standard.The rationale for developing SystemC was straightforward, according to Joachim Kunkel, general manager and vice president of the System Level Design Business Unit at Synopsys. It was to have a standard language in which semiconductor vendors, IP vendors, and system houses could exchange system-level IP and executable specifications, and the electronic design automation industry could develop interoperable tools.Supporters of SystemC believe that the would-be standard has to be based on C++ because it allows capabilities to be added to it without leaving the language standard, Kunkel told JEEE Spectrum. Most software developers use C++ and many systems developers use C++ already to describe their systems at a behavioral level. But till now it has not been possible to describe hardware using the language.The developers of SystemC have solved that problem by defining new C++ class libraries and a simulation kcrne1 that bring to C++ all of the capabilities needed to describe hardware. "These new classes implement new functionality," explained Kunkel. "Forexample, bit vectors-strings of zeros and ones-and all the operations that you would do on them." The SystemC developers also provided a class of signed and unsigned numbers, the notion of a signal, and other concepts needed to model hardware.There are still some holes, however. For example, it is still not possible to synthesize a gate-level netlist from a SystcmC description. Rut synthesis tools for SysteniC would he a natural result of broad acceptance of the language within the user community, according to Kunkel.It remains to be seen whether SystemC or Superlog wins out in the end. Least desirable would be an outcome like the impasse between Virology and VHDL, in which both prevailed, forcing electronic design automation vendors to support both platforms in a wasteful duplication of effort.THE VERIFICATION NIGHTMAREIf today's complex ICs are tough to design, they are very much tougher to verify. A variety of tools are available, each with its pros and cons. Emulation translates a design into field-programmable gate arrays (FPGAs). Presumably, if the array works as planned, the final chip will also. The emulation platform also enables designers to try 0111 the software that will run on the ASIC.The approach, though, is slow. Typical emulation systems run at a few megahertz. "At roughly one million cycles per second, designers arc not getting cnough performance out of their emulation systems toverify or understand some of the things that are going on with video generation or high bandwidth communications," said John Gallagher, director of marketing for Synplicity Inc., Sunnyvale, Calif. They must process a large number of operations to ensure their functionality is correct, he added.The reason that emulation systems are so slow, according to Gallagher, is that they route the design through many FPGAs and many boards. Simplicity solution is to use a few high-end FPGAs having over one million gates running at 100 MHz. Typically, a million FPGA gates translates into 200 000 ASIC gates. Putting nine such chips on a board in a three-by-three array allows designers to represent up to 1.8million ASlC gates. And routing delays are greatly curtailed because each chip is no more than two hops away from any other chip in the array.The company% product, called Certify, is not intended to compete with reconfigurable emulation systems, which are very effective at debugging designs during the internal design process, explained Gallagher. Rather, it is a true prototype of the system, running at speeds that may approach the real thing.Certify handles three fundamental operations, said Gallagher. The first is partitioning, or breakings up the ASIC register transfer level (RTL) code into different FPGAs. It does synthesis, turning the RTL code into ASIC gates equivalent to the final ASIC gates. Then it does timing analysis. "We haven't just linked togeth er the different tools,” he explained. 'We have taka our synthesis algorithms, between thepartitioning capabilities, and laid the timing analysis across that."In addition to emulation, two complementary approaches to design verification are simulation and model checking, a type of formal verification. Simulation applies vectors to a software model of a design and checks to sec if the output has the correct value. The approach is straightforward, but is becoming increasingly tortuous as designs become more complicated and the number of possible test vectors mushrooms. So recently, electronic design automation companies have been turning to model checking to prove that designs are correctly done.The sticking point with model checking is its great difficulty of use. "It is not for most engineers," said Simon Napper, chief operating officer OF Innol-ogic Systems Inc., San Jose, Calif. "The usage model is very difficult-it checks properties. But the designer isn't familiar with what P property is-he is used to simulation and static timing."As a remedy, InnoLogic developed a symbolic simulation tool, which blends simulation and formal verification. It is a Virology simulator except instead of sending Is and Os through the logic, the too1 propagates symbol or symbols plus binary values.The user gains improved functional coverage dong with much faster verification.To illustrate, to completely verify a fourbit adder would require 256 binary vectors-and take 256 simulation cycles. With symbols, it takes just one cycle.Just as with formal verification, there are limits to the complexity ofthe circuits that symbolic simulation can completely verily. Both have trouble with multipliers, for example. "A model checker will grind and grind and never produce a result," explained Napper. "But in our tool we take some symbol inputs and switch them to binary values, that reduces the job from a 32- to a 16-bit multiplier. And we report to the user that we were able to verify the upper the operands."InnoLogic has announced two Versifies of symbolic simulation. ESI'-XV verifies designs written in Virology. EXP-CV is meant for custom designs and memory blocks.THE TIME IS RIGHTThough the design of ICs with semiconductor geometries below 0.25 pm face challenges throughout development, some of the biggest hurdles occur during physical design, when the gates are placed on the chip and the interconnects are routed between them Problems occur here for a number of reasons. First, the capacitance, resistance, and inductance of the interconnects cannot be ignored, as they were in older, larger technologies. Crosstalk between interconnects; now closer together, must also be controlled. Several iterations through synthesis and placement may be necessary to achieve the required timing, if it can be accomplished at all.The solution proposed by Monterey Design Systems Inc., Sunnyvale, Calif., is called global design technology. This proprietary computing approach simultaneously explores, analyzes, and optimizes all aspects of the physical design. The tint productcontaining the technology is Dolphin, which was announced in April of last year. Dolphin simultaneously places and router each gate and flip-flop using the results or the analysis and maintaining all specified constraints. (Most place- and-route tools sequentially analyze the layout for each type of constraint.) It performs timing and logic optimization for every placement move.Timing closure is top priority for developers of the Blast Fusion physical design system from Magma Design Automations., Cupertino, Calif. Its methodology, called FixedTiming, brings timing within specified limits without iterating between synthesis and physical design .Basically, he approach fixes timing first, then adjusts cell sizes to achieve the timing requirements. Varying the cell sizes always he tool to supply the right drive strength or the load.EDA ON THE WEBAs established electronic design automation companies try to sort out how to utilize the internet in their product Inks, smaller, more agile companies and start-ups arc coining up with innovative products and services, mainly in the areas or design management. A pioneer in this area is Synchronicity Inc., a virtual company headquartered in Marlboro, Mass. Synchronicity is now being joined by other companies seeking to use the internet to advantage.The concern of , Milpitas, Calif a provider of Web-based engineering tools 'for; design automation, is the extraction of useful information about ICs, chip sets, and boards from suppliers'Web sites.The issue, according to Michael Bitzko, president of the company, is that designers of products based on there components need to be able to obtain information about them quickly and route it to their engineering, manufacturing, and procurement departments as quickly as possible. "In a nutshell,” said Bitzko, "people used to take weeks to get data sheets. Then along cane the Web and PDF-formatted documents. But in order to create, ray, schematic symbols and footprints fur printed circuit boards, information from PDF documents must often be reentered-a costly and time-consuming process when time to infarct is a concern.'s products are based on the electronic component interchange (ECIX) standard developed by EDA standards organization SI, Austin, Texas, and on the Extensible Markup Language (XML), that allows the creation or Web-bask documents having (more functionality than with the conventional Hypertext Markup Language (H TM1.). The company’s products include QuickData Server, a parametric search engine for electronic component information, and Quickdata Miner, which transform information contained in PDF data sheets into a usable form.The mission or Genedax Inc., Portland, Ore. is to use the Web to increase designed ability to create and manage large, complex designs, to iron design ICLISC, and to improve access to intellectual property. The company plans to announce a product in the first quarter or the year. John Ott, vice president of sales and marketing,told Sprctmni that its products will be based on the operating systems and browsers developed by Microsott Corp., Redmond, Wash. Also, the company supports a collaborative Web site, that shows what the technology can do. The site includes a search engine based on AltaVista technology that searches the Web sites of companies related to design auto illation. Ott elaborated, "We also have a free Internet locator server that lets people use Netmeeting a Microsoft product for remote sharing of computer desktops] and a Web board where you can post questions and get answers."Other aspects of electronic design on the Webs have been slower in taking off than design and information management. But Transim Corp also bared in Portland, Ore, has taken a big step toward Web-based design tools. Its product, Websim, is an interface between a Web browser and Simples, the company’s power-supply simulator. Websim allows designers, using Simplis, to simulate designs over the Internet. So rather than poring over data sheets and looking at ranges of values, designers can see actual waveforms, explained Ncls Gahbert, Transim president and chief executive officer.Transim is working with suppliers to set up component models so that designers can log on to the supplies Web rite, select parts for their power supply, enter setup or test conditions, and run the simulation on line. Users need nothing more than a Web browser. The simulation is run on Transim's "ranch" of six strivers from Sun Microsystems.The company has teamed up with National Semiconductor Corp, Santa Clara, Calif., to provide this service for National's customers. The cost is on a per-use basis and is a minimal US $10.附录C 翻译中文电子设计自动化关键字电子设计自动化;集成电路;VHDL语言;现场可编程门阵列在这个片上系统开始出现的时候,有三个问题一直困扰着集成电路设计者。
外文原文Options for micro-holemakingAs in the macroscale-machining world, holemaking is one of the most— if not the most—frequently performed operations for micromachining. Many options exist for how those holes are created. Each has its advantages and limitations, depending on the required hole diameter and depth, workpiece material and equipment requirements. This article covers holemaking with through-coolant drills and those without coolant holes, plunge milling, microdrilling using sinker EDMs and laser drilling.Helpful HolesGetting coolant to the drill tip while the tool is cutting helps reduce the amount of heat at the tool/workpiece interface and evacuate chips regardless of hole diameter. Butthrough-coolant capability is especially helpful when deep-hole microdrilling because the tools are delicate and prone to failure when experiencing recutting of chips, chip packing and too much exposure to carbide’s worst enemy—heat.When applying flood coolant, the drill itself blocks access to the cutting action. “Somewhere about 3 to 5 diameters deep, the coolant has trouble getting down to the tip,” said Jeff Davis, vice president of engineering for Harvey Tool Co., Rowley, Mass. “It becomes wise to use a coolant-fed drill at that point.”In addition, flood coolant can cause more harm than good when microholemaking. “The pressure from the flood coolant can sometimes snap fragile drills as they enter the part,” Davis said.The toolmaker offers a line of through-coolant drills with diameters from 0.039" to 0.125" that are able to produce holes up to 12 diameters deep, as well as microdrills without coolant holes from 0.002" to 0.020".Having through-coolant capacity isn’t enough, though. Coolant needs to flow at a rate that enables it to clear the chips out of the hole. Davis recommends, at a minimum, 600 to 800 psi of coolant pressure. “It works much better if you have higher pressure than that,” he added.To prevent those tiny coolant holes from becoming clogged with debris, Davis also recommends a 5μm or finer coolant filter.Another recommendation is to machine a pilot, or guide, hole to prevent the tool from wandering on top of the workpiece and aid in producing a straight hole. When applying a pilot drill, it’s important to select one with an included angle on its point that’s equal t o or larger than the included angle on the through-coolant drill that follows. The pilot drill’sdiameter should also be slightly larger. For example, if the pilot drill has a 120° included angle and a smaller diameter than a through-coolant drill with a 140° included angle, “then you’re catching the coolant-fed drill’s corners and knocking those corners off,” Davis said, which damages the drill.Although not mandatory, pecking is a good practice when microdrilling deep holes. Davis suggests a pecking cycle that is 30 to 50 percent of the diameter per peck depth, depending on the workpiece material. This clears the chips, preventing them from packing in the flute valleys.Lubricious ChillTo further aid chip evacuation, Davis recommends applying an oil-based metalworking fluid instead of a waterbased coolant because oil provides greater lubricity. But if a shop prefers using coolant, the fluid should include EP (extreme pressure) additives to increase lubricity and minimize foaming. “If you’ve got a lot of foam,” Davis noted, “the chips aren’t being pulled out the way they are supposed to be.”He added that another way to enhance a tool’s slipperiness while extending its life is with a coating, such as titanium aluminum nitride. TiAlN has a high hardness and is an effective coating for reducing heat’s impact when drilling difficult-to-machine materials, like stainless steel.David Burton, general manager of Performance Micro Tool, Janesville, Wis., disagrees with the idea of coating microtools on the smaller end of the spectrum. “Coatings on tools below 0.020" typically have a negative effect on every machining aspect, from the quality of the initial cut to tool life,” he said. That’s because coatings are not thin enough and negatively alter the rake and relief angles when applied to tiny tools.However, work continues on the development of thinner coatings, and Burton indicated that Performance Micro Tool, which produces microendmills and microrouters and resells microdrills, is working on a project with others to create a submicron-thickness coating. “We’re probably 6 months to1 year from testing it in the market,” Burton said.The microdrills Performance offers are basically circuit-board drills, which are also effective for cutting metal. All the tools are without through-coolant capability. “I had a customer drill a 0.004"-dia. hole in stainless steel, and he was amazed he could do it with a circuit-board drill,” Burton noted, adding that pecking and running at a high spindle speed increase the d rill’s effectiveness.The requirements for how fast microtools should rotate depend on the type of CNC machines a shop uses and the tool diameter, with higher speeds needed as the diameter decreases. (Note: The equation for cutting speed is sfm = tool diameter × 0.26 × spindlespeed.)Although relatively low, 5,000 rpm has been used successfully by Burton’s customers. “We recommend that our customers find the highest rpm at the lowest possible vibration—the sweet spot,” he said.In addition to minimizing vibration, a constant and adequate chip load is required to penetrate the workpiece while exerting low cutting forces and to allow the rake to remove the appropriate amount of material. If the drill takes too light of a chip load, the rake face wears quickly, becoming negative, and tool life suffers. This approach is often tempting when drilling with delicate tools.“If the customer decides he wants to baby the tool, he takes a lighter chip load,” Burton said, “and, typically, the cutting edge wears much quicker and creates a radius where the land of that radius is wider than the chip being cut. He ends up using it as a grinding tool, trying to bump material away.” For tools larger than 0.001", Burton considers a chip load under0.0001" to be “babying.” If the drill doesn’t snap, premature wear can result in abysmal tool life.Too much runout can also be destructive, but how much is debatable. Burton pointed out that Performance purposely designed a machine to have 0.0003" TIR to conduct in-house, worst-case milling scenarios, adding that the company is still able to mill a 0.004"-wide slot “day in and day out.”He added: “You would think with 0.0003" runout and a chip load a third that, say,0.0001" to 0.00015", the tool would break immediately because one flute would be taking the entire load and then the back end of the flute would be rubbing.When drilling, he indicated that up to 0.0003" TIR should be acceptable because once the drill is inside the hole, the cutting edges on the end of the drill continue cutting while the noncutting lands on the OD guide the tool in the same direction. Minimizing run out becomes more critical as the depth-to-diameter ratio increases. This is because the flutes are not able to absorb as much deflection as they become more engaged in the workpiece. Ultimately, too much runout causes the tool shank to orbit around the tool’s center while the tool tip is held steady, creating a stress point where the tool will eventually break.Taking a PlungeAlthough standard microdrills aren’t generally available below 0.002", microendmills that can be used to “plunge” a hole are. “When people want to drill smaller than that, they use our endmills and are pretty successful,” Burton said. However, the holes can’t be very deep because the tools don’t have long aspect, or depth-to-diameter, ratios. Therefore, a 0.001"-dia. endmill might be able to only make a hole up to 0.020" deep whereas a drill of the same sizecan go deeper because it’s designed to place the load on its tip when drilling. This transfers the pressure into the shank, which absorbs it.Performance offers endmills as small as 5 microns (0.0002") but isn’t keen on increasing that line’s sales. “When people try to buy them, I very seriously try to talk them out of it because we don’t like making them,” Burton said. Part of the problem with tools that small is the carbide grains not only need to be submicron in size but the size also needs to be consistent, in part because such a tool is comprised of fewer grains. “The 5-micron endmill probably has 10 grains holding the core together,” Burton noted.He added that he has seen carbide powder containing 0.2-micron grains, which is about half the size of what’s commercially available, but it also contain ed grains measuring 0.5 and 0.6 microns. “It just doesn’t help to have small grains if they’re not uniform.”MicrovaporizationElectrical discharge machining using a sinker EDM is another micro-holemaking option. Unlike , which create small holes for threading wire through the workpiece when wire EDMing, EDMs for producing microholes are considerably more sophisticated, accurate and, of course, expensive.For producing deep microholes, a tube is applied as the electrode. For EDMing smaller but shallower holes, a solid electrode wire, or rod, is needed. “We try to use tubes as much as possible,” said Jeff Kiszonas, EDM product mana ger for Makino Inc., Auburn Hills, Mich. “But at some point, nobody can make a tube below a certain diameter.” He added that some suppliers offer tubes down to 0.003" in diameter for making holes as small as 0.0038". The tube’s flushing hole enables creati ng a hole with a high depth-to-diameter ratio and helps to evacuate debris from the bottom of the hole during machining.One such sinker EDM for producing holes as small as 0.00044" (11μm) is Makino’s Edge2 sinker EDM with fine-hole option. In Japan, the machine tool builder recently produced eight such holes in 2 minutes and 40 seconds through 0.0010"-thick tungsten carbide at the hole locations. The electrode was a silver-tungsten rod 0.00020" smaller than the hole being produced, to account for spark activity in the gap.When producing holes of that size, the rod, while rotating, is dressed with a charged EDM wire. The fine-hole option includes a W-axis attachment, which holds a die that guides the electrode, as well as a middle guide that prevents the electrode from bending or wobbling as it spins. With the option, the machine is appropriate for drilling hole diameters less than 0.005".Another sinker EDM for micro-holemaking is the Mitsubishi VA10 with a fine-holejig attachment to chuck and guide the fine wire applied to erode the material. “It’s a standardEDM, but with that attachment fixed to the machine, we can do microhole drilling,” said Dennis Powderly, sinker EDM product manager for MC Machinery Systems Inc., Wood Dale, Ill. He added that the EDM is also able to create holes down to 0.0004" using a wire that rotates at up to 2,000 rpm.Turn to TungstenEDMing is typically a slow process, and that holds true when it is used for microdrilling. “It’s very slow, and the finer the details, the slo wer it is,” said , president and owner of Optimation Inc. The Midvale, Utah, company builds Profile 24 Piezo EDMs for micromachining and also performs microEDMing on a contract-machining basis.Optimation produces tungsten electrodes using a reverse-polarity process and machines and ring-laps them to as small as 10μm in diameter with 0.000020" roundness. Applying a10μm-dia. electrode produces a hole about 10.5μm to 11μm in diameter, and blind-holes are possible with the company’s EDM. The workpiece thickness for the smallest holes is up to 0.002", and the thickness can be up to 0.04" for 50μm holes.After working with lasers and then with a former EDM builder to find a better way to produce precise microholes, Jorgensen decided the best approach was DIY. “We literally started with a clean sheet of paper and did all the electronics, all the software and the whole machine from scratch,” he said. Including the software, the machine costs in the neighborhood of $180,000 to $200,000.Much of the company’s cont ract work, which is provided at a shop rate of $100 per hour, involves microEDMing exotic metals, such as gold and platinum for X-ray apertures, stainless steel for optical applications and tantalum and tungsten for the electron-beam industry. Jorgensen said the process is also appropriate for EDMing partially electrically conductive materials, such as PCD.“The customer normally doesn’t care too much about the cost,” he said. “We’ve done parts where there’s $20,000 [in time and material] involved, and you can put the whole job underneath a fingernail. We do everything under a microscope.”Light CuttingBesides carbide and tungsten, light is an appropriate “tool material” formicro-holemaking. Although most laser drilling is performed in the infrared spectrum, the SuperPulse technology from The Ex One Co., Irwin, Pa., uses a green laser beam, said Randy G ilmore, the company’s director of laser technologies. Unlike the femtosecond variety, Super- Pulse is a nanosecond laser, and its green light operates at the 532-nanometer wavelength. The technology provides laser pulses of 4 to 5 nanoseconds in duration, and those pulses are sent in pairs with a delay of 50 to 100 nanoseconds between individual pulses. The benefits of this approach are twofold. “It greatly enhances material removal compared to other nanosecond lasers,” Gilmore said, “and greatly reduces th e amount of thermal damage。
