当前位置:文档之家› 变频在锅炉中的应用

变频在锅炉中的应用

变频在锅炉中的应用
变频在锅炉中的应用

变频器技术工业锅炉控制系统中的应用

孙彦军

宁夏宝塔石化集团设计院(有限公司)宁夏银川 750002

介绍了变频器在工业锅炉控制系统应用中的节能原理、应用方法及变频器选型,与变频器相关的保护装置及接至电动机导线的选择。

关键词:变频器控制系统恒功率恒转矩缺相断路器

1、引言

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。它的主电路都采用交-直-交电路。如:JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz;JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW;

从理论上我们可知,电机的转速N 与供电频率f 有以下关系:

n = qf602×(1 - s)(1)

其中:q --电机极数S--转差率

由式(1)可知,转速n 与频率 f 成正比,如果不改变电动机的极数,只要改变频率 f 即可改变电动机的转速,当频率 f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。在工业领域里的应用日益广泛。随着变频器的造价日趋降低,利用变频器驱动异步电动机所构成的调速控制系统,越来越发挥出巨大的作用。

2、变频器在锅炉控制系统中的主要目的

变频器在工业锅炉自动控制系统中,主要用于鼓风机、引风机、供水系统及除渣系统、转矩之间的关系。这些关系是:

流量∝转速,压力∝转矩∝转速的平方,功率∝转速的三次方。

即:风机或水泵流量与转速的一次方成正比,压力与转速的二次方成正比,而轴功率与转速的

由上述关系可见,当需求流量下降时,通过调节转速可以节约大量能源。例如:当流量需求减半时,如通过变频调速,则理论上讲,仅需额度功率的12.5%,即可节约87.5%的能源。如采用传统的挡板方式调节风量,虽然也可相应降低能源消耗,但节约效果与变频相比,则是天壤之别。

3、变频器在锅炉调速控制系统各个环节上的应用

3.1、炉排电机选用的变频器与鼓、引风机选用的变频器型号不同。

炉排变频选用恒转矩变频器,鼓、引风机变频选用恒功率变频器。

3.2、鼓、引风机控制

鼓、引风机采用变频控制,这是锅炉系统中变频应用的重头戏。即是节电最显著的部分,

同时也是变频投资最大的部分。这主要是由于鼓、引风机调节的幅度相对也较大。变

频器在工业锅炉调速控制系统中,主要应用于鼓风机、引风机、供水系统及除渣系统。

其最主要的目的在于节约能源。采用变频调速方法节能的原理,是基于流量、压力、转

速、转矩之间的关系。这些关系如公式:P2(n2/n1)3P1=0.512P1即可降低能耗近50%。

在鼓、引风机的风量裕度问题,以使变频器可以适当提高频率(大于50Hz)即提高转

速运行,以保证锅炉系统有足够的风量,否则,极易造成原系统大负荷时风量够用(但

裕度小),变频改造后,大负荷时风量不够的尴尬局面。其原因在于变频本身也消耗一

部分功率,其输出功率比标称功率略小的缘故。

3.3、炉排变频控制

炉排电动机很小,因而采用变频器控制。其主要目的是稳定运行。当然节电也很大只

是绝对数值占的比重很小。炉排变频控制的特殊性在于:

3.3.1、炉排由于经常处于低速运行,所以电动机散热会出现问题,解决的方法是选

用变频专用电动机。

3.3.2、由于低速运行时变频器输入电流很小,但输出电流很大,远大于电机额定电

流。此时变频器是采用低压大电流保证电动机恒转矩运行。因此,变频器必须提高一

档选型。否则,无法保证炉排电动机的低速运行。

3.4、恒压供水

在锅炉供水系统中,采用变频控制,既能大量节约能源,又能稳定供水系统的压力,保障锅炉系统的安全运行,是非常有实际意义的,并且供水系统的电动机相对鼓、引风机而言容量较小,投资不大。因此,非常值得推广采用。

供水系统变频应用的特殊性:锅炉供水系统一般采用多台电动机,并联母管式供水,没有必要每台电动机都采用变频。既经济又可靠的方法是:只有两台电动机由变频自动控制且这两台电动机为一用一备方式工作。主要是利于电动机检修。其他供水电动机仍采用常规控制方法,其原因有两点:

3.5、在并联母管式供水方案下,全自动控制供水方案不实用,无实际意义。主要原因是每台水泵的单向止回阀泄露问题和更换问题。全自动控制供水时,单向止回阀前后的截止阀必须始终保持打开状态,才能保证自动控制电动机启动后,水能够自动流出。但随着锅炉负荷的增减,水泵电动机不会全部运行。这样,不运行的水泵电动机,由于单向止回阀在水压的作用下,极易发生泄露,造成水的回流及电动机的反转。而当需要停止的水泵运行时,电动机由反转变为正传的过程中,由于电动机的超负荷大电流,必然造成控制电路超负荷跳闸。解决的方法是:采用半自动控制,设定供水压力上、下限报警。上限报警时,通知操作人员关掉一台水泵。下线报警时。通知操作人员启动一台水泵。而变频控制的水泵则保证在可调范围内的恒压供水。每台水泵电动机均采用变频控制,投资太大,且由于上述原因,也没有必要,并且不实用。

3.6、冲渣泵的变频控制

冲渣泵采用变频控制,其目的有两点:节约电力,节约水。

方法是采用高、低速分时控制。高速运行一段时间,然后,低速运行一段时间,自动交替运行。高速运行时把炉渣冲走,低速运行时保证炉渣灭火。

4、变频器在工业锅炉应用中的优点:

4.1、实现了自动控制,揭开了锅炉运行自动化的新篇章。使难以控制的燃烧过程实现了自动化,减少劳动强度。在网络化日益普及的今天,与普通的点对点硬线连接方式而言,通过高速通讯连接的变频器系统可以最大程度上降低系统维护时间、提高生产效率、减少运行成本。

4.2、控制电机的启动电流。当电机通过工频直接启动时,它将会产生7到8倍的电机额定电流。这个电流值将大大增加电机绕组的电应力并产生热量,从而降低电机的寿命。而变频调速则

可以在零速零电压启动(当然可以适当加转矩提升)。一旦频率和电压的关系建立,变频器就可以按照WF或矢量控制方式带动负载进行工作。使用变频调速能充分降低启动电流,提高绕组承受力,用户最直接的好处就是电机的维护成本将进一步降低、电机的寿命则相应增加。

4.3、降低电力线路电压波动。在电机工频启动时,电流剧增的同时,电压也会大幅度波动,电压下降的幅度将取决于启动电机的功率大小和配电网的容量。电压下降将会导致同一供电网络中的电压敏感设备故障跳闸或工作异常,如咒机、传感器、接近开关和接触器等均会动作出错。而采用变频调速后,由于能在零频零压时逐步启动,则能最大程度上消除电压下降。

