当前位置:文档之家› 低氮燃烧技术在煤粉锅炉中的应用研究

低氮燃烧技术在煤粉锅炉中的应用研究

低氮燃烧技术在煤粉锅炉中的应用研究
低氮燃烧技术在煤粉锅炉中的应用研究

低氮燃烧技术在煤粉锅炉中的应用研究

发表时间:2018-08-06T16:57:09.417Z 来源:《电力设备》2018年第11期作者:王洋洋李强彬

[导读] 摘要:近年来,我国的改革步伐越来越快,进而也推动了我国经济的快速发展,但是,经济发展的过程中对于各种能源的需求量也逐渐上升。

(济南锅炉集团有限公司)

摘要:近年来,我国的改革步伐越来越快,进而也推动了我国经济的快速发展,但是,经济发展的过程中对于各种能源的需求量也逐渐上升。就工业发展而言,我国建立的火电厂数量越来越多,这也导致了工业生产过程中大量的氮氧化物排放量产生,而且排放量一直有增无减,这从根本上影响了生态环境,而且对于人类的生存发展为不利,威胁人们的生命健康。就火电厂煤粉锅炉燃烧整个过程而言,要想保证合理的控制氮氧化物排放量,一个很重要的环节就是低氮燃烧技术,其在很大程度上可以有效的保护生态环境,有利于经济的可持续发展。本文重点针对我国当前低氮燃烧技术在煤粉锅炉中的应用问题进行研究,分析影响氮氧化物产生的主要原因,然后针对性的提出具体的低氮燃烧技术应用,为相关技术提供参考。

关键词:低氮燃烧技术;煤粉锅炉;应用

引言

我国的经济水平在快速上升,同时也增加了能源的需求量,随着能源的大量使用和消耗,氮氧化物的排放量也有了非常明显的增加。氮氧化物对生态环境的影响很大,其在很大程度上会消耗地球大气层中的臭氧层,不但会破坏整个生态环境,而且还会影响人类的身心健康。就我国而言,大量的氮氧化物排放源头是燃烧煤产生的,而对于煤炭的使用量最大的就是火电厂,我国当前的氮氧化物排放量排名中电力行业排在第一位,所以,火电厂必须严格控制生产过程中的氮氧化物排放量,通过各种技术来降低对环境以及人类社会的危害。

一、燃烧过程NO形成机理

在进行火电厂煤粉锅炉燃烧的时候,使用的燃料为煤,其燃烧会产生大量的氮氧化物,其中包含的主要成分有:一氧化氮、二氧化氮以及一氧化二氮,在这几中成分里面,一氧化氮占的比重大于9%,二氧化氮所占的比重大约在5-10%之间,一氧化二氮属于比重比较小的,只有大概1%的比重。所以,在进行氮氧化物排放量的控制过程中,重点控制的还是二氧化氮和一氧化氮,要从其形成的源头进行控制。从整体上进行划分,煤粉在进行燃烧过程中形成的氮氧化物类型主要有三种:第一种为速度型NO,第二种是热力型NO,第三种为燃烧型NO。在这三类之间,所谓的热力型NO,具体来源为氮气,其在火电厂煤粉锅炉燃烧的时候会发生氧化,进而形成热力型NO;而速度型NO,其形成的原因主要是燃料中碳氯高子团和空气里面的氮产生反映面形成;燃烧型NO,氮氧化合物在进行燃烧的时候产生的热分解形成。因此,就能够看出,燃烧过程是氮氧化物产生源头,其产生的量和具体的燃烧条件以及燃烧方式等是分不开的。

二、影响氮氧化物产生与燃烧的基本因素

通过观察煤粉锅炉中具体的燃煤经过能够看到,燃煤过程中产生的氮氧化物多少直接受到煤粉锅炉自身的燃烧条件、燃烧方式等影响,对氮氧化物产生的相关因素进行总结得出其中的主要因素,具体为燃料的燃烧品质、煤粉锅炉里面的温度还有煤粉燃烧的具体时间等。