Introduciton of MachiningHave a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majority of the machining is not only supporting the workpiece also supporting tools and equipment to complete. Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and prefer machining.Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on the basis of. Many parts, if any other means of production belonging to the large-scale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing.Primary Cutting Parameters:Cutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool.Cutting Tools must be of a suitable material to manufacture, it must be strong, tough, hard and wear-resistant. Tool geometry -- to the tip plane and cutter angle characteristics -- for each cutting process must be correct.Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts -- with knives. Generally, the more hard work piece material, the lower the rate.Progressive Tool to speed is cut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to.Depth of penetration of a cutting tool -- to inches dollars -- is the tool to the work piece distance. Rotary cutting it to the chip or equal to the width of the linear cutting chipthickness. Rough than finishing, deeper penetration of a cutting tool depth.Wears of Cutting ToolWe already have been processed and the rattle of the countless cracks edge tool, we learn that tool wear are basically three forms : flank wear, the former flank wear and V-Notch wear. Flank wear occurred in both the main blade occurred vice blade. On the main blade, shoulder removed because most metal chip mandate, which resulted in an increase cutting force and cutting no longer exist. Vice-bladed on, it is determined work piece dimensions and surface finish. Flank wear size of the possible failure of the product and surface finish are also inferior. In most actual cutting conditions, as the principal in the former first deputy flank before flank wear, wear arrival enough, Tool will be effective, the results are made unqualified parts.As Tool stress on the surface uneven, chip and flank before sliding contact zone between stress, in sliding contact the start of the largest, and in contact with the tail of zero, so abrasive wear in the region occurred. This is because the card cutting edge than the nearby settlements near the more serious wear, and bladed chip due to the vicinity of the former flank and lost contact wear lighter. This results from a certain distance from the cutting edge of the surface formed before the knife point Ma pit, which is usually considered before wear. Under normal circumstances, this is wear cross-sectional shape of an arc. In many instances and for the actual cutting conditions, the former flank wear compared to flank wear light, Therefore flank wear more generally as a tool failure of scale signs. But because many authors have said in the cutting speed of the increase, Maeto surface temperature than the knife surface temperatures have risen faster. but because any form of wear rate is essentially temperature changes by the significant impact. Therefore, the former usually wear in high-speed cutting happen.The main tool flank wear the tail is not processed with the work piece surface in contact, Therefore flank wear than wear along with the ends more visible, which is the most common. This is because the local effect, which is as rough on the surface has hardened layer, This effect is by cutting in front of the hardening of the work piece. Not just cutting, and as oxidation skin, the blade local high temperature will also cause this effect. This partial wear normally referred to as pit sexual wear, but occasionally it is very serious. Despite the emergence of the pits on the Cutting Tool nature is not meaningful impact, but often pits gradually become darker If cutting continued the case, then there cutter fracture crisis.If any form of sexual allowed to wear, eventually wear rate increase obviously will be a tool to destroy failure destruction, that will no longer tool for cutting, cause the work piece scrapped, it is good, can cause serious damage machine. For various carbide cutting tools and for the various types of wear, in the event of a serious lapse, on the tool that has reached the end of the life cycle. But for various high-speed steel cutting tools and wear belonging to the non-uniformity of wear, has been found : When the wear and even to allow for a serious lapse, the most meaningful is that the tool can remill use, of course, In practice, cutting the time to use than the short time lapse. Several phenomena are one tool serious lapse began features : the most common is the sudden increase cutting force, appeared on the work piece burning ring patterns and an increase in noise.The Effect of Changes in Cutting Parameters on Cutting TemperaturesIn metal cutting operations heat is generated in the primary and secondary deformation zones and this results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip.Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and cutting temperatures will reduce. When considering increase in undeformed chip thickness and cutting speed the situation is more comples. changes in cutting temperature tend to be small. Increase in cutting speed, however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip in primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate, it is appropriate to indicate how cutting temperatures can be assessed from cutting data.The most direct and accurate method for measuring temperatures in high-speed-steel cutting tools is that of Wright&Trent which also yields detailed information on temperature distributions in high-speed-steel tools which relates microstructural changes to thermal history.Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructural changes srising from over tempering of the tempered martensitic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed-steel single point turning tools and twist drills.Automatic Fixture Design:Assembly equipment used in the traditional synchronous fixture put parts of the fixture mobile center, to ensure that components from transmission from the plane or equipment plate placed after removal has been scheduled for position. However, in certain applications, mobile mandatory parts of the center line, it may cause parts or equipment damage. When parts vulnerability and may lead to a small vibration abandoned, or when their location is by machine spindle or specific to die, Tolerance again or when the request is a sophisticated, it would rather let the fixture to adapt to the location of parts, and not the contrary. Fixture because of the interaction and synchro nization devices is independent,The synchronous device can use sophisticated equipment to replace the slip without affecting the fixture force. Fixture specification range from 0.2 inches itinerary, 5 pounds clamping force of the six-inch trip, 400-inch clamping force.The characteristics of modern production is becoming smaller and smaller quantities and product specifications biggest changes. Therefore, in the final stages of production, assembly of production, quantity and product design changes appear to be particularly vulnerable. This situation is forcing many companies to make greater efforts to rationalize the extensive reform and the previously mentioned case of assembly automation. Despite flexible fixture behind the rapid development of flexible transport and handling devices, such as backward in the development of industrial robots, it is still expected to increase the flexibility fixture. In fact the important fixture devices -- the production of the devices to strengthen investment on the fixture so that more flexibility in economic support holders. According to their flexibility and fixture can be divided into : special fixture, the fixture combinations, the standard fixture, high flexible fixture. Flexible fixture on different parts of their high adaptability and the few low-cost replacement for the characteristic.Forms can transform the structure of the flexible fixture can be installed with the change of structure components (such as needle cheek plate, Multi-chip components and flake cheek plate), a non-standard work piece gripper or clamping elements (for example : commencement standard with a clamping fixture and mobile components fixture supporting documents), and working characteristics to determine the work piece fixture in the required position, then need to select some stability flat combination, These constitute a stable plane was fixed in the work piece fixture set position on the clamp-profile structure, all balanced and torque, it has also ensured that the work features close to the work piece. Finally, it must be calculated and adjusted, assembly or disassembly be standard fixture components required for the position, so that the work piece firmly by clamping fixture in China. In accordance with this procedure, the outline fixture structure and equipped with the planning and recording process can be automated control. Structural modeling task is to produce some stable flat combination, Thus, these plane of the work pieces clamping force and will fixture stability. According to usual practice, this task can be human-machine dialogue that is almost completely automated way to completion. A man-machine dialogue that is automated fixture structure modeling to determine the merits can be conducted in an organized and planning fixture design, reduce the amount of the design, shortening the study period and better distribution of work conditions. In short, can be successfully achieved significantly improve fixture efficiency and effectiveness Fully prepared to structure programs and the number of material circumstances, the completion of the first successful assembly can save up to 60% of the time.Therefore fixture process modeling agencies is the purpose of the program have appropriate documents.Fixture design as a complex fixture is not required, only requires a simple positioning, clamping mechanism on it. The design principle is also the same with the universal milling machine fixture, combined with the characteristics of CNC milling, here only offer a fewbasic requirements: 1) to maintain part orientation and installation of the machine coordinate system and the way the consistency of the code coordinate system, the fixture should be able to guarantee installed on the machine to achieve directional(1) the basic requirements of the fixtureIn fact when the CNC milling - as the fixture does not require very complicated and only requires simple positioning, clamping mechanism on it. The design principle is also the same with the universal milling machine fixture, combined with the characteristics of CNC milling, here only offer a few basic requirements:1) to maintain part orientation and the installation process the machine coordinate system and the consistency of the code coordinate system, fixtures should be directed to ensure realization of the machine installation, also asked to coordinate the positioning surface and the machine parts to maintain a certain coordinate between the size of contact.2) To maintain all parts in this process needs to be done face to be processed fully exposed, clamps open to do as much as possible, so clamping components and machined surface should be maintained between a safe distance, and to ask clamping mechanical components can be low is low, to prevent the fixture with the milling machine spindle sleeve or pocket, cutting in the process of collision.3) The fixture is better rigidity and stability. Try not to use change in the process design of the clamping point, when the change in the process have to clamping point can not, be especially careful not to damage the replacement of the clamping point of the fixture or the workpiece location accuracy.(2) Common fixture typesCNC milling fixture less commonly used are the following:1) Universal modular fixture for small batch production or development time, the small parts on the CNC milling machine milling.2) special milling fixture is designed specifically for a particular piece or a similar number of fixture design and manufacture, production or development in general can not be used when you have to.3) multi-station fixture clamping multiple workpieces simultaneously can reduce the number of tool changes, but also easy side processing, side loading and unloading the workpiece, is conducive to shorten the preparation time, increase productivity, more suitable for the production.4) pneumatic or hydraulic fixtures for the production of large quantities, the use of other fixtures and particularly of work, labor-intensive parts. Can reduce labor intensity and increase work productivity, but such fixture structure is more complex and often higher cost, and manufacturing cycle longer.5) The vacuum fixture for positioning a large surface can be sealed or have a larger area of the workpiece. Some CNC milling machine (milling machine, such as siding) with a common vacuum platform itself, the installation part, the rules on the shape of a rectangular blank, directly with a special rubber strip (a certain size requirements of hollow or solid circular cross-section) embedded in fixture sealed tank, and then put a blank, start the pump, you can rough clamping. Of irregularly shaped rough, with the rubber is not used to be putty in their surrounding cast (used rubber cement) seals, this is not onlycumbersome and seizing a long time and low efficiency. To overcome this difficulty, you can use a special vacuum platform transition, superimposed on the general vacuum of its platform.In addition to the several fixtures, the CNC milling process is also often used vise, dividing head and jaw chuck, and other common fixture.(3) the principles of CNC milling fixture selectionIn the selection of fixtures, it is usually necessary to consider the production volume, production efficiency, quality assurance and economy, etc., when used with reference to the following principles:1) In the production of small or developing, should be widely used universal modular fixture, can not be solved only in the combination of workpiece clamping fixture could only give up;2) small batch or batch production of special fixtures can be considered, but should be as simple as possible;3) in the production of large quantities may consider the multi-station fixture and air; hydraulic fixture.。
本科毕业设计(本科毕业论文)外文文献及译文文献、资料题目:High-rise Tower Crane designed文献、资料来源:期刊(著作、网络等)文献、资料发表(出版)日期:2000.3.25院(部):机电工程学院专业:机电工程及自动化High-rise Tower Crane designed under Turbulent Winds At present, construction of tower cranes is an important transport operations lifting equipment, tower crane accident the people's livelihood, major hazards, and is currently a large number of tower crane drivers although there are job permits, due to the lack of means to monitor and review the actual work of a serious violation . Strengthen the inspection and assessment is very important. Tower crane tipping the cause of the accident can be divided into two aspects: on the one hand, as a result of the management of tower cranes in place, illegal operation, illegal overloading inclined cable-stayed suspended widespread phenomenon; Second, because of the tower crane safety can not be found in time For example,Took place in the tower crane foundation tilt, micro-cracks appear critical weld, bolts loosening the case of failure to make timely inspection, maintenance, resulting in the continued use of tower cranes in the process of further deterioration of the potential defect, eventually leading to the tower crane tipping. The current limit of tower crane and the black box and can not be found to connect slewing tower and high-strength bolts loosening tightened after the phenomenon is not timely, not tower verticality of the axis line of the lateral-line real-time measurement, do not have to fight the anti-rotation vehicles, lifting bodies plummeted Meng Fang, hook hoists inclined cable is a timely reminder and record of the function, the wind can not be contained in the state of suspended operation to prevent tipping on the necessary tips on site there is a general phenomenon of the overloaded overturning of the whole security risks can not be accurately given a reminder and so on, all of which the lease on the tower crane, use, management problems,Through the use of tower crane anti-tipping monitor to be resolved. Tower crane anti-tipping Monitor is a new high-tech security monitoring equipment, and its principle for the use of machine vision technology and image processing technology to achieve the measurement of the tilt tower, tower crane on the work of state or non-working state of a variety of reasons angle of the tower caused by the critical state to achieve the alarm, prompt drivers to stop illegal operation, a computer chip at the same time on the work of the state of tower crane be recorded. Tower crane at least 1 day overload condition occurs, a maximum number of days to reach 23 overloading, the driver to operate the process of playing the anti-car, stop hanging urgency, such as cable-stayed suspended oblique phenomenon often, after verification and education, to avoid the possible occurrence of fatal accidents. Wind conditions in the anti-tipping is particularly important, tower cranes sometimes connected with the pin hole and pin do not meet design requirements, to connect high-strength bolts are not loose in time after the tightening of the phenomenon, through timely maintenance in time after the tightening of the phenomenon, through timely maintenance and remedial measures to ensure that the safe and reliable construction progress. Reduced lateral line tower vertical axis measuring the number of degrees,Observation tower angle driver to go to work and organize the data once a month to ensure that the lateral body axis vertical line to meet the requirements, do not have to every time and professionals must be completed by Theodolite tower vertical axismeasuring the lateral line, simplified the management link. Data logging function to ensure that responsibility for the accident that the scientific nature to improve the management of data records for the tower crane tower crane life prediction and diagnosis of steel structures intact state data provides a basis for scientific management and proactive prevention of possible accidents, the most important thing is, if the joint use of the black box can be easily and realistically meet the current provisions of the country's related industries. Tower crane safety management at the scene of great importance occurred in the construction process should be to repair damaged steel, usually have to do a good job in the steel tower crane maintenance work and found that damage to steel structures, we must rule out potential causes of accidents, to ensure safety in production carried out smoothly. Tower crane in the building construction has become essential to the construction of mechanical equipment, tower crane at the construction site in the management of safety in production is extremely important. A long time, people in the maintenance of tower crane, only to drive attention to the conservation