4.4、可对风机的风量作平滑的无级调速,风机工作在最佳工作点,工况曲线更符合系统,可提高风机效率,避免了“喘振”现象。稳定了炉膛压力,满足工作环境的要求。

4.5、低速运行可以减少磨损,降低噪音,有利于延长电机和风机的使用寿命。

4.6、节能效果显著。由于最终的能耗是与电机的转速成立方比,所以采用变频后,大大地节约了成本,投资回报更快,用户也愿意接受。

5、变频器实际应用中存在的问题【1】

5.1、缺相保护问题

变频器本身有各种保护功能,且功率强大。但在实际应用中,发现变频器的缺相保护

并不完善。主要是变频器在运行过程中,发生缺相,它能够有保护作用,但如果送电

时就发生缺相,则变频器本身并不能检测和保护。一旦启动变频器,在启动初始低速

运行阶段,由于单相大电流,极易造成变频器烧损。所以在设计变频器控制电路时,

应设计缺相保护电路,以防意外损坏。

5.2、变频器功率的选择

选择变频器时,要充分考虑原系统电机裕度问题。否则,原系统电机运行正常,改变

频控制后,发现变频电机容量不够,再更换大一档变频,必然造成不必要的损失与麻烦。

5.3、远距离变频控制的可靠性问题

变频器的控制端子,均为弱电直流信号或节点信号,当采用远距离控制时,应充分考

虑线路的抗干扰问题和损耗问题。尤其是当采用开、关量进行加、减速控制时,要使节

点输出尽可能与变频安置在一起,以防无源节点的线路阻抗和干扰造成控制不灵敏或失

效。

5.4、设计选型中的其它问题【3】

5.4.1、空气断路器的选择

由于变频器具有软启动、无冲击的特性,所以、空气开关可以按变频器容量选择。不需要考虑电动机启动时的电流冲击。

5.4.2、热保护的选择

由于变频器控制单台电动机,不需要选择热保护继电器,直接采用变频器的热保护即可。但若同时控制多台电动机,则每台电动机的热保护要单独计算及选择。但选择

时,要根据电动机低速运行时的电流情况选择,而不是根据电机额定电流选择。此电流

比电动机额定电流大得多。

5.4.3、电流、电压的检测问题

由于变频器输出端的电流、电压随频率发生变化,所以、对变频设备的电流、电压检测均应在变频器的进线端进行。即电流互感器、电压表均应设计在进线端。即空

气断路器后,变频器前。

5.4.4、导线问题

变频器进线可以适当减少裕度。因为变频器节电的特征,即是减少进线电流。但变频器的出线要适当加大裕度,尤其是长期低速运行的变频器设备,其输出电流是相当

大的。

6、效益与回报

宝塔石化06年新安装了一台35吨硫化床开工锅炉,每天24小时间断供蒸汽,鼓风机功率75kW,引风机为110kw。在锅炉运行中,电力线路波动较大,引风机风量偏大,使用档风插板调节风量,电机功耗基本不变,电能浪费大。根据以上缺点,经集团公司决定安装变频器。安装变频调速装置后风机起动平稳无冲击电流,运行稳定。为了便于对比分析,对引风机的两种调节方式进行了数据测量如表1

对于刚投人运行的锅炉,一般因各种原因负荷未达到70%以上时,采用变频器控制效果更加明显。银川热电项目是银川市政府批准的新型项目,两台卯T锅炉鼓、引风机都采用变频器控制,引风机电动机250kw,鼓风机电动机110kw,两台锅炉鼓、引风机变频器一次投人50万元,结果2(X)5年,2(X巧年负荷分别为30%、60%,在此情况下,锅炉在低负荷运行,鼓、引风都在低负荷下运转,两个采暖期下共用电613725kw。如果不用变频器控制约用电1.8倍)kw,估计两个采暖期节约1186275kw,按每度电0.7元计算,共计节约83万元。

下面是其锅炉系统两种方式实际运行费用对比:

一年共节省2万元,一次性投人控制系统共计40万元。两年收回成本。

7、结束语

工业锅炉控制系统采用变频器调速实现锅炉的控制,稳定性和可靠性高,调节特性

好。由于变频器可以非常平滑稳定地调整,运行人员可灵活地调控燃烧系统、供水系

统,提高了锅炉效率,减少工作强度。变频调速使电机运行明显改善,维护量明显减少,

同时大大减少和机械系统变速机构和控制机构。使系统更加方便操作,设备工作效率明

显提高,系统采用过流、过压、瞬时断电、短路、欠压、缺相等多种保护,避免了因此

赞成电机烧损而影响生产所带来的直接和间接经济损失,更为重要是它的节能效果取得

了可观的经济效益

参考文献

〔1」刘力军,郭丽娟. 变频器市场的现状分析〔J〕. 变频器世界, 2003(12).

[2〕张燕宾.变频调速应用实践〔M].北京机械工业出版社,2002 .

〔3〕捞竟衡,马小亮,余锡仁.第七届全国电气自动化电控系统学术年会论文集〔C〕.中国电气传动.

锅炉种类及特点参数

锅炉种类及特点参数 电厂锅炉是火电厂三大主设备之一。由锅炉本体和辅助设备构成。它利用燃料(如煤、重油、天然气等)燃烧时产生的热量使水变成具有一定温度和压力的过热蒸汽,以驱动汽轮 发电机发电。电厂锅炉以其容量大、参数(压力、温度)高区别于一般工业锅炉。电厂锅炉在火电厂中是提供动力的关键设备,因而电厂锅炉技术的进步对电力生产的发展有着直接影 响。 在发电设备制造史上,直到20世纪50年代以前,电厂锅炉的发展一直落后于汽轮发电机,这限制了机组容量的提高。最初,电厂采用火管锅炉。这种锅炉容量小,压力低,效率低,适应不了电厂对动力日益增长的需求,因而被水管锅炉代替。水管锅炉经历了由直水管向弯水管形式的发展。后者与中参数机组配套,是电厂锅炉发展史上的一大进步。随着材料、制造工艺、水处理技术、热工控制技术的进步,20世纪30年代,德国和苏联开始应 用直流锅炉;40年代美国开发了多次强制循环锅炉。到80年代,世界上最大的单台多次强 制循环锅炉已可与100万千瓦机组匹配。西欧则发展了低倍率强制循环锅炉,最大的单台容量可配60万千瓦机组。在直流锅炉与强制循环锅炉的基础上,又出现了复合循环锅炉。 80年代世界上最大的单台锅炉是配130万千瓦机组的直流锅炉。 中国在50年代前不能制造电厂锅炉。1953年成立了第一家锅炉厂(上海锅炉厂),1955 年生产了第一台中国自行制造的中压链条锅炉,蒸发量为40吨/时。1958年,哈尔滨锅炉厂 试制成230吨/时的高压电厂锅炉。80年代末已能制造1000吨/时的垂直上升管直流锅炉,以及为30万千瓦机组和60万千瓦机组配套的电厂锅炉。 燃煤锅炉 是指燃料燃烧的煤,煤炭热量经转化后,产生蒸汽或者变成热水,但并不是所有的热量全部有效转化,有一部分无工消耗,这样就存在效率问题,一般大写的锅炉效率高些,60% ~ 80% 之间。 燃煤锅炉分类 燃煤锅炉有多种类型,可按燃烧方式、除渣方式以及结构安装方式分类。 按燃烧方式可分为4种 ①层燃炉:原煤经破碎成粒径为25?40毫米的碎块后,用炉前煤斗的煤闸板或播