(一)煤粉炉的温度

煤粉炉里面的温度会发生变化,这也会对氮氧化物的产生有所制约,而且也影响着燃烧的情况,要想从根本上保证燃煤过程中的氮氧化物产生量减少,一定要做好对煤粉炉内部的温度控制工作。

(二)燃煤品质

在煤炭燃烧的过程中,煤炭的品质也会直接影响其产生的氮氧化物量,而且不同品质的煤炭也有不一样的燃烧程度。比如,在煤炭燃烧的过程中,煤粉的挥发程度等都能直接影响氮氧化物的产生。

(三)煤粉燃烧停留的时间

就火电厂而言,对于内部煤粉锅炉里面煤粉和燃烧产物进行控制,能够在很大程度上使得氮氧化物的量减少。

三、低氮燃烧技术的应用

(一)改进低氮燃烧技术

就国外一些工业技术相对比较发达的国家而言,在进行氮氧化物有效控制的时候使用的相关技术主要有:改进燃烧的相关技术、对氮氧化物的燃烧器进行级别的分类以及有效的还原燃烧过程中形成的氮氧化物这三种。

1、就燃烧技术的改进来看,主要进行改进的技术是烟气再循环以及浓淡燃烧等。通过对这些措施的合理利用可以改进低氮燃烧技术,进而使得燃烧过程中产生的氮氧化物量减少。有效的使用这些方法进行改进,就可以避免大幅度的改进燃烧系统,促进达到了降低氮氧化物产生率的目的,同时也使得企业从根本上降低了成本。

2、对氮氧化物的燃烧器进行级别的分类。还要煤粉炉里面的燃烧器,主要是为了从根本上降低其中氧的浓度,进而使得氮氧化物的产生量有所降低。进行改造的时候最常使用的改造方式有偏转二次风燃烧器。这种技术能够最大程度的使得氮氧化物排放量得到降低。

3、有效的还原燃烧过程中形成的氮氧化物。在这种技术里面具体包含的技术内容有低氮氧化物燃烧器技术、燃料分级氮氧化物形成技术等。通过使用这些技术可以大幅度的降低燃煤过程中产生的氮氧化物量,确保对氮氧化物产生的有效控制。

(二)我国创新低氮燃烧技术

就我国而言,在进行火电厂生产的过程中,有效的引进了一些相关的国外低氮燃烧控制技术,然后在此基础上做了改进以及创新,最终研究出一套与我国具体情况相符合的低氮燃烧控制技术,在这个技术中具体包含的技术有:空气分级燃烧技术、新型燃烧器和降低其他氮氧化物技术这三种。

1、空气分级燃烧技术。具体来讲就是有效控制煤粉燃烧过程中氧的量,在此基础上保证煤粉炉里面煤粉的燃烧可以实现一定程度的还原性,最终有效的降低氮氧化物产生的技术。就当前来看,这一技术已经的到了广泛的使用。

2、新型燃烧器。这一技术主要是我国有效的改进国外引进的相关燃烧器,进行改造和创新,形成符合我国具体情况的新技术。进而确保在煤炭燃烧的过程中对于氮氧化物的有效控制。就这一技术而言,其中最明显的效果就是可以确保煤炭燃烧过程中的稳定性,在保证稳定性的前提下可以有效的降低氮氧化物的形成。就当前燃煤过程中使用的燃烧器来看,最常见的有多功能旋转型,通过使用这种改造燃烧