and electrical equipment at the expense of inspection and repair of steel structures, to bring all kinds of construction accidents.Conclusion: The tower crane anti-tipping trial monitor to eliminate potential causes of accidents to provide accurate and timely information, the tower crane to ensure the smooth development of the leasing business, the decision is correct, and should further strengthen and standardize the use of the environment (including new staff training and development of data processing system, etc.).The first construction cranes were probably invented by the Ancient Greeks and were powered by men or beasts of burden, such as donkeys. These cranes were used for the construction of tall buildings. Larger cranes were later developed, employing the use of human treadwheels, permitting the lifting of heavier weights. In the High Middle Ages, harbour cranes were introduced to load and unload ships and assist with their construction – some were built into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron and steel took over with the coming of the Industrial Revolution.For many centuries, power was supplied by the physical exertion of men or animals, although hoists in watermills and windmills could be driven by the harnessed natural power. The first 'mechanical' power was provided by steam engines, the earliest steam crane being introduced in the 18th or 19th century, with many remaining in use well into the late 20th century. Modern cranes usually use internal combustion engines or electric motors and hydraulic systems to provide a much greater lifting capability than was previously possible, although manual cranes are still utilised where the provision of power would be uneconomic.Cranes exist in an enormous variety of forms – each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes,used for constructing high buildings, and the largest floating cranes, used to build oil rigs and salvage sunken ships.This article also covers lifting machines that do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker cranes and loader cranes.The crane for lifting heavy loads was invented by the Ancient Greeks in the late 6th century BC. The archaeological record shows that no later than c.515 BC distinctive cuttings for both lifting tongs and lewis irons begin to appear on stone blocks of Greek temples. Since these holes point at the use of a lifting device, and since they are to be found either above the center of gravity of the block, or in pairs equidistant from a point over the center of gravity, they are regarded by archaeologists as the positive evidence required for the existence of the crane.The introduction of the winch and pulley hoist soon lead to a widespread replacement of ramps as the main means of vertical motion. For the next two hundred years, Greek building sites witnessed a sharp drop in the weights handled, as the new lifting technique made the use of several smaller stones more practical than of fewer larger ones. In contrast to the archaic period with its tendency to ever-increasing block sizes, Greek temples of the classical age like the Parthenon invariably featured stone blocks weighing less than 15-20 tons. Also, the practice of erecting large monolithic columns was practically abandoned in favour of using several column drums.Although the exact circumstances of the shift from the ramp to the crane technology remain unclear, it has been argued that the volatile social and political conditions of Greece were more suitable to the employment of small, professional construction teams than of large bodies of unskilled labour, making the crane more preferable to the Greek polis than the more labour-intensive ramp which had been the norm in the autocratic societies of Egypt or Assyria.The first unequivocal literary evidence for the existence of the compound pulley system appears in the Mechanical Problems (Mech. 18, 853a32-853b13) attributed to Aristotle (384-322 BC), but perhaps composed at a slightly later date. Around the same time, block sizes at Greek temples began to match their archaic predecessors again, indicating that the more sophisticated compound pulley must have found its way to Greek construction sites by then.During the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to a treadwheel (magna rota) reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1240. In navigation, the earliest uses of harbor cranes are documented for Utrecht in 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources of the time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to coexist on medieval construction sites and harbors.Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship's wheel. To smooth out irregularities of impulse and get over 'dead-spots' in the lifting process flywheels are known to be in use as early as 1123.The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius' De architectura which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.In contrast to modern cranes, medieval cranes and hoists - much like their counterparts in Greece and Rome - were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, lewis or devil's clamp (German Teufelskralle), other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward.[25] This curious absence is explained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control.目前,塔式起重机是建筑工程进行起重运输作业的重要设备,塔机事故关系国计民生、危害重大,而目前众多的塔机司机虽然有上岗证,由于缺少监督和复核手段,实际工作中违规严重。
Transmission System introducedThe important position of the wheel gear and shaft can’t falter in traditional machine and modern machines. The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, used for many situations respectively. so we must be the multilayers to the understanding of the wheel gear and shaft in many ways.In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoids.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor interesting. The teeth of crossed-helical fears have point contact with each other which changes to line contact as the gears wear in. for this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is, a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles ate equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some ofbevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing this means that shaft deflection can be more pronounced and have a greater effect in the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squrgears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution The tooth action between such gears is a combination of rolling and has much in common with that of worm gears.A shaft is a rotating or stationary member usually of circular cross section, having mounted upon it such elementsas gears pulleys flywheels, cranks sprockets and other power-transmission elements Shaft may be subjected to bending tension compression or torsional loads acting singly or in combination with one another .When they are combined one may expect to find both static and fatigue strength to be important design considerations since a single shaft may be subjected to static stresses completely reversed, and repeated stresses, all acting at the same timeThe word “shaft” covers numerous wariations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating nor subjected to torsion load. Ashirt rotating shaft is often called a spindle.When either the lateral or the tosional deflection of shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses The reasonfor this is that if the shift is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are within acceptable limits. Whenever possible the power-transmission elements such as gears or pullets, should be located close to the supporting bearings. This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably come closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for each geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the hear-dissipating surfaces. The various types of clutches and brakes may be classified as fallows:Rim type with internally expanding shoesRim type with internally contracting shoesBand typeDisk or axial typeCone typeMiscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1. Assume or determine the distribution of pressure on the frictionalsurfaces.2. Find a relation between the maximum pressure and the pressure at any point3. apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.Miscellaneous clutches include several type, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws re used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear driver or motor-operated screw drivers must run to definite limit and then come to a stop. An over load-release rype of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedding the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. Bu varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained.机械传动系统介绍在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。
南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械系专业:车辆工程专业姓名:宋磊春学号:070102234外文出处:EDU_E_CAT_VBA_FF_V5R9(用外文写)附件:1。
外文资料翻译译文;2.外文原文.附件1:外文资料翻译译文CATIA V5 的自动化CATIA V5的自动化和脚本:在NT 和Unix上:脚本允许你用宏指令以非常简单的方式计划CATIA。
CATIA 使用在MS –VBScript中(V5.x中在NT和UNIX3。
0 )的共用部分来使得在两个平台上运行相同的宏。
在NT 平台上:自动化允许CATIA像Word/Excel或者Visual Basic程序那样与其他外用分享目标。
ATIA 能使用Word/Excel对象就像Word/Excel能使用CATIA 对象。
在Unix 平台上:CATIA将来的版本将允许从Java分享它的对象。
这将提供在Unix 和NT 之间的一个完美兼容。
CATIA V5 自动化:介绍(仅限NT)自动化允许在几个进程之间的联系:CATIA V5 在NT 上:接口COM:Visual Basic 脚本(对宏来说),Visual Basic 为应用(适合前:Word/Excel ),Visual Basic。
COM(零部件目标模型)是“微软“标准于几个应用程序之间的共享对象。
Automation 是一种“微软“技术,它使用一种解释环境中的COM对象。
ActiveX 组成部分是“微软“标准于几个应用程序之间的共享对象,即使在解释环境里。
OLE(对象的链接与嵌入)意思是资料可以在一个其他应用OLE的资料里连结并且可以被编辑的方法(在适当的位置编辑).在VBScript,VBA和Visual Basic之间的差别:Visual Basic(VB)是全部的版本。
它能产生独立的计划,它也能建立ActiveX 和服务器。
它可以被编辑。
VB中提供了一个补充文件名为“在线丛书“(VB的5。
外文文献原文:Friction , Lubrication of BearingIn many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement.Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary.The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt.There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement .Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction .Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules.As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction.The friction caused by the wedging action of surface irregularities can be overcome partly by the precision machining of the surfaces. However, even these smooth surfaces may require the use of a substance between them to reduce the friction still more. This substance is usually a lubricant which provides a fine, thin oil film. The film keeps the surfaces apart and prevents the cohesive forces of the surfaces from coming in close contact and producing heat .Another way to reduce friction is to use different materials for the bearing surfaces and rotating parts. This explains why bronze bearings, soft alloys, and copper and tin iolite bearings are used with both soft and hardened steel shaft. The iolite bearing is porous. Thus, when the bearing is dipped in oil, capillary action carries the oil through the spaces of the bearing. This type of bearing carries its own lubricant to the points where the pressures are the greatest.Moving parts are lubricated to reduce friction, wear, and heat. The most commonly used lubricants are oils, greases, and graphite compounds. Each lubricant serves a different purpose. The conditions under which two moving surfaces are to work determine the type of lubricant to be used and the system selected for distributing the lubricant.On slow moving parts with a minimum of pressure, an oil groove is usually sufficient to distribute the required quantity of lubricant to the surfaces moving on each other .A second common method of lubrication is the splash system in which parts moving in a reservoir of lubricant pick up sufficient oil which is then distributed to all moving parts during each cycle. This system is used in the crankcase of lawn-mower engines to lubricate the crankshaft, connecting rod ,and parts of the piston.A lubrication system commonly used in industrial plants is the pressure system. In this system, a pump on a machine carries the lubricant to all of the bearing surfaces at a constant rate and quantity.There are numerous other systems of lubrication and a considerable number of lubricants available for any given set of operating conditions. Modern industrypays greater attention to the use of the proper lubricants than at previous time because of the increased speeds, pressures, and operating demands placed on equipment and devices.Although one of the main purposes of lubrication is reduce friction, any substance-liquid , solid , or gaseous-capable of controlling friction and wear between sliding surfaces can be classed as a lubricant.V arieties of lubricationUnlubricated sliding. Metals that have been carefully treated to remove all foreign materials seize and weld to one another when slid together. In the absence of such a high degree of cleanliness, adsorbed gases, water vapor ,oxides, and contaminants reduce frictio9n and the tendency to seize but usually result in severe wear; this is called “unlubricated ”or dry sliding.Fluid-film lubrication. Interposing a fluid film that completely separates the sliding surfaces results in fluid-film lubrication. The fluid may be introduced intentionally as the oil in the main bearing of an automobile, or unintentionally, as in the case of water between a smooth tuber tire and a wet pavement. Although the fluid is usually a liquid such as oil, water, and a wide range of other materials, it may also be a gas. The gas most commonly employed is air.Boundary lubrication. A condition that lies between unlubricated sliding and fluid-film lubrication is referred to as boundary lubrication, also defined as that condition of lubrication in which the friction between surfaces is determined by the properties of the surfaces and properties of the lubricant other than viscosity. Boundary lubrication encompasses a significant portion of lubrication phenomena and commonly occurs during the starting and stopping off machines.Solid lubrication. Solid such as graphite and molybdenum disulfide are widely used when normal lubricants do not possess sufficient resistance to load or temperature extremes. But lubricants need not take only such familiar forms as fats, powders, and gases; even some metals commonly serve as sliding surfaces in some sophisticated machines.Function of lubricantsAlthough a lubricant primarily controls friction and ordinarily does perform numerous other functions, which vary with the application and usually are interrelated .Friction control. The amount and character of the lubricant made available to sliding surfaces have a profound effect upon the friction that is encountered. For example, disregarding such related factors as heat and wear but considering friction alone between the same surfaces with on lubricant. Under fluid-film conditions, friction is encountered. In a great range of viscosities and thus can satisfy a broad spectrum of functional requirements. Under boundary lubrication conditions , the effect of viscosity on friction becomes less significant than the chemical nature of the lubricant.Wear control. wear occurs on lubricated surfaces by abrasion, corrosion ,and solid-to-solid contact wear by providing a film that increases the distance between the sliding surfaces ,thereby lessening the damage by abrasive contaminants and surface asperities.T emperature control. Lubricants assist in controlling corrosion of the surfaces themselves is twofold. When machinery is idle, the lubricant acts as a preservative. When machinery is in use, the lubricant controls corrosion by coating lubricated parts with a protective film that may contain additives to neutralize corrosive materials. The ability of a lubricant to control corrosion is directly relatly to the thickness of the lubricant film remaining on the metal surfaces and the chermical composition of the lubricant.Other functionsLubrication are frequently used for purposes other than the reduction of friction. Some of these applications are described below.Power transmission. Lubricants are widely employed as hydraulic fluids in fluid transmission devices.Insulation. In specialized applications such as transformers and switchgear , lubricants with high dielectric constants acts as electrical insulators. For maximum insulating properties, a lubricant must be kept free of contaminants and water.Shock dampening. Lubricants act as shock-dampening fluids in energy transferring devices such as shock absorbers and around machine parts such as gears that are subjected to high intermittent loads.Sealing. Lubricating grease frequently performs the special function of forming a seal to retain lubricants or to exclude contaminants.The object of lubrication is to reduce friction ,wear , and heating of machine pars which move relative to each other. A lubricant is any substance which, when inserted between the moving surfaces, accomplishes these purposes. Most lubricants are liquids(such as mineral oil, silicone fluids, and water),but they may be solid for use in dry bearings, greases for use in rolling element bearing, or gases(such as air) for use in gas bearings. The physical and chemical interaction between the lubricant and lubricating surfaces must be understood in order to provide the machine elements with satisfactory life.The understanding of boundary lubrication is normally attributed to hardy and doubleday , who found the extrememly thin films adhering to surfaces were often sufficient to assist relative sliding. They concluded that under such circumstances the chemical composition of fluid is important, and they introduced the term “boundary lubrication”. Boundary lubric ation is at the opposite end of the spectrum from hydrodynamic lubrication.Five distinct of forms of lubrication that may be defined :(a) hydrodynamic;(b)hydrostatic;(c)elastohydrodynamic (d)boundary; (e)solid film.Hydrodynamic lubrication means that the load-carrying surfaces of the bearing are separated by a relatively thick film of lubricant, so as to prevent metal contact, and that the stability thus obtained can be explained by the laws of the lubricant under pressure ,though it may be; but it does require the existence of an adequate supply at all times. The film pressure is created by the moving surfaces itself pulling the lubricant under pressure, though it maybe. The film pressure is created by the moving surface to creat the pressure necessary to separate the surfaces against the load on the bearing . hydrodynamic lubrication is also called full film ,or fluid lubrication .Hydrostatic lubrication is obtained by introducing the lubricant ,which is sometime air or water ,into the load-bearing area at a pressure high enough to separate the surface with a relatively thick film of lubricant. So ,unlike hydrodynanmic lubrication, motion of one surface relative to another is not required .Elasohydrodynamic lubrication is the phenomenon that occurs when a lubricant is introduced between surfaces which are in rolling contact, such as mating gears or rolling bearings. The mathematical explanation requires the hertzian theory of contact stress and fluid mechanics.When bearing must be operated at exetreme temperatures, a solid film lubricant such as graphite or molybdenum disulfide must be use used because the ordinary mineral oils are not satisfactory. Must research is currently being carried out in an effort, too, to find composite bearing materials with low wear rates as well as small frictional coefficients.In a journal bearing, a shaft rotates or oscillates within the bearing , and the relative motion is sliding . in an antifriction bearing, the main relative motion is rolling . a follower may either roll or slide on the cam. Gear teeth mate with each other by a combination of rolling and sliding . pistions slide within their cylinders. All these applications require lubrication to reduce friction ,wear, and heating.The field of application for journal bearing s is immense. The crankshaft and connecting rod bearings of an automotive engine must poerate for thousands of miles at high temperatures and under varying load conditions . the journal bearings used in the steam turbines of power generating station is said to have reliabilities approaching 100 percent. At the other extreme there are thousands of applications in which the loads are light and the service relatively unimportant. a simple ,easily installed bearing is required ,suing little or no lubrication. In such cases an antifriction bearing might be a poor answer because because of the cost, the close ,the radial space required ,or the increased inertial effects. Recent metallurgy developments in bearing materials , combined with increased knowledge of the lubrication process, now make it possible to design journal bearings with satisfactory lives and very good reliabilities.中文译文:轴承的摩擦与润滑现在看来,有很多这种情况,许多学生在被问到关于摩擦的问题时,往往都没引起足够的重视,甚至是忽视它。