基于PLC控制的锅炉自动输煤系统设计

摘要 本论文主要是以锅炉的自动输煤系统为研究对象,自动输煤系统的出现不仅仅解决了在锅炉输煤过程中只能使用人力的现状,也解决了工作强度大、工作时间长的问题。论文首先简述了锅炉概况,对自动输煤系统的工艺流程进行分析设计,然后对输入输出点进行分配,设计了主电路,对PLC进行分析选择,最后画出梯形图。通过对原有锅炉输煤系统控制方面存在的问题进行分析,采用PLC 控制系统选用日本三菱F1-30MR型PLC,通过硬件选取,软件调试,实现整体控制系统结构合理,运转良好的目的。个机械之间均涉及安全连锁保护控制共嫩:系统的输煤电机启停有严格控制顺序,彼此间有相应的联锁互动关系,当启停某台输煤系统设备时。从该设备下面流程的最终输煤设备开始向上逐级启用,最后才能使该台设备启动;当停止某台输煤设备或某台设备故障时,从该设备上面流程的源头给煤设备开始向下逐级停机,左后才能使该台设备停止。这样就保证了上煤传输的正常运行在线控制煤流量,避免了皮带上煤的堆积,也保护了皮带。PLC控制系统硬件设计布局合理,工作可靠,操作,维护方便,工作良好。用PLC 输煤程控系统。用PLC来对锅炉输煤系统进行控制。锅炉输煤系统,是指从卸煤开始,一直到将合格的煤块送到煤仓的整个工艺过程,它包括以下几个主要环节:卸煤生产线、煤场、输煤系统、破碎与筛分、配煤系统以及一些辅助生产环节。本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。采用了顺序控制的方法。不但实现了设备运行的自动化管理和监控。提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。因此PLC电气控制系统具有一定的工程引用和推广价值。 关键词:PLC;自动输煤系统;煤料自动控制

锅炉定义、分类和相关标准

锅炉定义、分类和相关标准 《特种设备安全监察条例》第八十八条锅炉是指利用各种燃料、电或者其他能源,将所盛装的液体加热到一定的参数,并承载一定压力的密闭设备,其范围规定为容积大于或者等于30 L的承压蒸汽锅炉;出口水压大于或者等于0.1MPa(表压),且额定功率大于或者等于0.1MW的承压热水锅炉;有机热载体锅炉。 《锅炉安全技术监察规程》(征求意见稿)将锅炉分为电站锅炉和非电站锅炉。并分为4级: (1)A级锅炉:额定工作压力(表压,下同)P≥3.8MPa的锅炉,包括: 1.超超临界锅炉:P≥27.0MPa或额定出口温度≥590℃的锅炉; 2.超临界锅炉: 22.1MPa≤P<27.0MPa; 3.亚临界锅炉: 16.7MPa≤P<22.1MPa; 4.超高压锅炉: 13.7MPa≤P<16.7MPa; 5.高压锅炉: 9.8MPa≤P<13.7MPa; 6.次高压锅炉: 5.4MPa≤P<9.8MPa; 7.中压锅炉: 3.8MPa≤P<5.4MPa。 (2)B级锅炉;包括: 1.蒸汽锅炉:0.8MPa<P<3.8MPa或额定蒸发量>1.0t/h; 2.热水锅炉:额定出水温度≥120℃或额定热功率>4.2MW; 3.有机热载体锅炉:

1)气相有机热载体的锅炉; 2)液相有机热载体锅炉:额定热功率>4.2MW; (3)C级锅炉,除D级锅炉外的下列锅炉: 1.蒸汽锅炉: 额定工作压力≤0.8MPa且额定蒸发量≤1.0t/h的蒸汽锅炉; 2.热水锅炉: 额定出水温度<120℃且额定热功率≤4.2MW; 3.液相有机热载体锅炉: 额定热功率≤ 4.2MW。 (4)D级锅炉: 1.蒸汽锅炉:设计正常水位时水容积≤50L且额定工作压力<0.8MPa; 2.汽水两用锅炉: 额定工作压力≤0.04MPa且额定蒸发量≤0.5t/h的锅炉;(二)现行涉及锅炉安装的有关安全技术法规 《特种设备安全监察条例》;国务院2009年1月24日549号令修订。《蒸汽锅炉安全技术监察规程》; 《热水锅炉安全技术监察规程》; 《有机热载体炉安全技术监察规程》; 《小型和常压热水锅炉安全监察规定》(原国家质量技术监督局令第11号);《特种设备安全监察条例》颁布实施后,其中涉及常压热水锅炉的部分不再执行。上述四项技术法规正在修订为《锅炉安全技术监察规程》,目前已经公布征求意见稿。 《安全阀安全技术监察规程》TSG ZF001-2006; 《安全阀维修人员考核大纲》TSG ZF002-2005;

工业锅炉鼓风机变频器调速系统

在工业生产、产品加工制造业中,风机设备主要用于锅炉的燃烧系统、其他设备的烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失的形式消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。为此,需要采用多项措施实现对离心风机的自动控制,以使系统的各种性能达到合理的要求。 近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用PLC 和变频器易操作、易维护、控制精度高,并可以实现高功能化等特点,采用基于PLC的变频器驱动方案开始逐步取代风门、挡板、阀门的控制方案。从而大大的降低生产成本,减少能量损耗和对环境的污染,为企业带来可观的经济效益和社会效益。 关键字:锅炉,压力,PLC,变频器

1. 绪论 (1) 2. 原理及结构设计 (2) 2.1 变频器工作原理 (2) 2.2 变频器的结构与功能 (3) 2.2.1 变频器的结构 (3) 2.2.2 变频器的控制方式 (4) 2.2.3 变频器的功能 (5) 2.3 输油泵变频调速节能原理 (6) 2.4 输油泵变频调速的主电路 (6) 3 变频器选择及参数设置 (10) 3.1 变频器的控制方式 (10) 3.2 控制方式的合理选用 (11) 3.3 选型原则 (12) 3.4 PLC 及压力传感器的选择 (14) 3.5 MM430变频器特性 (15) 3.6 电动机参数设置实例 (15) 4.PLC程序设计 (17) 结论 (20) 参考文献 (21)