燃煤锅炉低氮燃烧器改造浅谈

燃煤锅炉低氮燃烧 器改造浅谈ABSTRACT:To reduce the running costs of SCR De NOx, Zhangjiakou Power Plant No. 3 boiler burner for transformation after transformation, the burner will reduce the coal combustion process in the furnace of NOx generation. This article focuses on the boiler burners with low nitrogen transformation programs, combined with the 3rd Zhangjiakou Power Plant boiler burner and effect the transformation of the actual situation, On the mechanism of coal-fired units generate NOx boilers and burners for NOx generated control. KEY WORD:Retrofit NOx Boiler 摘要:为降低脱硝SCR的运行费用,张家口发电厂对3号锅炉燃烧器进行改造,改造后的燃烧器将降低燃煤在炉膛燃烧过程中NOx的生成量。本文重点介绍锅炉低氮燃烧器改造的方案,并结合张家口发电厂3号锅炉燃烧器改造的实际情况及效果,浅谈燃煤机组锅炉NOx生成机理和燃烧器对NOx生成的控制。 关键词:锅炉燃烧器改造 NOx 1 概况 1.1 脱硝的必要性 在国家“十二五”规划中,对火电发电企业大气污染物排放作出了严格的规定。其中,京津唐地区要求NOx排放量小于100mg/Nm3。机组烟气脱硝改造在降低烟气NOx含量的同时,高昂的脱硝运行费用又使发电企业不堪重负。于是,为了减少SCR入口处NOx含量,降低脱硝运行费用,低氮燃烧器的改造已逐渐成为火力发电企业降低烟气NOx含量的重点改造之一。在今后火力发电机组的脱硝改造中,“先降后脱”的方案必然是大势所趋。1.2 氮氧化物的形成 煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等燃烧条件有关。研究表明,在煤的燃烧过程中生成NOx的主要途径有三个: a 热力型NO x是空气中的氧(O2)和氮(N2)在燃料燃烧时所形成的高温环境下生成的NO和NO2的总和,其总反应式为: N2+O2←→2NO NO+O2←→NO2 当燃烧区域的温度低于1000℃时,NO 的生成量很小,而温度在1300~1500℃时,NO的浓度大约为500~1000ppm,而且随着温度的升高,NOx的生成速度按指数规律增加。因此,温度对热力型NOx的生成具有决定作用。 b 快速型NOx主要是指燃料中的碳氢化合物在燃料浓度较高区域燃烧时所产生的烃与燃烧空气中的N2分子发生反应,形成的CN、HCN,继续氧化而生成的NOx。因此,快速型NOx主要产生于碳氢化合物含量较高、氧浓度较低的富燃料区,多发生在内燃机的燃烧过程。而在燃煤锅炉中,其生成量很小。 c 燃料型NOx是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx。燃煤电厂锅炉中产生的NOx中大约75~90%是燃料型NOx。在一般情况下,燃料型NOx 的主要来源是挥发份N,其占总量的60~80%,其余为焦炭N所形成。在氧化性环境中生成的NOx遇到还原性气氛时,会还原成N2,因此,锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着燃烧条件的改变,生成的NOx可能被还原,或

燃气锅炉低氮改造方案培训课件

燃气锅炉低氮改造方案 燃气锅炉低氮排放成为了新时代的新要求,为了保护环境,保证国人健康,燃气锅炉低氮排放势在必行,使命必达。 远大锅炉紧跟时代步伐,积极响应国家政策,时刻不忘研发新产品,不忘为用户谋福利。 远大低氮燃气锅炉:FGR烟气再循环低氮燃烧技术;国外原装进口低氮燃烧器; 压力、水位多重安全防护;PLC触摸屏智能化控制技术。 远大锅炉低氮技术研发历程: 保护环境,节能减排,绿色生产,可持续发展是每一个企业的使命,远大锅炉每年按销售额的5%提取新产品研发费用,专注低氮、节能锅炉技术的研发。 2015年,远大锅炉与芬兰奥林、德国欧科、意大利利雅路、意科法兰等积极合作,通过使用超低NOx燃烧器,增加烟气外循环设计,实现氮氧化物<30mg/m 3排放标准。 NOx成分分析及产生机理: 在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮氧化物通称为氮氧化物NOx。大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。