英文文章:Fatigue life prediction of the metalwork ofa travelling gantry craneV.A. KopnovAbstractIntrinsic fatigue curves are applied to a fatigue life prediction problem of the metalwork of a traveling gantry crane. A crane, used in the forest industry, was studied in working conditions at a log yard, an strain measurements were made. For the calculations of the number of loading cycles, the rain flow cycle counting technique is used. The operations of a sample of such cranes were observed for a year for the average number of operation cycles to be obtained. The fatigue failure analysis has shown that failures some elements are systematic in nature and cannot be explained by random causes.卯1999 Elsevier Science Ltd. All rights reserved.Key words: Cranes; Fatigue assessment; Strain gauging1. IntroductionFatigue failures of elements of the metalwork of traveling gantry cranes LT62B are observed frequently in operation. Failures as fatigue cracks initiate and propagate in welded joints of the crane bridge and supports in three-four years. Such cranes are used in the forest industry at log yards for transferring full-length and sawn logs to road trains, having a load-fitting capacity of 32 tons. More than 1000 cranes of this type work at the enterprises of the Russian forest industry. The problem was stated to find the weakest elements limiting the cranes' fives, predict their fatigue behavior, and give recommendations to the manufacturers for enhancing the fives of the cranes.2. Analysis of the crane operationFor the analysis, a traveling gantry crane LT62B installed at log yard in the Yekaterinburg region was chosen. The crane serves two saw mills, creates a log store, and transfers logs to or out of road trains. A road passes along the log store. The saw mills are installed so that the reception sites are under the crane span. A schematic view of the crane is shown in Fig. 1.1350-6307/99/$一see front matter 1999 Elsevier Science Ltd. All rights reserved.PII: S 1 3 5 0一6307(98) 00041一7A series of assumptions may be made after examining the work of cranes:·if the monthly removal of logs from the forest exceeds the processing rate, i.e. there is a creation of a logstore, the crane expects work, being above the centre of a formed pile with the grab lowered on the pile stack;·when processing exceeds the log removal from the forest, the crane expects work above an operational pile close to the saw mill with the grab lowered on the pile;·the store of logs varies; the height of the piles is considered to be a maximum;·the store variation takes place from the side opposite to the saw mill;·the total volume of a processed load is on the average k=1.4 times more than the total volume of removal because of additional transfers.2.1. Removal intensityIt is known that the removal intensity for one year is irregular and cannot be considered as a stationary process. The study of the character of non-stationary flow of road trains at 23 enterprises Sverdlesprom for five years has shown that the monthly removal intensity even for one enterprise essentially varies from year to year. This is explained by the complex of various systematic and random effects which exert an influence on removal: weather conditions, conditions of roads and lorry fleet, etc. All wood brought to the log store should, however, be processed within one year.Therefore, the less possibility of removing wood in the season between spring and autumn, the more intensively the wood removal should be performed in winter. While in winter the removal intensity exceeds the processing considerably, in summer, in most cases, the more full-length logs are processedthan are taken out.From the analysis of 118 realizations of removal values observed for one year, it is possible to evaluate the relative removal intensity g(t) as percentages of the annual load turnover. The removal data fisted in Table 1 is considered as expected values for any crane, which can be applied to the estimation of fatigue life, and, particularly, for an inspected crane with which strain measurement was carried out (see later). It would be possible for each crane to take advantage of its load turnover per one month, but to establish these data without special statistical investigation is difficult. Besides, to solve the problem of life prediction a knowledge of future loads is required, which we take as expected values on cranes with similar operation conditions.The distribution of removal value Q(t) per month performed by the relative intensity q(t) is written aswhere Q is the annual load turnover of a log store, A is the maximal designed store of logs in percent of Q. Substituting the value Q, which for the inspected crane equals 400,000 m3 per year, and A=10%, the volumes of loads transferred by the crane are obtained, which are listed in Table 2, with the total volume being 560,000 m3 for one year using K,.2.2. Number of loading blocksThe set of operations such as clamping, hoisting, transferring, lowering, and getting rid of a load can be considered as one operation cycle (loading block) of the crane. As a result to investigations, the operation time of a cycle can be modeled by the normal variable with mean equal to 11.5 min and standard deviation to 1.5 min. unfortunately, this characteristic cannot be simply used for the definition of the number of operation cycles for any work period as the local processing is extremely irregular. Using a total operationtime of the crane and evaluations of cycle durations, it is easy to make large errors and increase the number of cycles compared with the real one. Therefore, it is preferred to act as follows.The volume of a unit load can be modeled by a random variable with a distribution function(t) having mean22 m3 and standard deviation 6;一3 m3, with the nominal volume of one pack being 25 m3. Then, knowing the total volume of a processed load for a month or year, it is possible to determine distribution parameters of the number of operation cycles for these periods to take advantage of the methods of renewal theory [1].According to these methods, a random renewal process as shown in Fig. 2 is considered, where the random volume of loads forms a flow of renewals:In renewal theory, realizations of random:,,,having a distribution function F-(t), are understoodas moments of recovery of failed units or request receipts. The value of a processed load:,,after}th operation is adopted here as the renewal moment.<t﹜. The function F-(t) is defined recurrently,Let F(t)=P﹛nLet v(t) be the number of operation cycles for a transferred volume t. In practice, the total volume of a transferred load is essentially greater than a unit load, and it is useful therefore totake advantage of asymptotic properties of the renewal process. As follows from an appropriatelimit renewal theorem, the random number of cycles v required to transfer the large volume t hasthe normal distribution asymptotically with mean and variance.without dependence on the form of the distribution function月t) of a unit load (the restriction is imposed only on nonlattice of the distribution).Equation (4) using Table 2 for each averaged operation month,function of number of load cycles with parameters m,. and 6,., which normal distribution in Table 3. Figure 3 shows the average numbers of cycles with 95 % confidence intervals. The values of these parametersfor a year are accordingly 12,719 and 420 cycles.3. Strain measurementsIn order to reveal the most loaded elements of the metalwork and to determine a range of stresses, static strain measurements were carried out beforehand. Vertical loading was applied by hoisting measured loads, and skew loading was formed with a tractor winch equipped with a dynamometer. The allocation schemes of the bonded strain gauges are shown in Figs 4 and 5. As was expected, the largest tension stresses in the bridge take place in the bottom chord of the truss (gauge 11-45 MPa). The top chord of the truss is subjected to the largest compression stresses.The local bending stresses caused by the pressure of wheels of the crane trolleys are added to the stresses of the bridge and the load weights. These stresses result in the bottom chord of the I一beambeing less compressed than the top one (gauge 17-75 and 10-20 MPa). The other elements of the bridge are less loaded with stresses not exceeding the absolute value 45 MPa. The elements connecting the support with the bridge of the crane are loaded also irregularly. The largest compression stresses take place in the carrying angles of the interior panel; the maximum stresses reach h0 MPa (gauges 8 and 9). The largest tension stresses in the diaphragms and angles of the exterior panel reach 45 MPa (causes 1 and hl.The elements of the crane bridge are subjected, in genera maximum stresses and respond weakly to skew loads. The suhand, are subjected mainly to skew loads.1, to vertical loads pports of the crane gmmg rise to on the otherThe loading of the metalwork of such a crane, transferring full-length logs, differs from that of a crane used for general purposes. At first, it involves the load compliance of log packs because of progressive detachment from the base. Therefore, the loading increases rather slowly and smoothly.The second characteristic property is the low probability of hoisting with picking up. This is conditioned by the presence of the grab, which means that the fall of the rope from the spreader block is not permitted; the load should always be balanced. The possibility of slack being sufficient to accelerate an electric drive to nominal revolutions is therefore minimal. Thus, the forest traveling gantry cranes are subjected to smaller dynamic stresses than in analogous cranes for general purposes with the same hoisting speed. Usually, when acceleration is smooth, the detachment of a load from the base occurs in 3.5-4.5 s after switching on an electric drive. Significant oscillations of the metalwork are not observed in this case, and stresses smoothly reach maximum values.When a high acceleration with the greatest possible clearance in the joint between spreader andgrab takes place, the tension of the ropes happens 1 s after switching the electric drive on, the clearance in the joint taking up. The revolutions of the electric motors reach the nominal value in O.}r0.7 s. The detachment of a load from the base, from the moment of switching electric motors on to the moment of full pull in the ropes takes 3-3.5 s, the tensions in ropes increasing smoothly to maximum. The stresses inthe metalwork of the bridge and supports grow up to maximum values in 1-2 s and oscillate about an average within 3.5%.When a rigid load is lifted, the accelerated velocity of loading in the rope hanger and metalwork is practically the same as in case of fast hoisting of a log pack. The metalwork oscillations are characterized by two harmonic processes with periods 0.6 and 2 s, which have been obtained from spectral analysis. The worst case of loading ensues from summation of loading amplitudes so that the maximum excess of dynamic loading above static can be 13-14%.Braking a load, when it is lowered, induces significant oscillation of stress in the metalwork, which can be }r7% of static loading. Moving over rail joints of 3} mm height misalignment induces only insignificant stresses. In operation, there are possible cases when loads originating from various types of loading combine. The greatest load is the case when the maximum loads from braking of a load when lowering coincide with braking of the trolley with poorly adjusted brakes.4. Fatigue loading analysisStrain measurement at test points, disposed as shown in Figs 4 and 5, was carried out during the work of the crane and a representative number of stress oscillograms was obtained. Since a common operation cycle duration of the crane has a sufficient scatter with average value } 11.5min, to reduce these oscillograms uniformly a filtration was implemented to these signals, and all repeated values, i.e. while the construction was not subjected to dynamic loading and only static loading occurred, were rejected. Three characteristic stress oscillograms (gauge 11) are shown inFig. 6 where the interior sequence of loading for an operation cycle is visible. At first, stressesincrease to maximum values when a load is hoisted. After that a load is transferred to the necessary location and stresses oscillate due to the irregular crane movement on rails and over rail joints resulting mostly in skew loads. The lowering of the load causes the decrease of loading and forms half of a basic loading cycle.4.1. Analysis of loading process amplitudesTwo terms now should be separated: loading cycle and loading block. The first denotes one distinct oscillation of stresses (closed loop), and the second is for the set of loading cycles during an operation cycle. The rain flow cycle counting method given in Ref. [2] was taken advantage of to carry out the fatigue hysteretic loop analysis for the three weakest elements: (1) angle of the bottom chord(gauge 11), (2) I-beam of the top chord (gauge 17), (3) angle of the support (gauge 8). Statistical evaluation of sample cycle amplitudes by means of the Waybill distribution for these elements has given estimated parameters fisted in Table 4. It should be noted that the histograms of cycle amplitude with nonzero averages were reduced afterwards to equivalent histograms with zero averages.4.2. Numbers of loading cyclesDuring the rain flow cycle counting procedure, the calculation of number of loading cycles for the loading block was also carried out. While processing the oscillograms of one type, a sample number of loading cycles for one block is obtained consisting of integers with minimum and maximum observed values: 24 and 46. The random number of loading cycles vibe can be describedby the Poisson distribution with parameter =34.Average numbers of loading blocks via months were obtained earlier, so it is possible to find the appropriate characteristics not only for loading blocks per month, but also for the total number of loading cycles per month or year if the central limit theorem is taken advantage of. Firstly, it is known from probability theory that the addition of k independent Poisson variables gives also a random variable with the Poisson distribution with parameter k},. On the other hand, the Poisson distribution can be well approximated by the normal distribution with average}, and variation },. Secondly, the central limit theorem, roughly speaking, states that the distribution of a large number of terms, independent of the initial distribution asymptotically tends to normal. If the initial distribution of each independent term has a normal distribution, then the average and standard deviation of the total number of loading cycles for one year are equal to 423,096 and 650 accordingly. The values of k are taken as constant averages from Table 3.5. Stress concentration factors and element enduranceThe elements of the crane are jointed by semi-automatic gas welding without preliminary edge preparation and consequent machining. For the inspected elements 1 and 3 having circumferential and edge welds of angles with gusset plates, the effective stress concentration factor for fatigue is given by calculation methods [3], kf=2.}r2.9, coinciding with estimates given in the current Russian norm for fatigue of welded elements [4], kf=2.9.The elements of the crane metalwork are made of alloyed steel 09G2S having an endurance limit of 120 MPa and a yield strength of 350 MPa. Then the average values of the endurance limits of the inspected elements 1 and 3 are ES一l=41 MPa. The variation coefficient is taken as 0.1, and the corresponding standard deviation is 6S-、一4.1 MPa.The inspected element 2 is an I-beam pierced by holes for attaching rails to the top flange. The rather large local stresses caused by local bending also promote fatigue damage accumulation. According to tablesfrom [4], the effective stress concentration factor is accepted as kf=1.8, which gives an average value of the endurance limit as ES 一l=h7 Map. Using the same variation coiffing dent th e stand arid d emit ion is 1s σ-=6.7 MPa.An average S-N curve, recommended in [4], has the form:with the inflexion point No=5·106 and the slope m=4.5 for elements 1 and 3 and m=5.5 for element 2.The possible values of the element endurance limits presented above overlap the ranges of load amplitude with nonzero probability, which means that these elements are subjected to fatigue damage accumulation. Then it is possible to conclude that fatigue calculations for the elements are necessary as well as fatigue fife prediction.6. Life predictionThe study has that some elements of the metalwork are subject to fatigue damage accumulation.To predict fives we shall take advantage of intrinsic fatigue curves, which are detailed in [5]and [6].Following the theory of intrinsic fatigue curves, we get lognormal life distribution densities for the inspected elements. The fife averages and standard deviations are fisted in Table 5. The lognormal fife distribution densities are shown in Fig. 7. It is seen from this table that the least fife is for element 3. Recollecting that an average number of load blocks for a year is equal to 12,719, it is clear that the average service fife of the crane before fatigue cracks appear in the welded elements is sufficient: the fife is 8.5 years for element 1, 11.5 years for element 2, and h years for element 3. However, the probability of failure of these elements within three-four years is not small and is in the range 0.09-0.22. These probabilities cannot be neglected, and services of design and maintenance should make efforts to extend the fife of the metalwork without permitting crack initiation and propagation.7. ConclusionsThe analysis of the crane loading has shown that some elements of the metalwork are subjectedto large dynamic loads, which causes fatigue damage accumulation followed by fatigue failures.The procedure of fatigue hfe prediction proposed in this paper involves tour parts:(1) Analysis of the operation in practice and determination of the loading blocks for some period.(2) Rainflow cycle counting techniques for the calculation of loading cycles for a period of standard operation.(3) Selection of appropriate fatigue data for material.(4) Fatigue fife calculations using the intrinsic fatigue curves approach.The results of this investigation have been confirmed by the cases observed in practice, and the manufacturers have taken a decision about strengthening the fixed elements to extend their fatigue lives.中文翻译龙门式起重机金属材料的疲劳强度预测v.a.科普诺夫摘要内在的疲劳曲线应用到龙门式起重机金属材料的疲劳寿命预测问题。
毕业设计论文外文资料原文及译文学院:机电工程学院专业:机械设计制造及其自动化班级:学号:姓名:Mechanical engineering1.The porfile of mechanical engineeringEngingeering is a branch of mechanical engineerig,it studies mechanical and power generation especially power and movement.2.The history of mechanical engineering18th century later periods,the steam engine invention has provided a main power fountainhead for the industrial revolution,enormously impelled each kind of mechznical biting.Thus,an important branch of a new Engineering – separated from the civil engineering tools and machines on the branch-developed together with Birmingham and the establishment of the Associantion of Mechanical Engineers in 1847 had been officially recognized.The mechanical engineering already mainly used in by trial and error method mechanic application technological development into professional engineer the scientific method of which in the research,the design and the realm of production used .From the most broad perspective,the demend continuously to enhance the efficiencey of mechanical engineers improve the quality ofwork,and asked him to accept the history of the high degree of education and training.Machine operation to stress not only economic but also infrastructure costs to an absolute minimun.3.The field of mechanical engineeringThe commodity machinery development in the develop country,in the high level material life very great degree is decided each kind of which can realize in the mechanical engineering.Mechanical engineers unceasingly will invent the machine next life to produce the commodity,unceasingly will develop the accuracy and the complexity more and more high machine tools produces the machine.The main clues of the mechanical development is:In order to enhance the excellent in quality and reasonable in price produce to increase the precision as well as to reduce the production cost.This three requirements promoted the complex control system development.The most successful machine manufacture is its machine and the control system close fusion,whether such control system is essentially mechanical or electronic.The modernized car engin production transmission line(conveyer belt)is a series of complex productions craft mechanizationvery good example.The people are in the process of development in order to enable further automation of the production machinery ,the use of a computer to store and handle large volumes of data,the data is a multifunctional machine tools necessary for the production of spare parts.One of the objectives is to fully automated production workshop,three rotation,but only one officer per day to operate.The development of production for mechanical machinery must have adequate power supply.Steam engine first provided the heat to generate power using practical methods in the old human,wind and hydropower,an increase of engin .New mechanical engineering industry is one of the challenges faced by the initial increase thermal effciency and power,which is as big steam turbine and the development of joint steam boilers basically achieved.20th century,turbine generators to provide impetus has been sustained and rapid growth,while thermal efficiency is steady growth,and large power plants per kW capital consumption is also declining.Finally,mechanical engineers have nuclear energy.This requires the application of nuclear energy particularly high reliability and security,which requires solving many new rge power plants and the nuclear power plant control systems have become highly complex electroonics,fluid,electricity,water and mechanical parts networks All in all areas related to the mechanical engineers.Small internal combustion engine,both to the type (petrol and diesel machines)or rotary-type(gas turbines and Mong Kerr machine),as well as their broad application in the field of transport should also due to mechanical enginerrs.Throughout the transport,both in the air and space,or in the terrestrial and marine,mechanial engineers created a variety of equipment and power devices to their increasing cooperation with electrical engineers,especially in the development of appropration control systems.Mechanical engineers in the development of military weapons technology and civil war ,needs a similar,though its purpose is to enhance rather than destroy their productivity.However.War needs a lot of resources to make the area of techonlogy,many have a far-reaching development in peacetime efficiency.Jet aircraft and nuclear reactors are well known examples.The Biological engineering,mechanical engineering biotechnology is a relatively new and different areas,it provides for the replacement of the machine or increase thebody functions as well as for medical equipment.Artficial limbs have been developed and have such a strong