锅炉分层给煤系统

术业专攻业精于勤 锅炉燃烧效率的高低是影响正转链条工业锅炉热效率较低的主要原因之一。而每一台锅炉的给煤装置(煤仓)又起着关键作用。为引起各行业用户的能耗关注,降低生产成本,让我们一起从微观角度分析探求,其燃烧效率不理想状态所存在的原因。 一、新思路---从分层给煤装置发展时间及历程看: 上世纪九十年代初期,国内初始发明了以单辊筒传动拨煤、以钢条组成筛分器为设计思路的分层给煤装置(我公司刘淼华高工既是其中之一)。后期也涌现了数十个类似的专利技术。此种技术把混煤筛分后并依次按照大块居下、小块居中、碎末煤居上的顺序排列,撒落布置在炉排上。与百余年来传统闸门板式的给煤方式相比,由于之前的煤层压得实、密度大、透气性差等因素,分层给煤的疏松度发生了变化,由于混煤是撒落而下,加之块煤在下,故透气性较好、风阻较小,燃烧效率得以强化,灰渣含碳量降低。 但是分层燃烧技术始终有一个让用户及专家头痛的问题,就是侧密封漏风依旧严重,局部板结(盖被)现象依旧突出,终导致炉膛温度偏低,后拱烤(烧)渣作用降低,灰渣含碳量较高。司炉工不得已仍然时常延用钩子扒火,破坏火床煤层板结(盖被)的形成,促其燃煤尽量燃尽烧透,以降低能耗成本。(见图1) 分层给煤示意图(1) 上述结果的形成,其根本原因就是分层给煤结构设计存在的缺陷性。首先,此时的分层

给煤装置设计以单辊筒小直径为主,加之煤仓的溜煤板倾斜角度过大,出现折角,辊筒拨煤传动过程中,混煤与辊筒表面所接触的面积过小,产生的摩擦力降低,极易引起湿煤打滑,干煤自流,拨煤同步而不等量。其次,分煤器的设计应用,目前为止,多数的分层给煤装置中,分煤器的制作继续延用了粗细不等、长短不一的钢条进行煤粒的筛分。然用后不久,在落煤冲击、高温炙烤、生锈氧化等作用下钢条变形、脱落,并伴随部分细煤及杂质经常挂筛粘连。故最终由于给煤系统给煤同步而不等量,分筛(煤)后的煤粒筛分不均匀,此种的给、布煤结果使火床煤层厚薄不一,炉膛中的燃烧杂乱无章,燃烧热效率、锅炉出力明显下降。(见图片) 二、过渡性技术---从分层分行(变层分段)给煤装置的创新及概念炒作看: 先探讨其中的分层部分。分层分行给煤技术的出现在1996年,是我公司高工刘淼华国内首次在分层给煤的基础上,完善部分结构的大胆尝试。其设计思路源于火床板结(盖被)后,司炉工用以钩子扒火出沟,破坏其板结(盖被)形成的条件,如此才能使火苗拔出燃起,使之煤层尽量燃尽烧透。故在此启发下,人为布煤出沟的想法逐步实践进而变成现实,并与同年获得发明专利。 首先是辊筒的设计:分层给煤装置的结构设计也发生了变化,起初的思路就是如果单辊筒给煤同步而不等量,那么由单辊筒变为双辊筒设计,另加输煤辊,令其接力赛形式传动,弥补其前者之不足。 需要说明的是,当时的工业锅炉吨位及火床的燃火面积都比较小,实践证明,安装使用后的起初阶段,双辊式与单辊式分层给煤在同步等量方面有所改善。但是随着时间的推移,双辊式给煤也显现出了它的缺陷性。由于受限于煤仓空间的结构设计,每个辊筒直径约为290mm左右(目前推广使用的双辊筒还是如此),与上述单辊筒给煤一样,混煤与辊筒表面的摩擦系数较小,依旧湿煤打滑,干煤自流。更为致命的是由于拨煤辊与输煤辊之间的间隙距