燃料燃烧过程生成的NOx,按其形成分类,可分为三种: 1、热力型NOx (Thermal NOx),它是空气中的氮气在高温下氧化而生成的NOx; 2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx; 3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx; 燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。实际上除了这些反应外,NO 还可以与各种含氮化合物生成NO2。在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。 降低NOx的燃烧技术: NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下: 1选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料; 2降低空气过剩系数,组织过浓燃烧,来降低燃料周围氧的浓度; 3在过剩空气少的情况下,降低温度峰值以减少“热反应NO”; 4在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。 减少NOx的形成和排放通常运用的具体方法为:分级燃烧、再燃烧法、低氧燃烧、浓淡偏差燃烧和烟气再循环等。 目前低氮改造方案 1、FGR技术: 即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法即FGR技术,

锅炉低氮燃烧器改造后存在的问题与对策(一)

锅炉低氮燃烧器改造后存在的问题与对策(一)河北艺能锅炉有限责任公司

当前,我国雾霾防治形势逼人,尽管雾霾产生的成因尚未完全研究清晰,但在社会舆论的压力和国家日益严格的节能减排政策面前,电力行业节能减排的压力不断增大,而燃煤发电机组在相当长的一段时期内仍然是我国发电行业中的主力,对于环保部最新颁布的《火电厂大气污染物排放标准》(GB13223-2011),即从2014年7月1日起,现有火力发电锅炉要达到标准规定的排放限值,燃煤发电企业纷纷进行环保设施的改造,如锅炉低氮燃烧器的改造,改造后降低NOx的排放取得较好效果,但也给锅炉安全、稳定和经济运行带来了一定的影响。NOx治理现状 国内外已对NOx的危害、燃煤发电燃烧过程中NOx的生成机理和降低NOx技术进行了较为充分的研究,可分为三种[1]:热力型NOx、燃料型NOx和快速型NOx;其中,燃料型NOx约占80-90%,是各种低NOx 技术控制的主要对象;其次是热力型,主要是由于炉内局部高温造成,快速型NOx生成量很少。NOx的控制方法可分为燃烧前处理、燃烧中处理和燃烧后处理。燃烧前脱氮主要是在燃烧前将燃料转化为低氮燃料,技术复杂,难度大,成本高,目前仅限于研究阶段;燃烧中脱氮主要有:一是抑制燃烧中NOx的形成,二是还原已形成的NOx;燃烧后脱氮主要是指烟气脱硝:包括选择性催化还原法、选择性非催化还原法等。 目前被大家公认,并已在各燃煤机组锅炉上广为应用的降NOx方法,主要是燃烧中脱氮的低氮燃烧技术加燃烧后脱氮的烟气脱硝技术;燃烧中脱氮是根据NOx的生成机理采取的低氮燃烧技术主要是:低氧燃烧、空气分级燃烧、燃料分级燃烧、烟气再循环等,该技术的主要机理就是将燃烧器通过纵向布置形成氧化还原、主还原、燃尽三区,对于四角切圆燃烧锅炉还可通过横向双区布置形成近壁区和中心区两个区域,从而实现燃料与配风在炉膛内分区、分级、低温、低氧燃烧,降低煤粉燃烧过程中NOx生成量。从2011年至今,该低氮燃烧技术在全国的燃煤锅炉上大范围应用,通过改造和运行优化,NOx减排量可达30%—70%,对于四角切圆燃烧锅炉NOx的排放浓度可由原来的400-600mg/m3降为200mg/m3以内,对冲燃烧锅炉NOx的排放浓度可由原来的500-700mg/m3降为370mg/m3以内,“W”火焰燃烧锅炉NOx的排放浓度[3]可由原来1100-1300mg/m3降为800mg/m3以内。目前,局限于低氮燃烧技术研究和发展,且该技术很短时期内再在运锅炉上快速、集中、大量的应用后,其技术尚未来得及进行消化吸收、优化改进等。