movement and touch response function of the human body.In the development of artificial organ transplant is rapid,complex cardiac machines and similar equipment to enable increasingly complex surgery,and injuries and ill patients life functions can be sustained.Some enviromental control mechanical engineers through the initial efforts to drainage or irrigation pumping to the land and to mine and ventilation to control the human environment.Modern refrigeration and air-conditioning plant commonaly used reverse heat engine,where the heat from the engine from cold places to more external heat.Many mechanical engineering products,as well as other leading technology development city have side effects on the environment,producing noise,water and air pollution caused,destroyed land and landscape.Improve productivity and diver too fast in the commodity,that the renewable naturalforces keep pace.For mechanical engineers and others,environmental control is rapidly developing area,which includes a possible development and production of small quantities of pollutants machine sequnce,and the development of new equipment and teachnology has been to reduce and eliminate pollution.4.The role of mechanical engineeringThere are four generic mechanical engineers in common to the above all domains function.The 1st function is the understanding and the research mechanical science foundation.It includes the power and movement of the relationship dynamics For example,in the vibration and movement of the relationship;Automatic control;Study of the various forms of heart,energy,power relations between the thermodynamic;Fluidflows; Heat transfer; Lubricant;And material properties.The 2nd function will be conducts the research,the desing and the development,this function in turn attempts to carry on the essential change to satisfy current and the future needs.This not only calls for a clear understanding of mechanical science,and have to breakdown into basic elements of a complex system capacity.But also the need for synthetic and innovative inventions.The 3rd function is produces the product and the power,include plan,operation and maintenance.Its goal lies in the maintenance eitherenhances the enterprise or the organization longer-tern and survivabilaty prestige at the same time,produces the greatest value by the least investments and the consumption.The 4th function is mechanical engineer’s coordinated function,including the management,the consultation,as well as carries on the market marking in certain situation.In all these function,one kind unceasingly to use the science for a long time the method,but is not traditional or the intuition method tendency,this is a mechanical engineering skill aspect which unceasingly grows.These new rationalization means typical names include:The operations research,the engineering economics,the logical law problem analysis(is called PABLA) However,creativity is not rationalization.As in other areas,in mechanical engineering,to take unexpected and important way to bring about a new capacity,still has a personal,marked characteristice.5.The design of mechanical engineeringThe design of mechanical is the design has the mechanical property the thing or the system,such as:the instrument and the measuring appliance in very many situations,the machine design must use the knowledge of discipline the and so on mathematics,materials science and mechanics.Mechanical engineering desgin includeing all mechanical desgin,but it was a study,because it also includes all the branches of mechsnical engineering,such as thermodynamics all hydrodynamics in the basic disciplines needed,in the mechanical engineering design of the initial stude or mechanical design.Design stages.The entire desgin process from start to finish,in the process,a demand that is designed for it and decided to do the start.After a lot of repetition,the final meet this demand by the end of the design procees and the plan.Design considerations.Sometimes in a system is to decide which parts needs intensity parts of geometric shapesand size an important factor in this context that we must consider that the intensity is an important factor in the design.When we use expression design considerations,we design parts that may affect the entire system design features.In the circumstances specified in the design,usually for a series of such functions must be taken into account.Howeever,to correct purposes,we should recognize that,in many cases thedesign of important design considerations are not calculated or test can determine the components or systems.Especially students,wheen in need to make important decisions in the design and conduct of any operation that can not be the case,they are often confused.These are not special,they occur every day,imagine,for example,a medical laboratory in the mechanical design,from marketing perspective,people have high expectations from the strength and relevance of impression.Thick,and heavy parts installed together:to produce a solid impression machines.And sometimes machinery and spare parts from the design style is the point and not the other point of view.Our purpose is to make those you do not be misled to believe that every design decision will needreasonable mathematical methods.Manufacturing refers to the raw meterials into finished products in the enterprise.Create three distinct phases.They are:input,processing exprot.The first phase includes the production of all products in line with market needs essential.First there must be the demand for the product,the necessary materials,while also needs such as energy,time,human knowledge and technology resourcess .Finall,the need for funds to obtain all the other resources. Lose one stage after the second phase of the resources of the processes to be distributed.Processing of raw materials into finished products of these processes.To complete the design,based on the design,and then develop plans.Plan implemented through various production processes.Management of resources and processes to ensure efficiency and productivity.For example,we must carefully manage resources to ensure proper use of funds.Finally,people are talking about the product market was cast.Stage is the final stage of exporting finished or stage.Once finished just purchased,it must be delivered to the users.According to product performance,installation and may have to conduct further debugging in addition,some products,especially those very complex products User training is necessary.6.The processes of materials and maunfacturingHere said engineering materials into two main categories:metals and non-ferrous,high-performance alloys and power metals.Non-metallic futher divided into plastice,synthetic rubber,composite materials and ceramics.It said the productionproccess is divided into several major process,includingshape,forging,casting/ founding,heat treatment,fixed/connections ,measurement/ quality control and materal cutting.These processes can be further divide into each other’s craft.Various stages of the development of the manufacturing industry Over the years,the manufacturing process has four distinct stages of development, despite the overlap.These stages are:The first phase is artisanal,the second Phase is mechanization.The third phase is automation the forth Phase is integrated.When mankind initial processing of raw materials into finished products will be,they use manual processes.Each with their hands and what are the tools manuslly produced.This is totally integrated production take shape.A person needs indentification,collection materials,the design of a product to meet that demand,the production of such products and use it.From beginning to end,everything is focused on doing the work of the human ter in the industrial revolution introduced mechanized production process,people began to use machines to complete the work accomplished previously manual. This led to the specialization.Specialization in turn reduce the manufacture of integrated factors.In this stage of development,manufacturing workers can see their production as a whole represent a specific piece of the part of the production process.One can not say that their work is how to cope with the entire production process,or how they were loaded onto a production of parts finished.Development of manufacting processes is the next phase of the selection process automation.This is a computer-controlled machinery and processes.At this stage,automation island began to emerge in the workshop lane.Each island represents a clear production process or a group of processes.Although these automated isolated island within the island did raise the productivity of indivdual processes,but the overall productivity are often not change.This is because the island is not caught in other automated production process middle,but not synchronous with them .The ultimate result is the efficient working fast parked through automated processes,but is part of the stagnation in wages down,causing bottlenecks.To better understand this problem,you can imagine the traffic in the peak driving a red light from the red Service Department to the next scene. Occasionally you will find a lot less cars,more than being slow-moving vehicles,but the results can be found by thenext red light Brance.In short you real effect was to accelerate the speed of a red Department obstruction offset.If you and other drivers can change your speed and red light simultaneously.Will advance faster.Then,all cars will be consistent,sommth operation,the final everyone forward faster.In the workshop where the demand for stable synchronization of streamlined production,and promoted integration of manufacturing development.This is a still evolving technology.Fully integrated in the circumstances,is a computer-controllrd machinery and processing.integrated is completed through computer.For example in the preceding paragraph simulation problems,the computer will allow all road vehicles compatible with the change in red.So that everyone can steady traffic.Scientific analysis of movement,timing and mechanics of the disciplines is that it is composed of two pater:statics and dynamics.Statics analyzed static system that is in the system,the time is not taken into account,research and analysis over time and dynamics of the system change.Dynameics from the two componets.Euler in 1775 will be the first time two different branches: Rigid body movement studies can conveniently divided into two parts:geometric and mechanics.The first part is without taking into account the reasons for the downward movement study rigid body from a designated location to another point of the movement,and must use the formula to reflect the actual,the formula would determine the rigid body every point position. Therefore,this study only on the geometry and,more specifically,on the entities from excision.Obviously,the first part of the school and was part of a mechanical separation from the principles of dynamics to study movement,which is more than the two parts together into a lot easier.Dynamics of the two parts are subsequently divided into two separate disciplines,kinematic and dynamics,a study of movement and the movement strength.Therefore,the primary issue is the design of mechanical systems understand its kinematic.Kinematic studies movement,rather than a study of its impact.In a more precise kinematic studies position,displacement,rotation, speed,velocity and acceleration of disciplines,for esample,or planets orbiting research campaing is a paradigm.In the above quotation content should be pay attention that the content of the Euler dynamics into kinematic and rigid body dynamics is based on the assumptionthat they are based on research.In this very important basis to allow for the treatment of two separate disciplines.For soft body,soft body shape and even their own soft objects in the campaign depends on the role of power in their possession.In such cases,should also study the power and movement,and therefore to a large extent the analysis of the increased complexity.Fortunately, despite the real machine parts may be involved are more or less the design of machines,usually with heavy material designed to bend down to the lowest parts.Therefore,when the kinematic analysis of the performance of machines,it is often assumed that bend is negligible,spare parts are hard,but when the load is known,in the end analysis engine,re-engineering parts to confirm this assnmption.机械工程1.机械工程简介机械工程是工程学的一个分支,它研究机械和动力的产,尤其是力和动力。
本科毕业设计(论文)外文译文院(系):机电工程学院专业:机械设计制造及其自动化姓名:学号:外语文献翻译原文:3.4.1CAD HARDWAREComputersThere are two major types of hardware used in a CAD system. Computer and input/output (I/O) devices. In the early days of CAD. Some commercial CAD systems used proprietary computers. Today, nearly all CAD software runs on a general-purpose computer.Depending on the complexity of the CAD package, it may require a mainframe computer, a minicomputer, or simply a microcomputer. In general, the more functionalities a CAD system provides, the more powerful the computer needed. Three dimensional solid modelers require much more computing than do two-dimensional drafting systems; thus, they need more powerful computers. Systems that integrate engineering analysis or simulation packages generally are more computation-intensive. A powerful computer not only speeds up the response of a CAD system, but also can support multiple users without significant performance degradation.Several other parameters and components concerning the computer also have to be considered.CAD HARDWARErandom-access memory (RAM)capacitypermanent disk-storage capacityspecial graphics acceleratortape backupsRAM is the actual physical memory (vs. virtual memory)of a computer. A small memory capacity means slow processing due to frequent swapping between the physical memory and the virtual memory on disk. Because CAD is extremely storage demanding, disk capacity is important. Small disk capacity limits the system to the storage of only a few drawings. CAD is graphics-based and requires tremendous data processing. A graphics accelerator can drastically increase the performance of the system. Another component, the hard disk, is typically the major cost of a computer system. Therefore, it is not cost-justifiable to store all drawings on line on disk. Magnetic tape is still the most economical medium to use for off-line data storage. It is necessary for a CAD system to have a tape backup subsystem.Currently, all levels of computers are used in CAD systems. Personal computers are used in low-cost,2-D drafting applications, and with the new power of these computers, hey are also being used for some 3-D solid modeling applications. Engineering workstations have been the mainstay in CAD, and are usually a single-user CAD workstation in a network. Minicomputers are used in multiuser CAD systems. Mainframes are used for large multiuser CAD systems to support real time simulation and engineering analysis. Sometimes, in a large corporation, all levelsof CAD systems are implemented. All these systems are linked together through a hierarchical computer network.3.4.2 Input. Output (I/O)DevicesFigure 3.7 shows the typical I/O devices used in a CAD system. Input devices are generally used to transfer information from a human or storage medium to a computer where ”CAD functions” are carried out. A keyboard is the standard input device used to transmit alphanumeric data to the system. Function keypads are also used to make input easier. Joysticks, track balls, and mousse are also used to manipulate a cursor. They can be used to position the graphic cursor(e.g. cross hair)on a monitor and feed back the location of an object on the monitor to the computer. Using these devices allows an operator to address terminal locations to interactively in reaching an accurate position. Mouses have been used extensively with windows and pull-down menus. They are easy to use for pointing; However, using a mouse to trace a curve is not an easy task.There are three basic approaches to input an existing drawing;(1)model the object on a drawing,(2)digitize the drawing, or (3)scan the object. Digitizing is usually much easier than modeling. A digitizer is a device that translates the X-Y locations on a drawing than modeling. A digitizer is a device that translates the X-Y locations on a drawing into a digital and feeds that signal to a computer. Graphics scanners scan a drawing and convert it to a CAD-system-readable format. Some scanners have built-in character-recognition software that can convert characters on paper into ASCII codes. Another input device is a sketch pad called a graphics tablet. A graphics tablet is a special flat surface on which a user draws with a stylus. The location of the stylus is sent to the computer. The tablet is an absolute coordinate device. It is easy to implement overlay menus on the tablet and pull down menus on the screen to improve the operation. Currently. the tablet is the most popular input device used in CAD other than the keyboard.The standard output device for CAD is a monitor display. Modern monitor displays are raster-scan display monitors. Similar to a TV monitor, an electron gun(Sony Trinitron uses three guns for three basic colors)sends an electronic beam to the front of the monitor. Easy display dot is called a pixel(picture element).For color displays, each pixel is represented by three closely located dots with red, green , and blue colors. The electronic beam selects the color elements and the intensity of each color element. The resolution of the monitor is determined by the number of different colors or gray scales displayable at each pixel, usually measured in bits, A 1-bit display can turn each pixel either ON or OFF.A gray scale has at least v2 bits. A 1-bit display can turn each pixel either ON or OFF.A gray scale has at least 2 bits which allow three light intensities plus an OFF (2*2).Usually, displays are 4 bits(16 colors),8 bits(256 colors),16 bits(thousands of colors),and 24bits (millions of colors).The electronic beam sweeps the screen from the top to the bottom line by line. Because the dot is lit for only a very short period of time, the sweep must be done very quickly in order not to have a flickering image. The refresh rate is a measure of how many times the monitor is redrawn in one second.The computer does not draw directly on the monitor. Connecting the computer to the monitor is u-sually a RGB(red, green, blue)cable. Three separate signal lines are connected. On the graphics board in the computer are circuits to generate the analog signals required to drive the monitor. There is also a frame buffer that serves as memory to store the image. Each pixel on the screen has a corresponding address in the frame buffer. The data in the frame buffer are converted into the appropriate analog signal and sent to the monitor at the refresh rate. Separately, the computer writes directly to the frame buffer the image it intends to draw. The greater the display size and number of colors, the more frame buffer is needed. The frame buffer on the graphics board is made of random-access memory(RAM).The calculator lend support toes to paint the software AutoCAD to make us can be with the sketch that the astonishing speed draw the engineering sketch or machine sketch and other with accuracy to sophisticate. The calculator paints to paint the different place, one of them with handicraft the paintings with out the diagram divide a step proceed of, because of but would sometimes appear the traditional handicraft the painting hour the problem of the impossible emergence. General circumstance bottom, usage the AutoCAD proceeds painting, control the precision painting and not that difficult, but want accurate then need the certain technique out the diagram. Us- ually paint or outsing diagram to have no to need to change to measure to AutoCAD system worth make the modification with establish, take its the province worth can normal work, but have the special request, must modify the related system to change measure; Too sometimes the request of the diagram paper with make the diagram's way of doing the antinomy, and be to adopt the to make the diagram method to can't attain the request of the diagram paper, will adopt some techniqueiques to modify the related system to change to measure, and can make the calculator draw to attain the request of the diagram paper with output's sketch.AutoCAD line type establishing of comparison At teaching of process inside would usually run into what this kind of circumstance, while establishing diagram layer, clearly established the point lin eationed, and consequently output to however investigate its reason for the solid lined, and is usually because of the line typed the establishing of comparison is not appropriate and cau-sable. Should you so establish the comparison of what kind of line type? How to use the line type the comparison in the painting?Usage AutoCAD painting, besides continuous line type( Continuous), the other line type is all from the solid line segment, blank segment, point series for or text this constituting. On-line type definition document the inside have already defined these line types the segment's standard length, and show on held the act or at print the machine\ painting output, each length and ex-portation comparison with line type comparison direct proportion. When show or print, the painting boundary that customer that request, this hour establish is out of accordance with the painting boundary of the province difference big, on held the act show or paint output's line type would match the engineering graphics to will pass the changes line type comparison the system the method that change the deal, enlarge orcontract all line types each a small segment of length, make the sketch made meet the request. In the Auto CAD, imply the adjustment line type the comparison's order: Overall situation line type comparison factor tie department exportation ratio for line type ratio factor, used foring the control not continuous line type. The Ltscale is right to have the object validity, Celtscale the province for to new object validating, twoly changing the deal w-orth all for 1.For use the line type that Auto CAD2002 painting, big part contain three kinds of forms,( such as: Comparison that Center, Center2, Center*2, Dashed, Dashed2, Dashed*2) the first is a half, the third line type for the standard form, the second line type that comparison that the first line type is the first line type of two times, if line type the comparison establish to is not suitable for, and would then make some exportation diagrams the line( such as the point lineation, dotted line...etc.) change into a solid line.Two, line breadth the count of establishPass by what handicraft painting, its painting with outs the diagram is a synchronous proceeding of, now calculator painting, its painting with outs the diagram divide a step proceeds. Wether draw the construction engineering diagram or machine spare parts diagram, at print control that a work that exportation engineering drawing, the most is a line to print the drawing the breadth, line the type, color, seal a line breadth for, and eachly growing to line type all contain its cowgirl, in the AutoCAD painting process of the old edition, even defined the line type the width, its at see the diagram area can't also display the line type the width's differentiation.