低氮燃烧技术在煤粉锅炉中的应用研究

低氮燃烧技术在煤粉锅炉中的应用研究 发表时间:2018-08-06T16:57:09.417Z 来源:《电力设备》2018年第11期作者:王洋洋李强彬 [导读] 摘要:近年来,我国的改革步伐越来越快,进而也推动了我国经济的快速发展,但是,经济发展的过程中对于各种能源的需求量也逐渐上升。 (济南锅炉集团有限公司) 摘要:近年来,我国的改革步伐越来越快,进而也推动了我国经济的快速发展,但是,经济发展的过程中对于各种能源的需求量也逐渐上升。就工业发展而言,我国建立的火电厂数量越来越多,这也导致了工业生产过程中大量的氮氧化物排放量产生,而且排放量一直有增无减,这从根本上影响了生态环境,而且对于人类的生存发展为不利,威胁人们的生命健康。就火电厂煤粉锅炉燃烧整个过程而言,要想保证合理的控制氮氧化物排放量,一个很重要的环节就是低氮燃烧技术,其在很大程度上可以有效的保护生态环境,有利于经济的可持续发展。本文重点针对我国当前低氮燃烧技术在煤粉锅炉中的应用问题进行研究,分析影响氮氧化物产生的主要原因,然后针对性的提出具体的低氮燃烧技术应用,为相关技术提供参考。 关键词:低氮燃烧技术;煤粉锅炉;应用 引言 我国的经济水平在快速上升,同时也增加了能源的需求量,随着能源的大量使用和消耗,氮氧化物的排放量也有了非常明显的增加。氮氧化物对生态环境的影响很大,其在很大程度上会消耗地球大气层中的臭氧层,不但会破坏整个生态环境,而且还会影响人类的身心健康。就我国而言,大量的氮氧化物排放源头是燃烧煤产生的,而对于煤炭的使用量最大的就是火电厂,我国当前的氮氧化物排放量排名中电力行业排在第一位,所以,火电厂必须严格控制生产过程中的氮氧化物排放量,通过各种技术来降低对环境以及人类社会的危害。 一、燃烧过程NO形成机理 在进行火电厂煤粉锅炉燃烧的时候,使用的燃料为煤,其燃烧会产生大量的氮氧化物,其中包含的主要成分有:一氧化氮、二氧化氮以及一氧化二氮,在这几中成分里面,一氧化氮占的比重大于9%,二氧化氮所占的比重大约在5-10%之间,一氧化二氮属于比重比较小的,只有大概1%的比重。所以,在进行氮氧化物排放量的控制过程中,重点控制的还是二氧化氮和一氧化氮,要从其形成的源头进行控制。从整体上进行划分,煤粉在进行燃烧过程中形成的氮氧化物类型主要有三种:第一种为速度型NO,第二种是热力型NO,第三种为燃烧型NO。在这三类之间,所谓的热力型NO,具体来源为氮气,其在火电厂煤粉锅炉燃烧的时候会发生氧化,进而形成热力型NO;而速度型NO,其形成的原因主要是燃料中碳氯高子团和空气里面的氮产生反映面形成;燃烧型NO,氮氧化合物在进行燃烧的时候产生的热分解形成。因此,就能够看出,燃烧过程是氮氧化物产生源头,其产生的量和具体的燃烧条件以及燃烧方式等是分不开的。 二、影响氮氧化物产生与燃烧的基本因素 通过观察煤粉锅炉中具体的燃煤经过能够看到,燃煤过程中产生的氮氧化物多少直接受到煤粉锅炉自身的燃烧条件、燃烧方式等影响,对氮氧化物产生的相关因素进行总结得出其中的主要因素,具体为燃料的燃烧品质、煤粉锅炉里面的温度还有煤粉燃烧的具体时间等。 (一)煤粉炉的温度 煤粉炉里面的温度会发生变化,这也会对氮氧化物的产生有所制约,而且也影响着燃烧的情况,要想从根本上保证燃煤过程中的氮氧化物产生量减少,一定要做好对煤粉炉内部的温度控制工作。 (二)燃煤品质 在煤炭燃烧的过程中,煤炭的品质也会直接影响其产生的氮氧化物量,而且不同品质的煤炭也有不一样的燃烧程度。比如,在煤炭燃烧的过程中,煤粉的挥发程度等都能直接影响氮氧化物的产生。 (三)煤粉燃烧停留的时间 就火电厂而言,对于内部煤粉锅炉里面煤粉和燃烧产物进行控制,能够在很大程度上使得氮氧化物的量减少。 三、低氮燃烧技术的应用 (一)改进低氮燃烧技术 就国外一些工业技术相对比较发达的国家而言,在进行氮氧化物有效控制的时候使用的相关技术主要有:改进燃烧的相关技术、对氮氧化物的燃烧器进行级别的分类以及有效的还原燃烧过程中形成的氮氧化物这三种。 1、就燃烧技术的改进来看,主要进行改进的技术是烟气再循环以及浓淡燃烧等。通过对这些措施的合理利用可以改进低氮燃烧技术,进而使得燃烧过程中产生的氮氧化物量减少。有效的使用这些方法进行改进,就可以避免大幅度的改进燃烧系统,促进达到了降低氮氧化物产生率的目的,同时也使得企业从根本上降低了成本。 2、对氮氧化物的燃烧器进行级别的分类。还要煤粉炉里面的燃烧器,主要是为了从根本上降低其中氧的浓度,进而使得氮氧化物的产生量有所降低。进行改造的时候最常使用的改造方式有偏转二次风燃烧器。这种技术能够最大程度的使得氮氧化物排放量得到降低。 3、有效的还原燃烧过程中形成的氮氧化物。在这种技术里面具体包含的技术内容有低氮氧化物燃烧器技术、燃料分级氮氧化物形成技术等。通过使用这些技术可以大幅度的降低燃煤过程中产生的氮氧化物量,确保对氮氧化物产生的有效控制。 (二)我国创新低氮燃烧技术 就我国而言,在进行火电厂生产的过程中,有效的引进了一些相关的国外低氮燃烧控制技术,然后在此基础上做了改进以及创新,最终研究出一套与我国具体情况相符合的低氮燃烧控制技术,在这个技术中具体包含的技术有:空气分级燃烧技术、新型燃烧器和降低其他氮氧化物技术这三种。 1、空气分级燃烧技术。具体来讲就是有效控制煤粉燃烧过程中氧的量,在此基础上保证煤粉炉里面煤粉的燃烧可以实现一定程度的还原性,最终有效的降低氮氧化物产生的技术。就当前来看,这一技术已经的到了广泛的使用。 2、新型燃烧器。这一技术主要是我国有效的改进国外引进的相关燃烧器,进行改造和创新,形成符合我国具体情况的新技术。进而确保在煤炭燃烧的过程中对于氮氧化物的有效控制。就这一技术而言,其中最明显的效果就是可以确保煤炭燃烧过程中的稳定性,在保证稳定性的前提下可以有效的降低氮氧化物的形成。就当前燃煤过程中使用的燃烧器来看,最常见的有多功能旋转型,通过使用这种改造燃烧

高压变频器在锅炉引风机上的应用

高压变频器在锅炉引风机上的应用 【摘要】本文介绍了基于变频器锅炉引风机节能控制系统。讨论了控制系统的节能原理及控制工艺,进行了节能分析,实际使用证明,该控制系统控制效果良好,节能效果十分明显。 【关键词】引风机变频器节能 1 原系统运行情况 热力车间4#锅炉为75t/h锅炉,锅炉引风机电机是10kV高压电机,锅炉是燃烧工业煤气(高炉煤气、焦炉煤气和转炉煤气)产生蒸汽送至汽轮机作功,由汽轮机带风机及发电机分别用于高炉供风和发电。 为了保证电机的安全稳定运行,选用的风机电机的备用容量较大。机组满负荷运行时,吸风机入口挡板开度约60%。在变频改造之前,4#锅炉引风机工频运行,出口风量的调节只能通过调整出口挡板来实现,在低于额定负荷40%时,引风机出口挡板振动加剧,锅炉出现过挡板被振断裂的情况,影响锅炉的安全运行。其次风量控制采用档风板控制,挡板阻力将消耗一部分无用功率,造成厂用电率高,影响机组的经济运行。 为了节约能源,降低厂用电率,保护环境,简化运行方式,减少转动设备的磨损等,我公司决定对风机采用高压变频器控制系统。我公司采用高压变频器是HARSVERT V A10/30。 2 HARSVERT V A10/30型高压变频器原理及特点 Harsvert-V A系列高压变频器采用单元串联多电平PWM拓扑结构(简称CSML)。由若干个低压PWM变频功率单元串联的方式实现直接高压输出,高压主回路与控制器之间为光纤连接,安全可靠;精确的故障报警保护;具有电力电子保护和工业电气保护功能,保证变频器和电机在正常运行和故障时的安全可靠。 采用功率单元串联,而不是功率器件串联,器件承受的最高电压为单元内直流母线的电压,器件不必串联,不存在器件串联引起的均压问题。直接使用低压IG BT功率模块,器件工作在低压状态,不易发生故障;变频器可以承受30%的电源电压下降而继续运行,变频器的10KV主电源完全失电时,变频器可以在3秒内不停机,能够全面满足变频器动力母线切换时不停机的需要。另外10KV 主电源欠压时可不停机,自动降额,电压正常后再恢复到原来速度。采用二极管不可控整流电路结构,变频器对浪涌电压的承受能力较强,雷击或开关操作引起的浪涌电压可以经过变压器(变压器的阻抗一般为8%左右)产生浪涌电流,经过功率单元的整流二极管,给滤波电容充电,滤波电容足以吸收进入到单元内的浪涌能量,另外变压器一次侧安装了压敏电阻浪涌吸收装置,起到进一步保护作