火电厂锅炉低氮燃烧改造及运行优化调整 孙光奇

火电厂锅炉低氮燃烧改造及运行优化调整孙光奇 发表时间:2020-01-14T11:29:06.207Z 来源:《基层建设》2019年第28期作者:孙光奇朱少春 [导读] 摘要:随着我国经济的不断发展,人民对于电力资源的需求愈加严重,尤其是在当今社会发展阶段中,电力资源已经是充斥了我们生活每一个角落,可以不夸张的说,小到生活日常所需,大到科技发展,社会进步都离不开电力资源的支撑。 济南锅炉集团有限公司 摘要:随着我国经济的不断发展,人民对于电力资源的需求愈加严重,尤其是在当今社会发展阶段中,电力资源已经是充斥了我们生活每一个角落,可以不夸张的说,小到生活日常所需,大到科技发展,社会进步都离不开电力资源的支撑。就以当前我国的科技水平来说,其火力发电还是主要产电方式。虽然其火力发电产出的电力资源相当可观,但是该类产电方式对环境的污染较为严重,有时会达到一个无法接受的程度。对此,为满足国家的可持续发展道路,就要相应的实施火电厂锅炉低氮燃烧改造,从根本上解决火电厂的污染问题。本文就以火电厂锅炉低氮燃烧改造和运行优化进行探讨。 关键词:火电厂;锅炉;低氮改造;运行优化 1火电厂锅炉低氮改造重要性 目前,我国的主要发电类型就是火力发电,其它的发电方式产出效率较为低下,还不足以满足我国如此庞大的人口用电所需,而核能发电则是因为科技还不够完善,目前还存在些许的问题。因此,火力发电仍然是我国现阶段的主要供电来源。但是其火力发电的污染较为严重,需要相应的引入新技术,在这种情况下,低氮燃烧改造技术应势而生,将低氮燃烧技术良好的应用于火电厂锅炉发电进程中,可以有效的减少锅炉的烟气排放量,加强烟气净化系统,降低循环流化床锅炉的烟气产生量,极大的解决烟气排放所导致的一系列环境污染问题。为顺应当代可持续发展观念,同时还要满足我国十几亿人口的用电所需,就要对低氮燃烧改造技术的应用重视起来,并相应的加大对该技术的研究力度。 2火电厂锅炉运行优化的重要性和影响因素 2.1锅炉运行优化的重要性 作为火电厂的重要组成部分,锅炉运行的好坏直接影响着火电厂的整体运行效果。进行锅炉系统的全面优化可以帮助火电厂解决多种问题,主要表现为:降低了氮氧化物、飞灰含碳量等;在一定程度上改进了减温水量、热效率、煤耗等;有利于过热器与再热器超温和受热面结焦结渣的控制。另外,锅炉运行的优化可以实现锅炉各组成部分的协调控制,并可以发现和挖掘锅炉更多的空间。 2.2影响锅炉运行优化的因素 在锅炉运行过程中存在很多影响因素,为了提高锅炉的利用率和运行效率,应对锅炉的运行方式进行调整,有效减少各种损失,同时还应在一定程度上提高蒸汽的参数,从而降低锅炉的排污量与减温水量。对于运行中的锅炉来说,其热损失主要来自未充分燃烧和排烟两方面。其中,未充分燃烧是指燃料在锅炉内没有完全燃烧,没有发挥全部的热能而造成热损失。而排烟热损失的影响因素有很多,主要包括:受热面积积灰和结渣,其原因是锅炉在运行过程中,预热器、炉膛和烟道等处的受热面容易出现积灰,从而影响排烟造成热损失;漏风问题,其主要出现在制粉系统、炉膛、烟道等处,当发生漏风时会直接增加排烟热损失,另外,排烟温度会随着炉膛漏风系数的增大而升高,进而造成排烟热损失增加;外界因素影响,即入炉煤的成分、空气预热器入口的温度等因素的影响,煤成分的大小影响着炉膛内燃烧程度,如果煤质不好导致燃烧不充分,会增加烟气量,导致排烟热损失增大。 3火电厂锅炉低氮燃烧改造优化 3.1火电厂锅炉燃烧改造 因为目前的中国科技技术还达不到全面实现核能产电,因此,其主要发电方式仍为火电厂发电,为解决其环境污染问题,就要相应的应用低氮化燃烧改造技术,使得我国的火电厂发电走向可持续发展道路。其低氮化燃烧改造的核心就是使用垂直煤粉超浓缩分离技术,将传统的燃烧方式升级为立体分级燃烧方式。在实际的改造过程当中,需要将原锅炉中的燃烧器进行重新改进和布局,全面更换为低氮燃烧器、其煤粉喷嘴换为上下摆动结构并且垂直浓淡分离,以达到提升低氮燃烧器的烧热效率和降低NOx排放量的目的。 3.2火电厂低氮燃烧运行优化 将传统燃烧器全面更换为低氮燃烧器后,需要进行相应的优化工作,以达到全面保证锅炉的正常运作的同时提高其电能产出率,扩大火电厂经济效益,减小汽温和两侧烟温的差距。目前我国所常用到的火电厂低氮燃烧运行优化措施大致分为调整摆角和燃尽风;调整一次风、二次风、周界风;调整炉膛氧量;调整煤粉细度等几个措施。 调整摆角和燃尽风指在汽温较高的情况下,适当的降低燃烧器摆角并且优化燃尽风,可以有效降低含氧量,适当上部燃烧率升高,明显提高其低氮燃烧效率。 调整一次风、二次风、周界风指通过实现二次风组合适当将主燃烧区实现低氧燃烧,结合相应的参数进行实际调整,通过实际的低氮燃烧情况进行更加适合的调整二次风工作。调整炉膛氧量指将炉膛中的含氧量控制在2.5%-3.5%之间,可以明显达到降低NOx排放量的作用,还可以保证锅炉长期维持一个良好的工作效率状况。 调整煤粉细度则是对分离器挡板进行适当调整,使得其变小,降低煤粉细度,最终使得煤粉燃烧更加充分,可以有效防止由于低氧环境而导致温度超标使得受热面超温的情况发生,可以提高其锅炉运作的安全稳定性。 4探析锅炉运行的优化措施 4.1关于优化锅炉设备本体 近些年以来,很多电厂锅炉逐渐增大了异常运行的概率,其中根源就在于较长的锅炉投产年限。在现有的锅炉异常现象中,较为典型的就是磨煤机出现卡涩、过热器脱落氧化皮、较高的脱硫风机能耗以及其他运行故障。经过全方位的燃烧技术转型与技术优化后,锅炉本体设备将会达到更好的运行性能指标。火力发电厂具体在改造现有的锅炉设备时,关键措施在于同步控制锅炉系统目前的耗电量以及系统运行阻力,确保实现显著降低的系统耗电比例,提升锅炉装置现有的系统阻力。并且针对挡板频繁出现卡涩的情况来讲,重点应当关注优化现有的磨煤机系统,以便于灵活调节分离器。 4.2关于优化现有的锅炉运行方式 实质上,锅炉运行方式决定于较多的锅炉燃烧因素,其中典型因素就在于煤质因素。锅炉燃烧效率在根本上决定于煤质的改变,并且

燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案 项目名称:xxx燃气锅炉低氮改造工程编制单位: 编制时间:2016年10月13日

第一章工程概况 1.1工程简介 1.1.1本工程为xxx燃气锅炉低氮改造工程。首先需采购新锅炉,拆除原有锅炉、烟囱、电气设备、部分水暖和燃气管道等;然后安装新锅炉,管道、烟囱重新布置。 1.1.2本项目施工范围 1.锅炉房内原有锅炉、采暖及燃气管线、电气设备、烟囱的拆除; 2.锅炉房设备管道安装,其中有锅炉、管道等安装; 3.电气工程,包括电气动力和电气照明; 4.烟囱安装; 5.燃气工程。 第二章施工准备 在工程正式开工前,需现场勘查,确认实际施工条件和工程量,以利于施工的计划的安排和顺利进行。另一方面应该积极设备供货厂家,了解设备技术参数、基础做法、安装尺寸等,为施工做好充足准备。 2.1临时设施 根据现场实际情况,由甲方指定地点作为临时设施存放和现场预制场地。 2.2临时用电 临时用电由甲方指定的地点挂表接入,现场用电包括生产用电和生活用电,施工用电主要为电焊机、切割机、磨光机、照明设施等。临时用电采用三级配电,两级保护,保证用电安全。 2.3临时用水 临时用水从甲方指定地点接入。主要用于生活用水和施工用水,施工用水主要为土建砌筑用水和混凝土基础养护、打压和冲洗用水等。 2.4生产准备