( not contain many righteousness lines the Pline)Width for color for can passing the diagram layer or set upping the line coming distinguish analysing the line.What research of current painting tries a, adopt of is this kind of method.But in the AutoCAD2002, add entity that" Lweight"( line type the width establish) order, provided the new function for customer, then make use of the entity characteristic to proceed the control, and establish the line breadth for the sketch, and make use of it can at hold the act to up show with print to output, control the entity's line breadth.2002 versions inside print to establish and can is divided into three part, and for printing machine belong to the sex to establish, print the style to establish respectively and the page establish.Because of the model of breadth line the space is different from diagram manifestation of space paper result, in the model space therefore the elephant vegetable show, but in the diagram paper the space is then then to print the width to proceed to show, because of but we while drawing ske tch should know at the diagram line that true width established by line breadth of model space, and is not equal with object. When the line breadth is worth to establish to"0", it show with the minimum width( plain breadth of an elephant) on held the act, and the line breadth settle to other worth, then come showing with the worth specific value of plain width and true unit of elephant.Three, the sketch output the establishing of comparison When we draw sketch that comparison that comparison output the sketch with us hour use different, canmake originally text in the sketch that draw word exportation comparison for marking noting waiting in the output's sketch take placing changing, therefore at drawing the sketch before returning the beard make suring the sketch.For guaranteeing the sketch to output our want the literalness size, should when the text word establish usage following formula: The text word draws the high degree the = the text word output high degree* the sketch to output the comparison; The sketch outputs the comparison= output the diagram the length for of length( width)/ diagram.( width) draw the width of the diagram line to also should consider this point, its to settle the width same as output the width to multiply by with its comparison worth.From above practice with analyze to can see out, calculator painting and incompletelyresemble handicraft painting so synchronously paint with out diagram, therefore sometimes make with the diagram method can't attain the request of the diagram paper. Some in common use system that this demand we are deep into control the calculator to paint the theories, and can expertly control the operation method to change the deal with establish the technique, and can make the work of our painting more convenient, smooth, consumedly increase to paint the level with paint the efficiency.译文:3.4.1CAD硬件计算机两大主要类型的硬件使用于CAD系统,计算机和输入/输出设备。
本科毕业设计(论文)外文资料翻译外文翻译英文原文High-speed machining and demand for the development of High-speed machining is contemporary advanced manufacturing technology an important component of the high-efficiency, High-precision and high surface quality, and other features. This article presents the technical definition of the current state of development of China's application fields and the demand situation.High-speed machining is oriented to the 21st century a new high-tech, high-efficiency, High-precision and high surface quality as a basic feature, in the automobile industry, aerospace, Die Manufacturing and instrumentation industries gained increasingly widespread application, and has made significant technical and economic benefits. contemporary advanced manufacturing technology an important component part.HSC is to achieve high efficiency of the core technology manufacturers, intensive processes and equipment packaged so that it has a high production efficiency. It can be said that the high-speed machining is an increase in the quantity of equipment significantly improve processing efficiency essential to the technology. High-speed machining is the major advantages : improve production efficiency, improve accuracy and reduce the processing of cutting resistance.The high-speed machining of meaning, at present there is no uniform understanding, there are generally several points as follows : high cutting speed. usually faster than that of their normal cutting 5 -10 times; machine tool spindle speed high, generally spindle speed in -20000r/min above 10,000 for high-speed cutting; Feed at high velocity, usually 15 -50m/min up to 90m/min; For different cutting materials and the wiring used the tool material, high-speed cutting the meaning is not necessarily the same; Cutting process, bladed through frequency (Tooth Passing Frequency) closer to the "machine-tool - Workpiece "system the dominant natural frequency (Dominant Natural Frequency), can be considered to be high-speed cutting. Visibility high-speed machining is a comprehensive concept.1992. Germany, the Darmstadt University of Technology, Professor H. Schulz in the 52th on the increase of high-speed cutting for the concept and the scope, as shown in Figure 1. Think different cutting targets, shown in the figure of the transition area (Transition), to be what is commonly called the high-speed cutting, This is also the timeof metal cutting process related to the technical staff are looking forward to, or is expected to achieve the cutting speed.High-speed machining of machine tools, knives and cutting process, and other aspects specific requirements. Several were from the following aspects : high-speed machining technology development status and trends.At this stage, in order to achieve high-speed machining, general wiring with high flexibility of high-speed CNC machine tools, machining centers, By using a dedicated high-speed milling, drilling. These equipment in common is : We must also have high-speed and high-speed spindle system feeding system, Cutting can be achieved in high-speed process. High-speed cutting with the traditional cutting the biggest difference is that "Machine-tool-workpiece" the dynamic characteristics of cutting performance is stronger influence. In the system, the machine spindle stiffness, grip or form, a long knife set, spindle Broach, torque tool set, Performance high-speed impact are important factors.In the high-speed cutting, material removal rate (Metal Removal Rate, MRR), unit time that the material was removed volume, usually based on the "machine-tool-workpiece" whether Processing System "chatter." Therefore, in order to satisfy the high-speed machining needs, we must first improve the static and dynamic stiffness of machine spindle is particularly the stiffness characteristics. HSC reason at this stage to be successful, a very crucial factor is the dynamic characteristics of the master and processing capability.In order to better describe the machine spindle stiffness characteristics of the project presented new dimensionless parameter - DN value, used for the evaluation of the machine tool spindle structure on the high-speed machining of adaptability. DN value of the so-called "axis diameter per minute speed with the product." The newly developed spindle machining center DN values have been great over one million. To reduce the weight bearing, but also with an array of steel products than to the much more light ceramic ball bearings; Bearing Lubrication most impressive manner mixed with oil lubrication methods. In the field of high-speed machining. have air bearings and the development of magnetic bearings and magnetic bearings and air bearings combined constitute the magnetic gas / air mixing spindle.Feed the machine sector, high-speed machining used in the feed drive is usually larger lead, multiple high-speed ball screw and ball array of small-diameter silicon nitride (Si3N4) ceramic ball, to reduce its centrifugal and gyroscopic torque; By usinghollow-cooling technology to reduce operating at high speed ball screw as temperature generated by the friction between the lead screw and thermal deformation.In recent years, the use of linear motor-driven high-speed system of up to'' Such feed system has removed the motor from workstations to Slide in the middle of all mechanical transmission links, Implementation of Machine Tool Feed System of zero transmission. Because no linear motor rotating components, from the role of centrifugal force, can greatly increase the feed rate. Linear Motor Another major advantage of the trip is unrestricted. The linear motor is a very time for a continuous machine shop in possession of the bed. Resurfacing of the very meeting where a very early stage movement can go, but the whole system of up to the stiffness without any influence. By using high-speed screw, or linear motor can greatly enhance machine system of up to the rapid response. The maximum acceleration linear motors up to 2-10G (G for the acceleration of gravity), the largest feed rate of up to 60 -200m/min or higher.2002 world-renowned Shanghai Pudong maglev train project of maglev track steel processing, Using the Shenyang Machine Tool Group Holdings Limited McNair friendship company production plants into extra-long high-speed system for large-scale processing centers achieve . The machine feeding system for the linear guide and rack gear drive, the largest table feed rate of 60 m / min, Quick trip of 100 m / min, 2 g acceleration, maximum speed spindle 20000 r / min, the main motor power 80 kW. X-axis distance of up to 30 m, 25 m cutting long maglev track steel error is less than 0.15 mm. Maglev trains for the smooth completion of the project provided a strong guarantee for technologyIn addition, the campaign machine performance will also directly affect the processing efficiency and accuracy of processing. Mold and the free surface of high-speed machining, the main wiring with small cut deep into methods for processing. Machine requirements in the feed rate conditions, should have high-precision positioning functions and high-precision interpolation function, especially high-precision arc interpolation. Arc processing is to adopt legislation or thread milling cutter mold or machining parts, the essential processing methods.Cutting Tools Tool Material developmenthigh-speed cutting and technological development of the history, tool material is continuous progress of history. The representation of high-speed cutting tool material is cubic boron nitride (CBN). Face Milling Cutter use of CBN, its cutting speed can be as high as 5000 m / min, mainly for the gray cast iron machining. Polycrystalline diamond(PCD) has been described as a tool of the 21st century tool, It is particularly applicable to the cutting aluminum alloy containing silica material, which is light weight metal materials, high strength, widely used in the automobile, motorcycle engine, electronic devices shell, the base, and so on. At present, the use of polycrystalline diamond cutter Face Milling alloy, 5000m/min the cutting speed has reached a practical level. In addition ceramic tool also applies to gray iron of high-speed machining;Tool Coating : CBN and diamond cutter, despite good high-speed performance, but the cost is relatively high. Using the coating technology to make cutting tool is the low price, with excellent mechanical properties, which can effectively reduce the cost. Now high-speed processing of milling cutter, with most of the wiring between the Ti-A1-N composite technology for the way of multi-processing, If present in the non-ferrous metal or alloy material dry cutting, DLC (Diamond Like Carbon) coating on the cutter was of great concern. It is expected that the market outlook is very significant;Tool clamping system : Tool clamping system to support high-speed cutting is an important technology, Currently the most widely used is a two-faced tool clamping system. Has been formally invested as a commodity market at the same clamping tool system are : HSK, KM, Bigplus. NC5, AHO systems.In the high-speed machining, tool and fixture rotary performance of the balance not only affects the precision machining and tool life. it will also affect the life of machine tools. So, the choice of tool system, it should be a balanced selection of good products.Process ParametersCutting speed of high-speed processing of conventional shear velocity of about 10 times. For every tooth cutter feed rate remained basically unchanged, to guarantee parts machining precision, surface quality and durability of the tool, Feed volume will also be a corresponding increase about 10 times, reaching 60 m / min, Some even as high as 120 m / min. Therefore, high-speed machining is usually preclude the use of high-speed, feed and depth of cut small cutting parameters. Due to the high-speed machining cutting cushion tend to be small, the formation of very thin chip light, Cutting put the heat away quickly; If the wiring using a new thermal stability better tool materials and coatings, Using the dry cutting process for high-speed machining is the ideal technology program.High-speed machining field of applicationFlexible efficient production lineTo adapt to the needs of new models, auto body panel molds and resin-prevention block the forming die. must shorten the production cycle and reduce the cost ofproduction and, therefore, we must make great efforts to promote the production of high-speed die in the process. SAIC affiliated with the company that : Compared to the past, finishing, further precision; the same time, the surface roughness must be met, the bending of precision, this should be subject to appropriate intensive manual processing. Due to the extremely high cutting speed, and the last finishing processes, the processing cycle should be greatly reduced.To play for machining centers and boring and milling machining center category represented by the high-speed machining technology and automatic tool change function of distinctions Potential to improve processing efficiency, the processing of complex parts used to be concentrated as much as possible the wiring process, that is a fixture in achieving multiple processes centralized processing and dilute the traditional cars, milling, boring, Thread processing different cutting the limits of technology, equipment and give full play to the high-speed cutting tool function, NC is currently raising machine efficiency and speed up product development in an effective way. Therefore, the proposed multi-purpose tool of the new requirements call for a tool to complete different parts of the machining processes, ATC reduce the number of ATC to save time, to reduce the quantity and tool inventory, and management to reduce production costs. More commonly used in a multifunctional Tool, milling, boring and milling, drilling milling, drilling-milling thread-range tool. At the same time, mass production line, against the use of technology requires the development of special tools, tool or a smart composite tool, improve processing efficiency and accuracy and reduced investment. In the high-speed cutting conditions, and some special tools can be part of the processing time to the original 1 / 10 below, results are quite remarkable.HSC has a lot of advantages such as : a large number of materials required resection of the workpiece with ultrafine, thin structure of the workpiece, Traditionally, the need to spend very long hours for processing mobile workpiece and the design of rapid change, short product life cycle of the workpiece, able to demonstrate high-speed cutting brought advantages.中文译文高速切削加工的发展及需求高速切削加工是当代先进制造技术的重要组成部分,拥有高效率、高精度及高表面质量等特征。
毕业设计(论文)外文资料翻译学院:机械工程学院专业:机械设计制造及其自动化姓名:崔涛学号: 090501614外文出处: Robotics and Computer-IntegratedManufacturing 25 (2009) 73-80 附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文科学指南机器人和计算机集成制造25(2009)73–80一个外旋轮线专用的固定循环数控铣床Sotiris L. Omirou a, , Andreas C. Nearchou b——弗雷德里克大学机械工程系,尼科西亚,塞浦路斯,塞浦路斯——希腊帕特雷大学工商管理系发表于2006年9月20日,修改更新从2007年7月23日到2007年9月10日。
摘要提出了一个加工外旋轮线边界的特定的铣床组策略,该方法适用于被集成到一个控制器的数控铣床,对于旋转式内燃发动机(汪克尔),旋转活塞泵和一般外旋轮线形外壳的加工设计特别有用。
方案可以提供较高的精度,其中铣机是通过利用数控插补算法实现的,表面质量控制,是通过粗加工和精加工来实现,整个加工任务可以被编程在一块。
最后,该方法的有效性通过仿真试验验证所产生的刀具路径来实现。
关键词:数控;程序加工;刀具路径生成;偏移曲线;外旋轮线1介绍智能周期提供了一种数控机床来完成重复使用的G / M代码语言的新的加工操作的编程方法。
从本质上讲,智能周期是一个指令被预先设定并永久存储的集机控制器。
它们的使用,消除了许多编程的繁琐需要,减少了编程时间,并简化了整个编程过程。
所有数控加工控制是智能的,这些固定循环可以执行一定的代码,输入任何所需的变量信息。
钻,反钻,深孔钻或槽的加工是标准智能循环应用的例子。
然而,标准智能循环在数量和能力有限,无法容纳复杂的几何形状的日益增加的应用需求。
在加工一个外旋轮线构造特征的情况下,不能用标准智能循环处理。
尽管有其重要的加工应用,现代数控系统仍缺乏类似的专用智能周期。
A NOVEL INTEGRATED SYSTEM FORRAPID PRODUCT DEVELOPMENTThis paper presents a novel integrated system of rapid product development for reducing the time and cost of product development.The system is composed of four building blocks —digital prototype, virtual prototype, physical prototype and rapid tooling manufacturing system.It can aid effectively in product design, analysis, prototype, mould, and manufacturing process development by integrating closely the various advanced manufacturing technologies which involve the 3D CAD, CAE, reverse engineering, rapid prototyping and rapid tooling.Furthermore, two actual examples are provided to illustrate the application of this integrated system.The results indicate that the system has a high potential to reduce further the cycle and cost of product development.Keywords: Rapid product development; rapid prototyping; integrated system.1.IntroductionDue to the pressure of international competition and market globalization in the 21st century, there continues to be strong driving forces in industry to compete effectively by reducing manufacturing times and costs while assuring high quality products and services.Current industries are facing the new challenges: quick response to business opportunity has been considered as one of the most important factors to ensure company competitiveness; manufacturing industry is evolving toward digitalization, network and globalization.Therefore, new products must be more quickly and cheaply developed, manufactured and introduced to the market.In order to meet the demand of rapid product development, the various new technologies such as reverse engineering (RE), 3D CAD, rapid prototyping (RP), andrapid tooling (RT) have emerged and are regarded as key enabling tools with the ability to shorten the product development and manufacturing time.For example, it has been claimed that RP can cut new product development costs by up to 70% and the time to market by 90%.1 In the form of a better design, more design possibilities, a 3D CAD model can be shown to the customer for approval and prevents misunderstandings.A virtual prototyping is employed to guide in optimization of the product design and manufacturing process planning, which may result in the accurate determination of the process parameters, and reduce the number of costly physical prototype iterations.Rapid tooling technique offers a fast and low cost method to produce moulds, and shows a high potential for faster response to market demands.When properly integrated among 3D CAD, CAE, RE, RP and RT, these technologies will play a much more important role to reduce further the development cycle and cost of the product production.On the basis of above technologies, a novel integrated system of rapid product development is to be founded so as to meet the requirement of rapid product development.2.Architecture of the Integrated Development SystemThe development process from initial conceptual design to commercial product is an iterative process which includes: product design; analysis of performance, safety and reliability; product prototyping for experimental evaluation; and design modification.Therefore, any step of the new product development process has a direct and strong influence on time-to-market in short order.A good product development system must enable designers or design teams to consider all aspects of product design, manufacturing, selling and recycling at the early stage of the design cycle.So that design iteration and changes can be made easily and effectively.The more fluent the feedback is the higher possibility of success the system has.Design for manufacturing (DFM) and concurrent engineering (CE) necessitate that product and process design be developed simultaneously rather than sequentially.The integrated system of rapid product development is composed of four modules: digital prototype, virtual prototype, physical prototype and rapid tooling.The product development starts from the creation of a 3D CAD model using a CAD software package.At that stage, the product geometry is defined and its aesthetic and dimensional characteristics are verified.The main function of digital prototypeis to perform 3D CAD modelling.The CAD model is regarded as a central component of the whole system or project information base which means that in all design, analysis and manufacturing activities the same data is utilized.The product and its components