工业锅炉的分类

工业热水锅炉的分类 一、锅炉的分类 锅炉的分类有多重方法。按用途可分为、电站锅炉、工业热水锅炉、生活锅炉等。电站锅炉用于发电。工业锅炉用于工业生产,生活锅炉用于采暖和热水供应。 按结构可分为火管锅炉和水管锅炉。火管锅炉中,烟气在管内流过,水管锅炉中,汽水在管内流过。 按蒸发受热面内工质的流动方式可分为自然循环锅炉、强制循环锅炉、直流锅炉和复合循环锅炉。自然循环锅炉具有锅筒,利用下降管和上升管中工质密度差产生工质循环,只能在临界压力以下应用。直流锅炉无锅筒,给水靠水泵压头一次通过受热面,适用于各种压力。强制循环锅炉在循环回路的下降管与上升管之间设置循环泵,用以辅助水循环并作强制流动,又称辅助循环锅炉或控制循环锅炉。复合循环锅炉是介于强制循环锅炉和直流锅炉之间的一种锅炉。它在高负荷时按直流锅炉模式运行,它在低负荷时按强制循环锅炉模式运行,循环泵只在低负荷下工作。 按出口工质压力可分为常压热水锅炉、微压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉、超临界压力锅炉和超超临界压力锅炉。常压锅炉的表压为零;微压锅炉的表压为几十个Pa;低压锅炉的压力一般小于1.275MPa;中压锅炉的压力一般为3.825MPa;高压锅炉的压力一般为9.8MPa;超高压锅炉的压力一般为13.73MPa;亚临界压力锅炉的压力一般为16.67MPa;超亚临界锅炉的压力 23~25MPa;超超临界压力锅炉的压力一般大于27MPa。发电用电站锅炉的工作压力一般都为中等压力以上。 按热水方式可分为火床燃烧锅炉、火室燃烧锅炉、硫化床燃烧锅炉和旋风燃烧锅炉。按所用燃料和能源可分为固体燃料锅炉、液体燃料锅炉、气体燃料锅炉、余热锅炉和废料锅炉。按排渣方式可分为固态排渣锅炉和液态排渣锅炉。固态排渣锅炉中,燃料燃烧后生成的灰渣呈固态排出,是燃煤锅炉的主要排渣方式。液态排渣锅炉中,燃料燃烧后生成的灰渣呈液态从渣口流出,在裂化箱的冷却水中裂化成小颗粒后排入水沟中冲走。 按炉膛烟气压力可分为负压锅炉、微正压锅炉和增压锅炉。负正锅炉中炉膛压力保持负压,有送、引风机,是燃煤锅炉主要形式。微正压锅炉中炉膛表压力为2~5kPa。不需引风机,宜于低氧燃烧。增压锅炉中炉膛表压力大于0.3MPa,用于配蒸汽—燃气联合循环。

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

锅炉煤

锅炉煤 燃料进入炉膛后燃烧,产生的热量将锅炉里的水加热,锅炉内的水吸热而蒸发,最后变成具有一定温度、压力的过热蒸汽,这种高温高压蒸汽经管道送往汽轮机,使汽轮机转子旋转,汽轮机转子带动发电机转子一同高速旋转,从而发出电来。所以火力发电厂的生产过程主要就是一个能量转换过程,即燃料化学能---热能--机械能--电能。最终将电发送出去。 高温高压蒸汽在汽轮机内膨胀做功后,压力和温度降低,由排汽口排入凝汽器并被冷却水冷却,凝结成水,凝结水集中在凝汽器下部由凝结水泵打至低压加热器和除氧器,经除氧后由给水泵将其升压,再经高压加热器加热后送入锅炉,如此循环发电。 煤的元素分析成分有哪几种? 答:煤的元素分析成分包括碳(C)、氢(H)、氧(O)、氮(N)、硫(S)、灰分(A)、和水分(M)。碳、氢及硫中的有机硫和黄铁硫是可燃烧的,其余都是不可燃烧的。 煤的工业分析成分有哪些? 答:煤的工业分析成分有水分、灰分、挥发分和固定碳

煤中的杂质有哪些? 答:煤中的杂质有氮、氧、水分和灰分 成分指标一般有 发热量(Qnet,ar) 全硫(St,d%) 灰分(Ad%) 挥发份(Vd%) 全水份(Mt%) 固定碳(Fc) 焦渣特征 ①挥发分。是判明煤炭着火特性的首要指标。挥发分含量越高,着火越容易。根据锅炉设计要求,供煤挥发分的值变化不宜太大,否则会影响锅炉的正常运行。如原设计燃用低挥发分的煤而改烧高挥发分的煤后,因火焰中心逼近喷燃器出口,可能因烧坏喷燃器而停炉;若原设计燃用高挥发分的煤种而改烧低挥发分的煤,则会因着火过迟使燃烧不完全,甚至造成熄火事故。因此供煤时要尽量按原设计的挥发分

工业锅炉鼓风机变频器调速系统

风机设备主要用于锅炉的燃烧系统、其他设备的烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失的形式消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。为此,需要采用多项措施实现对离心风机的自动控制,以使系统的各种性能达到合理的要求。? 近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用PLC 和变频器易操作、易维护、控制精度高,并可以实现高功能化等特点,采用基于PLC的变频器驱动方案开始逐步取代风门、挡板、阀门的控制方案。从而大大的降低生产成本,减少能量损耗和对环境的污染,为企业带来可观的经济效益和社会效益。? 关键字:锅炉;PLC变频器

目录 1绪论............................. 2原理及结构设计......................... 变频器工作原理.............................. 变频器的结构与功能............................ 变频器的结构............................. 变频器的控制方式............................ 变频器的功能............................. 使用变频调速的目的............................ 鼓风机变频调速节能原理........................... 鼓风机变频调速的主电路........................... 主电路器件的选择.............................. 3变频器选择及参数设置...................... 变频器的控制方式.............................. 控制方式的合理选用........................... 选型原贝U ............................ PLC及压力传感器的选择........................... MM430变频器特性 ............................. 电动机参数设置实例............................ 4 PLC程序设计......................... 结论.............................. 参考文献...........................