重点完成工作场地布置、临时水源、临时电源、人员组织及进场、机械设备组织及进场计划、工程材料准备及进场计划、图纸会审及设计交底、现场纵横基准线与标高基准点复核等。 2.5技术准备 施工前要认真研究和熟悉本工程设计文件并进行现场核实,组织有关人员学习设计文件,图纸及其它有关资料,使施工人员明确设计者的设计意图,熟悉设计图纸的细节,对设计文件和图纸进行现场校对。 2.6材料准备 针对本工程的施工内容,在开工之前对工程所需锅炉设备、电气、管道、烟囱等制定采购计划,积极联系资质优良的材料厂家并提出详细的进场计划,严格执行验收与检测程序,确保原材料的质量。 第三章施工进度安排 3.1施工部署 本工程为低氮改造工程,首先得安排设备采购订货,尤其是锅炉的采购,预计需要四十天; 其次,组织施工进场,在甲方指定位置引入水电,安排临时生活设施和现场预制加工场地; 第三,拆除需改造设备,锅炉、管路、线路、烟囱等; 第四,根据设计文件和设备参数复核设备基础位置标高,规划管线安装路由、力求布局科学合理; 第五,锅炉、烟囱、电气等新购设备的进场验收; 第六,锅炉、烟囱、管道、仪器仪表、燃气管道设备及电气管线设备安装; 第七,管道系统水压试验、冲洗、防腐保温; 第八,系统冷态调试; 第九,锅炉点火试运行;

锅炉低氮改造施工组织设计方案网络版

锅炉低氮燃烧器安装 方 案 文 件 建设单位: 施工单位:

目录 一、编制依据 二、工程概况 三、主要施工内容 四、施工组织 五、施工技术措施 六、质量保证措施 七、安全措施 八、企业人员资质 编制人: 审核人: 日期:2017年月日

第一章编制依据 一、JB/T1613《锅炉受压元件焊接技术条件》; 二、JB/T1612《锅炉水压试验技术条件》作为技术标准、质量要求。 第二章工程概况 本工程位于北京市锅炉房。现场交通状况良好,现有水压、电力容量能够满足施工要求。 现场锅炉设备情况如下表(详见后附锅炉低氮燃烧改造告知书): 第三章主要施工内容 根据甲方要求和锅炉低氮改造要求,本工程主要施工内容有:提供全新原装进口设备并进行相关施工,满足甲方的各项要求,达到甲方的使用目的,达到烟气环保排放标准。 (1)燃烧器选型及说明: 将甲方原有 2.8MW锅炉配置的旧燃烧器更换为德国欧科EKEVO7.3600 G FGR型低氮电子比调燃烧器及其配套阀门组件。 EKEVO7.3600 G FGR是低氮燃烧器加烟气再循环技术,这种技术组合可以达到低于30mg/m3的NOx排放浓度,在稳定达到《锅炉大气污染物排放标准》(DB11/139-2015)中高污染燃料禁燃区内在用锅炉2017年4月1日起执行的80mg/m3排放限值的基础上留有一定的富余,以防止运行不稳定造成NOx超标; 采用烟气再循环技术辅助低氮燃烧时,同样额定功率的锅炉炉膛尺寸要比常规锅炉适当放大,以保证NOx的控制效果。本项目为旧锅炉改造,鉴于旧锅炉的炉膛尺寸相对偏小,需适当降低锅炉的额定