are directly designed on a 3D CAD system (e.g.Pro/Engineer, Unigraphics, CATIA, IDEAS, etc.) during the creative design.If a physical part is ready, the model can be constructed by the reverse engineering technique.RE is a methodology for constructing CAD models of physical parts by digitizing an existing part, creating a digital model and then using it to manufacture components.RE can reduce the development cycle when redesigns become necessary for improved product quality.Preexisting parts with features for improved performance can be readily incorporated into the desired part design.Therefore, it is very useful in creating the CAD model of an existing part when the engineering design is lost or has gone through many design changes.When a designer creates a new design using mock-up, it is also necessary to construct the CAD model of the mock-up for further use of the design data in analysis and manufacturing.The three primary steps in RE process are part digitization, features extraction, and CAD modelling.Part digitization is accomplished by a variety of contact or non-contact digitizers.There are various commercial systems available for part digitization.These systems range from coordinate measuring machine (CMM), laser scanners to ultrasonic digitizers.They can be classified into two broad categories: contact and ser triangulation scanner (LTS), magnetic resonance images (MRI), and computer tomography (CT) are commonly used as non-contact devices.Contact digitizers mainly have CMM and cross-sectional imaging measurement (CIM).Feature extraction is normally achieved by segmenting the digitized data and capturing surface features such as edges.Part modelling is fulfiled through fitting a variety of surfaces to the segmented data points.In order to reduce the iterations of design-prototype-test cycles, increase the product process and manufacturing reliability, it is necessary to guide in optimizing the product design and manufacturing process through virtual prototype (VP).VP is a process of using 3D CAD model, in lieu of a physical prototype, for testing and evaluation of specific characteristics of a product or a manufacturing process.It is often carried out by CAE and virtual manufacturing puter aided engineering (CAE) analysis is an integral part of time-compression technologies.Various softwaretools available (i.e.ANSYS, MARC, I-DEAS, AUTOFORM, DYNAFORM, etc.) can speed up the development of new products by initiating design optimization before physical prototypes are built.The CAD models can be transferred to a CAE environment for an analysis of the product functional performance and of the manufacturing processes for producing the product’s components.It has also proven to be of great value in the design optimization of part geometry, to determine its dimensions and to control warpage and shrinkage while minimizing process-induced residual stresses and deformations.Virtual manufacturing system (VM) is the natural extension of CAE.It simulates the product functionality and the processes for producing it prior to the development of physical prototypes.VM enables a designer to visualize and optimize a product process with a set of process parameters.The visualization of a virtually simulated part prior to physical fabrication helps to reduce unwanted prototype iterations.Therefore, a product virtual manufacturing system may result in accurate determination of the process parameters, and reduce the number of costly physical prototype iterations.3D CAD model and VP allow most problems with unfitting to become obvious early in the product development process.Assemblies can be verified for interference as VP can be exercised through a range of tasks.Structure and thermal analysis can be performed on the same model employing CAE applications as well as simulating down-stream manufacturing processes.It is clear that VP increases process and product reliability.Although VP is intended to ensure that unsuitable designs are rejected or modified, in many cases, a visual and physical evaluation of the real component is needed.This often requires physical prototype to be produced.Hence, once the VP is finished, the model may often be sent directly to physical fabrication.The CAD model can be directly converted to the physical prototype using a RP technique or high-speed machining (HSM) process.The 3D CAD model is to be exported not only in the STL format which is considered the de facto standard for interfacing CAD and RP systems, but also in the NC coding which can be used by HSM.HSM has a potential for rapid producing plaster or wooden pattern for RT.RP is a new forming process which fabricates physical parts layer by layer under computer control directly from 3D CAD models in a very short time.In contrast to traditional machining methods, the majority of rapid prototyping systems tend to fabricate parts based on additive manufacturing process, rather thansubtraction or removal of material.Therefore, this type of fabrication is unconstrained by the limitations attributed to conventional machining approaches.The application of RP technique as a useful tool can provide benefits throughout the process of developing new products.Specifically, there are serious benefits that RP can bring in the areas of market research, sales support, promotional material, and the ever-important product launch.Physical RP can also become a powerful communications tool to ensure that everyone involved in the development process fully understands and appreciates the product being developed.Hence, it can help to reduce substantially the inevitable risks in the route from product concept to commercial success, and help shorten time-to-market, improve quality and reduce cost.Over the last 20 years, RP machines have been widely used in industry.The RP methods commercially available include Stereolithgraphy (SLA), Selective Laser Sintering (SLS), Fused Deposition Manufacturing (FDM), Laminated Object Manufacturing (LOM), Ballistic Particle Manufacturing (BMP), and Three-Dimensional Printing (3D printing), etc.Once the design has been accepted, the realization of the production line represents a major task with a long lead time before any product can be put to the market.In particular, the preparation of complex tooling is usually in the critical path of a project and has therefore a direct and strong influence on time-to-market.In order to reduce the product development time and cost, the new technique of RT has been developed.RT is a technique that can transform the RP patterns into functional parts, especially metal parts.It offers a fast and low cost method to produce moulds and functional parts.Furthermore, the integration of both RP and RT in development strategy promotes the implementation of concurrent engineering in companies.Numerous processes have been developed for producing dies from RP system.The RT methods can generally be divided into direct and indirect tooling categories, and also soft (firm) and hard tooling subgroups.Indirect RT requires some kinds of master patterns, which can be made by conventional methods (e.g.HSM), or more commonly by an RP process such as SLA or SLS.Direct RT, as the name suggests, involves the manufacturing of a tool cavity directly on a RP system, hence eliminating the intermediate step of generating a pattern.Soft tooling can be obtained via replication from a positive pattern or master.Soft tooling is associated with low costs; used for low volume production and uses materials that have low hardness levels such as silicones, epoxies, low melting point alloys, etc.RTV silicone rubber moulds, epoxy moulds, metal spraying moulds, etc.are some of these typical soft moldings.Hard tooling is associated with higher volume of production, and the use of materials of greater hardness.Keltool process, Quickcast process, and the ExpressTool process are some of these hard toolings.Electrical discharge machining (EDM) seems to be an interesting area in which rapid tooling finds a potential application.Some methods of making EDM electrodes based on RP technique have developed, such as abrading process, copper electroforming and net shape casting, etc.On the basis of the above techniques, a novel integrated system of rapid product development is to be proposed.Its overall architecture is shown in Fig.1.3.Case Studies3.1.Case study 1: ImpellerA total of thirty plastic impellers, with a relatively complex geometry, were required by acustomer within fifteen working days from the receipt of a 2D CAD model.There were many factors to be considered in deciding the most appropriate route for producing the impellers.These factors mainly involved cost, lead-time, the number of parts required, the final material for the parts, and the part geometry.In order to maximize the benefits in terms of time and cost reduction for the parts, it was decided to use silicon rubber mould and the parts were eventually produced by vacuum casting process.Silicon rubber mould is an easy, relatively inexpensive and fast way to fabricate prototype or pre-production tools.It can be utilized for moulding parts in wax, polyurethane, ABS, and a few epoxy materials.The process is best suited for projects where form, fit, or functional testing can be done with a material which mimics the characteristics of the production material.The casting parts with fine details and very thin walls can be easily and rapidly produced.The whole process flow involved the 3D CAD modelling, producing master pattern (RP prototype), silicon rubber mould, and casting green parts.The time sequence for the fabrication of impellers was described as follows.Due to the complexity of the impeller, the task of generating the 3D CAD model using Pro/Engineer software package took almost 3 calendar days.The master pattern for this project was built on a SPS 600 machine in 2 calendar days.SL process was chosen because it was cost effective and the surface finish was good.The next step involved creating a roomtemperature vulcanized (RTV) silicone rubber mold which was completed within an additional 3 calendar days.Finally, the ABS materials were cast into silicon rubber mould under the vacuum casting condition, and the green parts were achieved in 4 calendar days.The required 30 components were produced successfully and completed in 12 calendar days.The primary process stages are illustrated in Fig.2.These impellers only cost about 5 thousand RMB and took 12 working days.Consequently, in contrast to the traditional development mode, the impellers developed using the integrated system can cut cost by up to 50% and the time-to-market by 75%.When evaluated against satisfying urgent requirement with respect to time, the procedure is clearly worth pursuing, as indicated by the case study described above.Gong from a 3D CAD solid modeling to fully functional production impellers in less than 12 working days is certainly extraordinary.With proper implementation of the process by qualified personnel, working within the scope of the constraints noted, the acceptance and advancement of the integrated manufacturing method is likely to grow.3.2.Case study 2: MannequinTen plastic mannequins were required by a client in three months from the receipt of the plaster modelof the emulational body.This component was an ideal candidate for using integrated system to development, with a very complex surface and a requirement for only 10 parts.In order to produce the plastic mannequin, the various technologies including reverse engineering, 3D CAD, rapid prototyping and rapid tooling were used to complete model measuring, surfaces reconstructing, 3D CAD modelling, prototype and mould building.The whole development work was presented below.The first step of the project was to construct a CAD model of the emulational body by RE process.ATOS measuring equipment made in GOM Inc.which has a high scanning (10,000 points/sec) and can measure models in a wide range from 500mm to 10mm, was employed to capture the digitized data of the plaster mold.Figure 3(a) shows the point clouds of the body model.The subsequent process was to perform surfaces reconstructing.To speed this process, a special reverse engineering program, called CopyCAD (Delcam Inc.), was used to create quickly and easily the CAD surfaces from the digitized data.After surfacesreconstructing, many errors in the original model and the joints must be modified by PowerShape software package (another software of Delcam Inc.).The surfaces model of the body is represented in Fig.3(b).To fabricate easily, the surface model was divided into 11 individual components which included the head, body, upper arms, forearms, tights, shanks and feet using Pro/Engineer software package.Subsequently, every surface model was converted to a solid model, and many holes and slots needed to be designed for fixing joints such as shoulder, knees, etc.Then, the solid parts and joints were assembled to form the solid model of the emulational body.Figure 3(c) illustrates the completed CAD solid model.The RP prototypes of these components were built on a LPS 600 machine.The assembly RP body model is shown in Fig.3(d).In addition, silicon rubber moulds of these components were fabricated for producing the green parts.Finally, the required 10 plastic mannequins were produced successfully and the project was completed in about 12 weeks.Figures 3(e) and (f) describe respectively the silicon rubber mould of half head and the green product.The case indicates the rapid development of large product and complex surfaces can be realized quickly following the integrated development mode.4.ConclusionIn this paper, we have presented an integrated system based on RP for rapid product developing.The system consists of four modules: digital prototype, virtual prototype, physical prototype and rapid tooling.It employs fully and integrates closely the various advanced manufacturing technologies which involve the 3D CAD, RE, CAE, RP, and RT.In this system, the procedure of development from design to end product is worked step by step: design, analysis, rapid prototype and tooling.By evaluating the whole process and its various components, and comparing them with traditional process, it has been clear that one can reap benefits in various ways.The system can effectively compress the design and manufacturing cycle time and reduce the development cost, which is an important factor in ing this integrated system to develop new product shows a high potential for faster response to market and customers’ demands.As a result, it will play a more and more important role to reduce the manufacturing cycle and cost of product development in the future. AcknowledgementsThis research was supported by The National High Technology Research and Development Program (863 Program) under the project “The integrated manufacturing technology and equipments of rapid toolingfor rapid product development” (No.2023AA421270), and “Tenth Five-Year” National Key Technologies R&D Program of China under the project “Research and demonstrator of rapid manufacturing integrated system based on rapid prototyping” (No.2023BA205B10- CMTT1001).。
机械设计创造及其自动化毕业论文外文文献翻译INTEGRATION OF MACHINERY译文题目专业机械设计创造及其自动化外文资料翻译INTEGRATION OF MACHINERY(From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACTMachinery was the modern science and technology development inevitable result, this article has summarized the integration of machinery technology basic outline and the development background .Summarized the domestic and foreign integration of machinery technology present situation, has analyzed the integration of machinery technology trend of development.Key word: integration of machinery ,technology, present situation ,product t,echnique of manufacture ,trend of development0. Introduction modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation .In mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management systemof by machinery for the characteristic integration ofdevelopment phase.1. Integration of machinery outline integration of machinery is refers in the organization new owner function, the power function, in the information processing function and the control function introduces the electronic technology, unifies the system the mechanism and the computerization design and the software which constitutes always to call. The integration of machinery development also has become one to have until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content .But its basic characteristic may summarize is: The integration of machinery is embarks from the system viewpoint, synthesis community technologies and so on utilization mechanical technology, microelectronic technology, automatic control technology, computer technology, information technology, sensing observation and control technology, electric power electronic technology, connection technology, information conversion technology as well as software programming technology, according to the system function goal and the optimized organization goal, reasonable disposition and the layout various functions unit, in multi-purpose, high grade, redundant reliable, in the low energy consumption significance realize the specific function value, and causes the overall system optimization the systems engineering technology .From this produces functional system, then becomes an integration of machinery systematic or the integration of machinery product. Therefore, of coveringtechnology is based on the above community technology organic fusion one kind of comprehensive technology, but is not mechanical technical, the microelectronic technology as well as other new technical simple combination, pieces together .This is the integration of machinery and the machinery adds the machinery electrification which the electricity forms in the concept basic difference .The mechanical engineering technology has the merely technical to develop the machinery electrification, still was the traditional machinery, its main function still was replaces with the enlargement physical strength .But after develops the integration of machinery, micro electron installment besides may substitute for certain mechanical parts the original function, but also can entrust with many new functions,like the automatic detection, the automatic reduction information, demonstrate the record, the automatic control and the control automatic diagnosis and the protection automatically and so on .Not only namely the integration of machinery product is human's hand and body extending, human's sense organ and the brains look, has the intellectualized characteristic is the integration of machinery and the machinery electrification distinguishes in the function essence.2. Integration of machinery development condition integration of machinery development may divide into 3 stages roughly.20th century 60's before for the first stage, this stage is called the initial stage .In this time, the people determination not on own initiative uses the electronic technology the preliminary achievement to consummate the mechanical product the performance .Specially in Second World War period, the war has stimulated the mechanical product and the electronic technology union, these mechanical and electrical union military technology, postwar transfers civilly, to postwar economical restoration positive function .Developed and the development at that time generally speaking also is at the spontaneouscondition .Because at that time the electronic technology development not yet achieved certain level, mechanical technical and electronic technology union also not impossible widespread and thorough development, already developed the product was also unable to promote massively. The 20th century 70~80 ages for the second stage, may be called the vigorous development stage .This time, the computer technology, the control technology, the communication development, has laid the technology base for the integration of machinery development . Large-scale, ultra large scale integrated circuit and microcomputer swift and violent development, has provided the full material base for the integration of machinery development .This time characteristic is :①A mechatronics word first generally is accepted in Japan, probably obtains the quite widespread acknowledgment to 1980s last stages in the worldwide scale ;②The integration of machinery technology and the product obtained the enormous development ;③The various countries start to the integration of machinery technology and the product give the very big attention and the support. 