锅炉分类

锅炉的分类 锅炉的分类 一、按烟气在锅炉流动的状况分:水管锅炉、锅壳锅炉(火管锅炉)、水火管组合式锅炉 二、按锅筒放置的方式分:立式锅炉、卧式锅炉 三、按用途分:生活锅炉、工业锅炉、电站锅炉 四、按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉 五、按安装方式分:快装锅炉、组装锅炉、散装锅炉 六、按燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉 七、按水循环分:自然循环、强制循环、混合循环 八、按压力分:常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉 九、按锅炉数量分:单锅筒锅炉、双锅筒锅炉 十、按燃烧定在锅炉内部或外部分:内燃式锅炉、外燃式锅炉 十一、按制造级别分类:A级、B级、C级、D级、E级(按制造锅炉的压力分) A级:压力无限制 B级:25公斤压力以下 C级:8公斤压力以下 D级:1公斤压力以下

1、按烟气在锅炉流动的状况分:水管锅炉、锅壳锅炉(火管锅炉)、水火管组合式锅炉 2、按锅筒放置的方式分:立式锅炉、卧式锅炉 3、按用途分:生活锅炉、工业锅炉、电站锅炉、车船用锅炉 4、按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉 5、按安装方式分:快装锅炉、组装锅炉、散装锅炉 6、按燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉 7、按水循环分:自然循环、强制循环、混合循环 8、按压力分:常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉 9、按锅炉数量分:单锅筒锅炉、双锅筒锅炉 1吨生物质锅炉 10、按燃烧定在锅炉内部或外部分:内燃式锅 家用锅炉 炉、外燃式锅炉11、按工质在蒸发系统的流动方式可分为自然循环锅炉、强制循环锅炉、直流锅炉等。12、按制造级别分类:A级、B级、C级、D级、E级(按制造锅炉的压力分)13、按出口蒸汽压力分为:低压锅炉(P<2.45MPa)、中压锅炉(3.8

变频器在锅炉风机的应用

. 15吨锅炉控制系统 方案及报价 一概术 考虑到系统均全天运行,为使系统可靠、节能,操作、维护方便,控制系统结构如图所示,引风机、鼓风机、供水水泵均采用单回路控制,风机均采用恒压变流量控制方式,水泵采用恒液位控制方式。风机的控制回路均由压力传感器、压力控制器及变频器组成,水泵控制回路由液位传感器、水位控制器及变频器组成。水位、压力均采用数字方式显示和控制。 压力控制器 锅炉风机、水泵改造系统原理图 1. 变频调速的节能意义 风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时

. 间并非工作于满负荷状态,由于交流电机调速很困难。常用挡风板、回流阀或开/停机时间,来调节风量或流量,同时大电机在工频状态下频繁开/停比较困难,电力冲击较大,势必造成电能损耗和开/停机时的电流冲击。采用变频器直机接控制风、泵类负载是一种最科学的控制方法,当电机在额定转速的80%运行时,理论上其消耗的功率为额定功率的(80%)3,即51.2%,去除机械损耗电机铜、铁损等影响。节能效率也接近40%,同时也可以实现闭环恒压控制,节能效率将进一步提高。由于变频器可实现大的电动机的软停、软起,避免了启动时的电压冲击,减少电动机故障率,延长使用寿命,同时也降低了对电网的容量要求和无功损耗。为达到节能目的推广使用变频器已成为各地节能工作部门以及各单位节能工作的重点。 2. 阀门特性及变频调速节能原理 阀门的开启角度与管网压力,流量的关系示意图如图 当电机以额定转速n0运行,阀门角度以a0(全开),a,a1变化时管道压力与流量只能是沿A,B,C,点变化。即若想减小管道流量到Q1,则必须减小阀门开度到a1, 这使得阀前压力由原来的P0提高到Pq,实现调速控制后,阀后压力由原来的P0降到Ph。阀前阀后存在一个较大 的压差△P=Pq-Ph。 如果让阀门全开(开度为a0),采用变频调速,使风机转速至n1,且流量等于Q1,压力等于Ph,那么在工艺上则与阀门调节一样,达到燃烧控制的要求。而在电机的功耗上则大不一样。风机水泵的轴功率与流量和扬程或压力的成绩成正比。在流量为Q1,用阀门节流时,令电动机的功率为Nf=KPhQ1。用变频调速比阀门节流节省的电能为: Nj-Nf=K(Pq-Ph)Q1=Q1△P。 由图可见,流量越低,阀门前后以来差越大,也就是说用变频调速在流量小,转速低时,节能效果更好。 目前绝大多数锅炉燃烧控制系统中的风量调节都是通过调节风门挡板实现的,这种风量调节方式不但使风机的效率降低,也使很多能量白白消耗在挡板上。为了节约电能,提高锅炉燃烧控制水平,增加经济效益,采用变频调速

变频器在锅炉引风机节能中的应用

变频器在锅炉引风机节 能中的应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

变频器在锅炉引风机节能中的应用 摘要? 主要分析了锅炉引风机的工作状态,讨论了变频器用于引风机进行变频调速的工作原理,介绍了,一个具体案例的改造效果及效率。 关键字? 引风机;变频器;调速;节能 1 引言 锅炉作为能源转换的重要设备,在电力、机械、冶金、化工、纺织、造纸、食品等行业,以及民用采暖中都占据着重要的角色,根据生产负荷需求,锅炉要随时调整生产状态,改变供热量的多少。用户在选配风机时,都是根据工艺要求中出现的最大负荷来确定容量,所以存在“大马拉小车”现象,而且锅炉的引风机、鼓风机和二次风机的风量是通过调节风门大小来实现的,而用来带动风机的电动机的转速是不可调节的,因此造成大量的调节损失和电量的浪费。基于这种情况,本文提出采用变频调速技术控制锅炉引风机电机,极大地改善了工艺操作人员工作条件,改善了风机设备的起动性能,实现了无级调速,而且节约了35%左右的电能,从而达到节能降耗、减少设备噪声污染的目的。 2 问题提出 通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。风机类设备多数采

锅炉种类

锅炉种类_锅炉分类_锅炉分类知识 锅炉种类、分类知识: 一、按用途分类: 1. 电站锅炉: 用于发电,大多为大容量、高参数锅炉,火室燃烧,效率高,出口工质为过热蒸汽。 2. 工业锅炉: 用于工业生产和采暖,大多数为低压、低温、小容量锅炉,火床燃烧居多,热效率较低,出口,工质为蒸汽的称为蒸汽锅炉,出口工质为热水的称为热水锅炉。 3. 船用锅炉: 4. 机车锅炉: 5. 注汽锅炉: 用于油田对稠油的注汽热采,出口工质一般为,高压湿蒸汽。 二、按结构分类: 1. 火管锅炉: 烟气在火管内流过,一般为小容量、低参数锅炉,热效率低,但结构简单,水质要求低,运行维修方便。 2. 水管锅炉: 汽水在管内流过,可以制成小容量,低参数锅炉,也可以制成大容量、高参数锅炉。电站锅炉一般均为水管锅炉,热效率高,但对水质和运行水平的要求也较高。 三、按循环方式分类 1. 自然循环锅筒锅炉 2. 多次强制循环锅筒锅炉 3. 低倍率循环锅炉 4. 直流锅炉 5. 复合循环锅炉 四、按锅炉出口工质压力分类 1. 低压锅炉:一般压力小于1.275MPa 2. 中压锅炉:一般压力为 3.825MPa 3. 高压锅炉:一般压力为9.8MPa 4. 超高压锅炉:一般压力为13.73MPa 5. 亚临界压力锅炉:一般压力为1 6.67MPa 6. 超临界压力锅炉:一般压力为22.13MPa 五、按燃烧方式分类 1. 火床燃烧锅炉: 主要用于工业锅炉,包括固定炉排炉、往复炉排炉等。 2. 火室燃烧锅炉: 主要用于电站锅炉,燃用液体燃料、气体燃料和煤粉的锅炉均为火室燃烧锅炉 3. 沸腾炉: 送入炉排空气流速较高,使大颗粒燃煤在炉排上面的沸腾床中翻腾燃烧,小颗粒燃煤随空气上升并燃烧。 六、按所用燃料或能源分类 1. 固体燃料锅炉:燃用煤等固体燃料; 2. 液体燃料锅炉:燃用重油等液体燃料; 3. 气体燃料锅炉:燃用天然气等气体燃料; 七、按排渣方式分类