1990s later periods, started the integration of machinery technology the new stagewhich makes great strides forward to the intellectualized direction, the integration of machinery enters the thorough development time .At the same time, optics, the communication and so on entered the integration of machinery, processes the technology also zhan to appear tiny in the integration of machinery the foot, appeared the light integration of machinery and the micro integration of machinery and so on the new branch; On the other hand to the integration of machinery system modeling design, the analysis and the integrated method, the integration of machinery discipline system and the trend of development has all conducted the thorough research .At the same time, because the hugeprogress which domains and so on artificial intelligence technology, neural network technology and optical fiber technology obtain, opened the development vast world for the integration of machinery technology .These research, will urge the integration of machinery further to establish the integrity the foundation and forms the integrity gradually the scientific system. Our country is only then starts from the beginning of 1980s in this aspect to study with the application .The State Councilsummary had considered fully on international the influence which and possibly brought from this about the integration of machinery technology developmenttrend .Many universities, colleges and institutes, the development facility and some large and middle scale enterprises have done the massive work to this technical development and the application, does not yield certain result, but and so on the advanced countries compared with Japan still has the suitable disparity.3. Integration of machinery trend of development integrations of machinery are the collection machinery, the electron, optics, the control, the computer, the information and so on the multi-disciplinary overlapping syntheses, its development and the progress rely on and promote the correlation technology development and the progress .Therefore, the integration of machinery main development direction is as follows:3.1 Intellectualized intellectualizations are 21st century integration of machinery technological development important development directions .Theartificial intelligence obtains day by day in the integration of machinery constructor's research takes, the robot and the numerical control engine bedis to the machine behavior description, is in the control theory foundation, the absorption artificial intelligence, the operations research, the computer science, the fuzzy mathematics, the psychology, the physiology and the chaos dynamics and so on the new thought, the new method, simulate the human intelligence, enable it to have abilities and so on judgment inference, logical thinking, independent decision-making, obtains the higher control goal in order to .Indeed, enable the integration of machinery product to have with the human identical intelligence, is not impossible, also is nonessential .But, the high performance, the high speed microprocessor enable the integration of machinery product to have preliminary intelligent or human's partial intelligences, then is completely possible and essential.In the modern manufacture process, the information has become the control manufacture industry the determining factor, moreover is the most active actuation factor .Enhances the manufacture system information-handling capacity to become the modern manufacture science development a key point .As a result of the manufacture system information organization and structure multi-level, makes the information the gain, the integration and the fusion presents draws up the character, information measure multi-dimensional, as well as information organization's multi-level .In the manufacture information structural model, manufacture information uniform restraint, dissemination processing and magnanimous data aspects and so on manufacture knowledge library management, all also wait for further break through.Each kind of artificial intelligence tool and the computation intelligence method promoted the manufacture intelligence development in the manufacture widespread application .A kind based on the biological evolution algorithm computation intelligent agent, in includes thescheduling problem in the combination optimization solution area of technology, receives the more and more universal attention, hopefully completes the combination optimization question when the manufacture the solution speed and the solution precision aspect breaks through the question scale in pairs the restriction .The manufacture intelligence also displays in: The intelligent dispatch, the intelligent design, the intelligent processing, the robot study, the intelligent control, the intelligent craft plan, the intelligent diagnosis and so on are various These question key breakthrough, may form the product innovation the basic research system. Between 2 modern mechanical engineering front science different science overlapping fusion will have the new science accumulation, the economical development and society's progress has had the new request and the expectation to the science and technology, thus will form the front science .The front science also has solved and between the solution scientific question border area .The front science has the obvious time domain, the domain and the dynamic characteristic .The project front science distinguished in the general basic science important characteristic is it has covered the key science and technology question which the project actual appeared.Manufacture system is a complex large-scale system, for satisfies the manufacture system agility, the fast response and fast reorganization ability, must profit from the information science, the life sciences and the social sciences and so on the multi-disciplinary research results, the exploration manufacture system new architecture, the manufacture pattern and the manufacture system effective operational mechanism .Makes the system optimization the organizational structure and the good movement condition is makes the system modeling , the simulation and the optimized essential target .Not only the manufacture system new architecture to makes the enterprise the agility and may reorganize ability to the demand response ability to have the vital significance, moreover to made the enterprise first floor production equipment the flexibility and may dynamic reorganization ability set a higher request .The biological manufacture view more and more many is introduced the manufacture system, satisfies the manufacture system new request.The study organizes and circulates method and technique of complicated system from the biological phenomenon, is a valid exit which will solve many hard nut to cracks that manufacturing industry face from now on currently .Imitating to living what manufacturing point is mimicry living creature organ of from the organization, from match more, from growth with from evolution etc. function structure and circulate mode of a kind of manufacturing system and manufacturing process.The manufacturing drives in the mechanism under, continuously by one's own perfect raise on organizing structure and circulating mode and thus to adapt the process of[with] ability for the environment .For from descend but the last product proceed together a design and make a craft rules the auto of the distance born, produce system of dynamic state reorganization and product and manufacturing the system tend automatically excellent provided theories foundation and carry out acondition .Imitate to living a manufacturing to belong to manufacturing science and life science of"the far good luck is miscellaneous to hand over", it will produce to the manufacturing industry for 21 centuries huge of influence .机电一体化摘要机电一体化是现代科学技术发展的必然结果,本文简述了机电一体化技术的基本概要和发展背景。
西南交通大学本科毕业设计(论文)外文资料及翻译年级: 2007级学号: 20077657姓名: 王雪扬专业: 工程机械指导老师: 李春林2011年 5 月Loading machinesFor materials handing in construction,use is made of loaders.Practice has shown that excavators are less effective in the capacity of loads in quarries and storages of nonmetallic materials than loaders.By the kind of loads handled,loaders are classified as forklift loads and scooping loaders for loose materials.Sooping loaders are divided into single-bucket and continuous-action Multi-bucket loaders.Single-bucket loaders are general-purpose machines suited engineering and in applications requring continuous working process.Depending on the kind of running gear,crawler and anailable.Crawler loaders have a high passblibity and develop a great thrust efftort. Wheeled loaders feature a high manoeuvrability and high traveling speeds making no damage to the road pavement and the storage areas. Unloaders are used for unloading sand, gravel, crushed stone, cement form railway cars.Power and pneumatic unloaders are used,power for unloading materials from flat cars or gondola cars(open wagons)and pneumatic for unloading cement.The main working member of fork-lift loaders is the fork serving to load and unload piece loads. These loaders have different change attachments. When equipped with buckets or grabs, they are used for loading loose and small-piece materials, and the boom attachment makes these loaders suited for hoisting loads to a small heighe and sometimes for erection work in construction.Fork-lift loaders are operated on hard-pavement areas,therefore they are mainly used in storehouse and as factory materials-handing equipment.They are made on the basis of a truck therefore they are also called truck loaders.they are powered by internal combustion engines or electric motors with storage batteries.Engine powered truck are used for large warehouse and stock-handing application, for general yard work and fpr loading and unloading of vehicles. Torque converter transmission provides smooth operation; power steering and all-weather cabs are options available.Single-bucket loaders have a crawler tractor or a wheeled truck as a carrier mounting. The loader permits mechanization of loading construction and erection and work with the aid of change attachments,of which the main one is the bucket. The loading equipment is available in three modifications: front-end,overloading, and half-swing,jib-type. The front-end attachment provides also side unloading.The overloading modifiactaion permits back unloading. Presently front-end loader with the positive displacement hydraulic drives for the attachment are most widely used.The output of multi-bucket loaders is 40 to 60 percent higher than of single-bucket machines at the same power rating,it is expedient to use them in brickyards,prefabricated concrete products plants,railway stations with large volumes of loading-unloading operatins and also for loading loose materials.In addition,they are suited for size grading of loose materials,for which purpose they are provided with special vibrating screens.Multi-bucket loaders are very efficient in unloading flatcars with side dumping of the handle material.These loaders can be applied in the production lines of prefabricatde ainstruction products plants and also in road building.In the latter case they are used for loading sand and gravel into drying drums and mixers.The working member of the loader is a screw feeder consisting of tow right-hand and left-hand screws,which are arranged on both sides of a bucket elecator.When the feeder rotates,the loaded material is delivered to the buckets to make the scooping easier.A scraper is secured underneath the screw feeder.The elevator of the multi-bucket loader usually dischanges the material onto belt conveyers that deliver it to tiansport facilities.Some loaders discharge the handle material into tranport facilities through hoppers or chutes.装载机在建筑施工中,材料的装卸是用装载机和写在机进行的。
Metal heat treatmentA, annealingIn front of the description lengba processing materials and softening plastic treatment methods, it has been used the word, the word annealing with similar meanings. The purpose is to reduce completely annealing, hardness, plastic, sometimes also increased to improve the cutting performance, high this steel is difficult to processing. This method is used to reduce heat stress, refined grains, improve the structure of the material.Annealing is not always can improve the cutting machining, cutting processing a word used to describe several factors, including material cutting when good finish (i.e. smaller surface roughness - the ability of the translator. When fully annealing, ordinary low hardness, low intensity of cutting resistance smaller, less, but usually due to the plasticity and toughness is too big to chip away when the surface of workpiece surface of workpiece surface quality, scratch, leads to poor cutting processing. For this kind of steel, annealing may not be the most appropriate treatment. Many of the most high and cutting steel processing usually can be greatly improved by annealing except in the soft, because of their condition, high hardness and strength for processing.And the annealing method is GongXi just slow to the steel wire, insulation above about for a period of time, make the same temperature uniformity, forming materials, then the austenitic or buried with furnace lime or other insulating materials in slow cooling. To precipitation of ferrite and pearlite bulky iron, steel in the soft, the strain of toughness and minimum, must slow cooling.Second, normalizingHow much is the fire of similar purposes, but not the annealing steel soft and fine pearlite state. Not bulky. Steel is refined grains, fire can release of stress, improve structural homogeneity and restore some plastic, high toughness. This method is often used to improve cutting machining, reduce stress, reduce part machining or limitation of deformation.Is the fire will chromatography method is GuoGongXiGang steel or slow heatedto Ac3 respectively, Accm line or on-line insulation for a period of time to form, and in the austenitic stationary air slow cooling. Should notice more, GongXi composition of carbon steel needs to be heated to Accm line above, not Ac1 line above the annealing. The purpose is in the process of austenitic to dissolve all cementite, thus to minimize the boundaries on hard and brittle iron carbon compounds, and get little grain of ferrite pearlite, minimum free cementite and freedom.Third, the ball annealingThrough the steel ball annealing can get minimum hardness and the biggest plastic, it can make the iron carbon compounds with small globular distribution in ferritic matrix. In order to make the ball easier small particles, usually for fire steel ball annealing. Ball annealing available in several different methods, but all the methods are needed in A1 line near (usually slightly low temperature preservation) for a long time, make the iron carbon compounds formed more stable, low level of small ball.Ball annealing method of the main objective is to improve the cutting processing, and drawing of hardened steel pretreatment, make it more uniform structure quenching. Because of the heat treatment for a long time, so the cost is higher than that of ball annealing is common or annealing.Four, steel sclerosisThe most hardened steel heat treatment method is based on the production of martensite high. Therefore, the first step to most other treatment with commonly used method -- austenitic. YaGongXiGang heated to Ac1 liquidus temperature, heat preservation, more about that temperature uniformly, austenitic evenly. GuoGongXiGang Ac1 above liquidus temperature preservation in steel, while about still remain iron carbon compounds.The second step is to avoid rapid cooling in the nose produces isothermal curve transformation pearlite. The cooling speed depends on the temperature and hardened steel quenching medium heat can be taken away from the surface of the ability of heat transfer and steel itself. Table 1-11 is some common medium and cooling method, cooling ability of the sequence.High temperature gradient produces high stress, deformation and cracking causes,so only in the very need to produce quenching specific structures are used. When the quenching heat uniform, care must be taken to reduce the heat stress diffusion. For example, a thin stick to end its vertical quenching, is inserted into the cooling medium, so whole section and temperature changes. If the shape of a side of the workpiece cooling, and on the other side of the earlier than size change is likely to cause high stress, produce plastic flow and permanent deformation.With several special quenching method can reduce stress, deformation and cracking quenching decreases. One called hierarchical quenching, the method is: will the austenitic steel in temperature is higher than that of martensite transformation temperature (Ms), salt bath time until the temperature uniformity, at the beginning of forming bainite, then put before air cooling, heat generated from the start when the same hardware quenching cracking, martensite and warpage cause of high thermal stress or eliminate stress have been quenched.In a similar method of temperature, then, is called the isothermal quenching (austenitic steel in salt bath), keep for a long time, the result is formed with the isothermal bainite. Bainite structure in the same ingredients as the formation of martensite hard, but in normal hardened steel, reduce the heat shock, by further processing, unnecessary in high hardness can be obtained when good impact toughness.Five, temperingTo adjust hardened steel used the third step is often backfire. Besides the isothermal quenching steel quenching condition usually used in most all can use in production. To produce martensite steel to quench make hard, macro and micro stress, stress, low plasticity materials. To reduce the harm that can be heated to steel again by low-temperature shift (A1) below a certain temperature. Hardened steel structure change of tempering time and temperature is the function of temperature, which is the most important. Must be hardened piece.it is emphasized, method, but the reverse is true. Steel is tempered by heat treatment of hardened steel, through the tempering of heating, to release stress again, soften and improve plastic.The structural change and tempering causes change depending on performance of the heating temperature steel back. The higher the temperature, the temperatureeffect, so the choice is often sacrificed for the hardness and strength plasticity and toughness. Again, to quench heating to influence of carbon-steel, in between, structure, changes will occur in the above, the structure and properties of the significant changes. In the next time the temperature of the A1 heat will produce and process of ball annealing of similar structures.In industry, usually avoid to scope, because the tempering within the scope of tempering steel often produced unexplained brittleness or plastic loss. Some alloy in to scope, also can produce "temper brittleness, especially from" (or by) the temperature range slow cooling will appear. When these steel heat temper, they must usually heated to rapid cooling and above. Of course, from the temperature of cold won't produce sclerosis, fast because no austenitic.金属热处理一、退火在前面描述冷拔加工材料的软化并重新获得塑性的热处理方法时,就已使用退火这个词,该词具有相似的意义。
英文原文名《English for Die Mould Design andManufacturing》英文原文版出处:北京大学出版社3月第1版译文:6.4自动化生产6.4.1 介绍自动化是一种没有人类的协助下能完成控制的技术,它是通过使用指令结合执行该指令的控制系统的程序来实现。
一个自动化的程序需要只是的驱动和控制系统操作。
自动化能被应用于各种领域,尤其与工业制造系联系更为紧密。
最早用于工业制造中的是在1946年福特汽车公司的一名工程经理,用于描述福特生产厂的自动传送系统装置与进给机制的多样性。
而具有讽刺意味的是,近来所有的现代自动化应用技术都是受控于在1964年还没使用的电脑技术。
自动化制造系统在物理产品上的工厂的操作。
他们进行加工,装配,检验操作,或材料处理,在某些情况下完成更多的在同一系统中这些操作之一。
之所以被称为自动化是因为其执行的是代替较低水平的人的参与与之相应的手动过程。
而且在一些高度自动化的系统,几乎没有人的参与。
自动化制造系统的例子包括:(1)加工零件的自动化机床(2)自动连续生产线和类似的顺序生产系统(3)生产制造系统中使用工业机器人进行加工或装配操作(4)自动化材料处理和存储系统集成的制造作业(5)用于质量控制的自动检测系统自动化生产系统可分为三种基本类型:(1)硬性自动化,(2)可编程自动化,和(3)柔性自动化硬性的自动化是通过一个系统中的处理的序列(或装配)操作的设备配置固定。
每个环节的操作通常是简单的,可能包括普通线性或旋转的两个运动或一个远动得到简单组合。
这是很多这种工序的协调与整合为一个设备,使得系统变的复杂。
硬性自动化的典型特点包括:(1)定做设计设备的初期投资高(2)高生产效率(3)适应产品变化相对单一对于经济上来说硬性自动化用于大批量和高生产率的产品。
与其他生产方式相比高的初期成本有着它的特点。
例如硬性自动化包括生产线和自动化装配机。
在可编程自动化中,生产设备的设计有能力改变操作序列来适应不同的产品配置。
操作顺序和程序控制,这是一组指令编码以便他们可以读取使系统中断。
新的程序可以制备和输入设备中来生产新的产品。
可编程自动化生产系统的应用低和中等批量的生产。
零件和产品通常是大批量生产。
生产每一批不同的新产品,系统必须对新产品系列重新编入相应的新指令。
机器的相对设置也必须作出相应的改变:工具必须加载,设备必须连接到机床工作台,及所需的机器设置指令必须输入。
可编程自动化的例子包括数控机床,工业机器人,可编程逻辑控制器。
柔性自动化的可编程自动化的一个扩展。
柔性自动化系统是能够生产各种零件(或产品)几乎没有花费多余时间从一个制件的到另一个不同制件的转换。
无需损失生产时间且没必要重新编程的系统和改变的机械辅助配件(模具,夹具,机床设置)。
因此,该系统可以生产各种不同的组合和部分组合的产品而不是要求他们进行分批生产。
是什么使柔性自动化可能是通过该系统处理部分之间的差异不明显。
这是一个各种软件的情况下,使所需的要求之间转换的量是最小的。
柔性自动化的例子是柔性制造系统进行机械加工,可以追溯到20世纪60年代后期。
6.4.2柔性制造系统在现代制造业框架中,柔性是一个重要的特性。
这意味一个制造系统是具有通用性和广泛适应性,同时也有较高的生产能力。
一个柔性的制造系统是通用的,它能生产多种零件。
它具有广泛适应性是因为它可以被很快的作出调整,生产完全不同的零件。
柔性制造系统(FMS)是一个高度自动化的TG(成组技术)机电池。
一批处理工作站(通常是数控机床),由一个自动的材料的互连处理和存储系统,并通过一个分布式计算机来控制系统。
之所以称为柔性系统是能够处理各种不同的部分风格同时在各种工作站,和图案的组合。
FMS是在各种品种中,适合中批量生产。
FMS依托集团的技术原理。
成组技术是相似的部件组合到一起,利用他们的设计和生产制造的理念相似,相似的零件安装到部分位置,其中每个部分位置具有相似的设计和制造特点。
没有一个制造系统能够是完全柔性的,对于能在FMS 上生产的部分工序(或产品)是有限制的。
FMS是在一个被定义的样式、尺寸和过程内来生产产品的。
换句话说,FMS能够生产一种单独的产品或者一组受限制的产品。
FMS必须具备三种功能:(1)在系统加工的不同的工序或产品中辨认区别的功能;(2)快速地改变操作指令;(3)快速变换物理装置。
6.4.3计算机集成制造系统计算机集成制造(CIM)是用来描述现代的方法来制造术语。
虽然CIN包括许多其他先进的制造方法诸如计算机数字控制(CNC)、计算机辅助技术/计算机辅助制造(CAD/CAM)、机器人学以及及时(JIT)交货,但它仍不过是一项新技术或者是一个新概念。
计算机集成制造是一种全新的制造方法,一条全新的经营之道。
为了理解CIM,有必要从现代与传统制造的比较开始。
现代制造包括所有把原材料变成成品、将它们送到市场以及在工地对它们进行保障所需的活动与工艺。
这些活动包括以下内容:(1)确定对于某一产品的需求。
(2)设计一种产品来满足这一需求。
(3)获得生产这种产品所需的原材料。
(4)采用适当的工艺把原材料变成产品。
(5)把产品运送到市场。
(6)对这种产品进行维修以确保其在工地的固有性能。
可以把这种广义的现代制造观点与那种几乎全部集中于转换过程的更为狭义的传统观点来进行比较。
老方法将重要的转换前的要点如市场分析研究、开发与设计以及转换后的要点包括产品交货与产品维修在内。
换句话说,在老的制造方法中,只有那些发生在工厂的工艺才被认为是制造工艺。
这种传统的把全面的概念分为若干独立元素的方法基本上不会随自动化的到来而改变。
就CIM而言,不仅各种元素自动化了,而且自动化也被联系在一起或集成。
集成化意味着一个系统可以具有完全、瞬时的信息分享。
在现代制造中,而集成化由计算机完成。
而CIM则实现所有部件的集成化,包括把原材料包装成产品以及把产品送到市场。
第7章CAD/CAM/CAE7.1 在模具设计中的计算机CAD既可以指计算机辅助设计,又可以指计算机辅助绘图。
实际上,这意味着任何一个或两个这些概念和工具,设计者都有机会使用它的两种形式。
CAD计算机辅助设计是指用计算机和外设使设计过程简化和强化。
CAD计算机辅助绘图是指计算机和外部设备来产生设计过程的文件和图样。
文件通常包括初步设计图,工作图纸,零件列表,和设计计算。
无论是计算机辅助设计系统还是计算机辅助绘图系统,CAD系统由三个基本部分组成:(1)硬件、(2)软件、(3)用户。
CAD系统的硬件组成包括处理器、系统显示、键盘、数字转换器和绘图机。
CAD系统的软件由具有设计和绘画功能的程序组成。
用户就是使用硬件和软件是设计过程简化和强化的工具设计者。
图形显示是第一步,从而可将设计与计算机真正结合起来,接下来是用绘图仪画出图形。
随着20世纪60年代早期的数字化平板仪的发明,我们今天所知的CAD硬件开始成形,很快计算机绘图随之得以发展。
早期的CAD系统庞大、笨重且昂贵。
因为太贵了,只有大公司才用得起。
在20世纪60年代末。
CAD被认为有在模具设计应用的潜力和意义但不实用的革新。
但是,随之20世纪70年代硅芯片的引入,计算机开始在图形设计领域发挥作用。
硅晶片上的集成电路使得组装起来的计算机与电视机一样大小。
这种“迷你”小型机具有大型计算机的全部功能,但却小得多也相当便宜,很快又出现了更小的被称为微机的计算机。
20世纪70年代CAD软硬件技术有了长足的发展,以至于80年代初,研发与销售CAD系统已成为一个飞速增长的产业。
同时CAD已由最初的新颖但不实用变成今天的一项重要发明,到了1980年,已有从微机、小型机到大型计算机用的多种CAD系统。
7.2 CAD/CAM7.2.1 CAD计算机辅助设计/ 计算机辅助制造(CAD/CAM)指的是将计算机应用于设计和生产过程中以提高生产率。
CAD/CAM系统的核心是设计终端和相应的硬件,诸如计算机、打印机、绘图仪、磁带机和数字化仪等,设计在被完成之前始终在终端显示器上被监测,如果需要还可进行硬拷贝。
含有设计数据的计算机磁带或其它控制媒介在制造、测试和质量控制过程中驱动着数控加工设备。
用于CAD/CAM的软件是储存在计算机系统中的程序集合,用来驱动各种构成硬件完成特定的任务。
如生成NC(数控)加工路径、装配材料清单、在有限元模型中生成节点和单元的程序。
有些软件包指的是软件(程序)模块,可分为以下四类:(1)操作系统、(2)通用程序、(3)应用程序和(4)用户程序。
虽然还有其它功能模块软件,但这足以说明研发CAD/CAM系统的复杂性了。
操作系统是指为某一个或一类计算机而写的程序,为操作便利高效,将数据和程序放在系统的内存中,操作系统与输入/输出设备,如显示器、打印机及磁带打孔机的关系尤其密切。
大多时候操作系统由计算机供应商提供。
虽然有争议说不存在所谓的通用程序,但一些程序的确比其它程序更常用些。
例如用高级语言像FORTRAN编写的图形程序,可以生成线、圆、抛物线等几何实体以及这些几何实体的组合,用这些基本图元实体可进行设计,设计范围包括印刷电路板、钻头夹具、固定装置等。
应用程序是专为某一特殊用途而开发的。
第一个专用程序语言是1956年的自动编程工具(APT)语言,APT是为简化向数控机床输入的加工程序的编制而开发的,如图7-1所示。
其它与CAD/CAM有关的专用程序有:生成有限元网格和金属板件的平面模型,这类程序通常可与系统一起买进或从软件供应商处得到。
图7-1 例如CAD在车加工显示的机加工序列CAD/CAM系统中的用户程序是为产生专用输出结果(而研制)的专业针对性极强的软件包,如用户只要输入一些像齿数、节圆直径之类的参数,就可由用户程序自动生成齿轮。
还可用另一类程序在给出刀具尺寸、材料、切削深度等信息后,计算切削时的最佳进给和转速。
这类程序通常都是用户在通用软件供应商提供的软件模块基础上自己开发的。
尽管用户程序可大大节约时间和精力,但不是所有的CAD/CAM软件包都有用户程序。
1. 计算机图形计算机图形系统计算并储存物理相关的数据,以确定精确位置、尺寸标注及每个设计单元的其它特性。
借助于这些相关设计数据,用户设计人员可在工件制品加工前进行复杂的工程分析、生成材料清单、生产报告、检查设计的不相容性。
利用计算机图形学,可将二维图形转换成三维线框和实体模型。
2. 线框模型简单的线框模型是表示几何模型最经济的一种方法,在检验图形的基本属性和模型的连续性时很有用,但在开发复杂模型时,线框模型就有局限性,实体模型可解决线框模型中出现的大部分问题。
3. 实体模型主要有三种构造实体的技术:构造实体几何法(CSG)、边界表示法(B-Rep)和分解实体模型。