锅炉自动输煤系统

第一章概述 1.1锅炉系统概况 1.1.1分类 锅炉的燃料多分为煤和燃油,还有天然气等。按其蒸发能力大小可分为三类: (1)小型锅炉蒸发量在10t/h及以下,多用于工业生产及采暖。主要是火箭或火箭管组合及小型水管式。 (2)中型锅炉蒸发量为10~75t/h,多用于发电厂。国内生产多为“II”型。 (3)大型锅炉蒸发量大于75t/h,多用于发电厂。国内生产多为“II”型。 1.1.2设备配置 共有六大系统: (1)点火系统。锅炉点火,保护及控制。 (2)燃料配给系统。给煤机、碎(粉)煤机、煤仓及输煤皮带运输机,燃油(汽)输送泵。 (3)燃煤系统。炉排电动机(有些类锅炉不用),除渣机。 (4)水循环系统。循环水泵往往是多台,且有备用。 (5)补水系统。补水泵,往往为备用设置,以防断水。有时还有水处理系统的系列水泵,搅拌电动机。 (6)送引风系统。送风机(有时还有一次、二次送风之分)又称配风机、引风机又称抽风机 1.1.3特点及注意事项 从控制角度有下述特点需引起重视: (1)设备相互之间往往有一定时间限制的控制顺序。如点火时,给水泵先启动,然后除渣;引风机起动数秒后鼓风机启动;停炉时,先停鼓风和炉排,数秒后停引风和和除渣,最后停给水泵。 (2)设备间往往有联锁如给煤机和运输机、碎煤机;又如鼓风和引风机。 (3)设备间往往有联动如如锅炉故障时,汽泡极低水位;蒸汽压力过高时,应自动停止排风、炉排,起停给水泵等。 (4)一般锅炉属于二级负荷,无起动给水的蒸汽锅炉,以补水定压的高温热水锅炉的给水泵应保证可靠供电。 (5)配电宜以锅炉机组为单元,放射式配电。蒸发量为6.5t/h 及以下的锅炉宜设低配室。锅炉房内就地配电,起动设备宜用保护、

变频器技术工业锅炉控制系统中的应用

变频器技术工业锅炉控制系统中的应用 介绍变频器在工业锅炉控制系统应用中的节能原理、应用方法及变频器选型,与变频器相关的保护装置及接至电动机导线的选择。 首先重要的是变频器控制系统恒功率恒转矩缺相断路器 1简单介绍变频器的原理: 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。它的主电路都采用交-直-交电路。女口:JP6C-T9/J9系列低压通用变频器工作电压为:380?690V,功率为0.75?800kW 工作频率为0?400Hz JP6C-YZ系列中压通用变频器工作电压为:1140?2300V,功率为37?1000kW 工作频率为0?400Hz JCS系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280 ?20000kW 从理论上我们可知,电机的转速N与供电频率f有以下关系: n = qf602 x( 1 - s) (1) 其中:q --电机极数S--转差率 由式(1)可知,转速n与频率f成正比,如果不改变电动

机的极数,只要改变频率f即可改变电动机的转速,当频率f在o?50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。在工业领域里的应用日益广泛。随着变频器的造价日趋降低,利用变频器驱动异步电动机所构成的调速控制系统,越来越发挥出巨大的作用。 2、变频器在锅炉控制系统中的主要目的 变频器在工业锅炉自动控制系统中,主要用于鼓风机、引风机、供水系统及除渣系统、转矩之间的关系。这些关系是: 流量文转速,压力*转矩*转速的平方,功率x转速的三次方。 即:风机或水泵流量与转速的一次方成正比,压力与转速的二次方成正比,而轴功率与转速的三次方成正比。因而,理想情况下有如下关系:

常用的锅炉类型及其特点

常用的锅炉类型及其特点 日期:2009-11-15 9:57:28 来源:来自网络查看:[大中小] 作者:不详热度:295 第一节火床炉 一、火床炉的工作特性 锅炉中火床炉用得很多,小型锅炉基本是火床炉,火床炉又叫层燃炉。火床炉的结构特点是有一个炉排(炉蓖),空气从炉排下送入,燃料在炉排上燃烧,“火床”就形象地表达了这种燃烧方式的特点。 火床炉的炉膛内储存了人量燃料,蓄热条件良好,保证了火床炉所特有的燃烧稳定性。火床炉的煤炭无需特地破碎加工,着火条件较好,其锅炉房布置简单,运行耗电少。缺点是燃料与空气混和较差,燃烧速度慢,效率不高。 根据燃料层相对十炉排的运动方式来分类,火床炉可分为二类: (1)燃料层不移动的固定火床炉,如手烧炉; (2)燃料层随炉排面一起移动的炉子,如链条炉; (3)燃料层沿炉排面一起移动的炉子,如振动炉排炉和往复炉排炉。 根据加煤方式不同,火床炉可分前饲式(如链条炉),上饲式(如手烧炉)和下饲式(如明火反烧炉)。 下面介绍火床炉中反映燃烧设备工作特性的一些参数: (一)炉排面积热负荷QR 炉排面积热负荷是表征炉排面上燃烧放热的强烈程度的一个重要指标。它为单位炉排面积在单位时间内燃料燃烧放出的热量,用公式表示即为: 对确定的燃料和炉型,炉排面积热负荷有一个介理的范围,并不是越人越好。QR值人,说明炉排面上放出的热量多,使得炉排片工作条件差,增人了炉排片烧坏的可能性。同时,q、值人也使得燃料层增厚,通风阻力增人,使运行耗电增加,并目‘空气流经燃料层的速度增人。这会导致飞走的未燃煤量增人,加人机械未完全燃烧热损失。而且火床面上容易出现“火口”,即燃料层被空气吹穿。 (二)炉膛容积热负荷Qv 与炉排面积热负荷相应,炉膛容积热负荷q。是燃料在单位炉膛容积,单位时间内燃烧放出的热量,用公式表示即为:

相关主题
文本预览
相关文档 最新文档