出力以确保NOx的控制效果。 (2)燃烧器安装改造说明: 2.1锅炉燃烧器连接法兰改造:2.8MW热水锅炉的燃烧器原有安装接口比EKEVO7.3600 G FGR型燃烧器所需接口要大,所以需要制作一块过渡安装法兰,安装法兰与锅炉原有旧法兰板满焊焊接连接,以达到连接稳固的目的。 2.2燃烧器燃烧头长度选择:根据不同的锅炉前炉墙的厚度,选用EKEVO7.3600 G FGR型燃烧器加长头,使燃烧器燃烧头伸入锅炉炉膛燃烧室之内,以保障燃烧时火焰完全在锅炉炉膛燃烧室内。 2.3燃烧器电气方面改造: EKEVO7.3600 G FGR型燃烧器电机功率动力电源配线无需改口。控制线路进行改动;燃烧机自配控制柜须安装在燃烧器3米以内,完成该控制柜与燃烧器之间的电气布线和接线。 2.4烟气再循环管道施工: EKEVO7.3600 G FGR型燃烧器的烟气再循环FGR接口口径为DN200以上。整个FGR管路最多有3个90度弯头,总长度不超过13米。锅炉出口烟道的FGR取出管口必须是45度迎风面切口。整个FGR管路做保温处理以减少冷凝水的产生。FGR管进入燃烧器前,必须在FGR管的最低位置做冷凝水排水管,排水管口径为DN15,2个180°弯头,向下的排水管长度要大于300mm。 (3)质监局与环保局测试验收: 按照北京市海淀区质量技术监督局要求进行锅炉安全性能调试验收。由北京市海淀区环境保护局委托第三方验收机构对现场锅炉燃烧器

燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案

项目名称:xxx燃气锅炉低氮改造工程 编制单位: 编制时间:2016年10月13日 第一章工程概况 1.1工程简介 1.1.1本工程为xxx燃气锅炉低氮改造工程。首先需采购新锅炉,拆除原有锅炉、烟囱、电气设备、部分水暖和燃气管道等;然后安装新锅炉,管道、烟囱重新布置。 1.1.2本项目施工范围 1.锅炉房内原有锅炉、采暖及燃气管线、电气设备、烟囱的拆除; 2.锅炉房设备管道安装,其中有锅炉、管道等安装; 3.电气工程,包括电气动力和电气照明; 4.烟囱安装; 5.燃气工程。 第二章施工准备 在工程正式开工前,需现场勘查,确认实际施工条件和工程量,以利于施工的计划的安排和顺利进行。另一方面应该积极设备供货厂家,了解设备技术参数、基础做法、安装尺寸等,为施工做好充足准备。 2.1临时设施 根据现场实际情况,由甲方指定地点作为临时设施存放和现场预制场地。

2.2临时用电 临时用电由甲方指定的地点挂表接入,现场用电包括生产用电和生活用电,施工用电主要为电焊机、切割机、磨光机、照明设施等。临时用电采用三级配电,两级保护,保证用电安全。 2.3临时用水 临时用水从甲方指定地点接入。主要用于生活用水和施工用水,施工用水主要为土建砌筑用水和混凝土基础养护、打压和冲洗用水等。 2.4生产准备 重点完成工作场地布置、临时水源、临时电源、人员组织及进场、机械设备组织及进场计划、工程材料准备及进场计划、图纸会审及设计交底、现场纵横基准线与标高基准点复核等。 2.5技术准备 施工前要认真研究和熟悉本工程设计文件并进行现场核实,组织有关人员学习设计文件,图纸及其它有关资料,使施工人员明确设计者的设计意图,熟悉设计图纸的细节,对设计文件和图纸进行现场校对。 2.6材料准备 针对本工程的施工内容,在开工之前对工程所需锅炉设备、电气、管道、烟囱等制定采购计划,积极联系资质优良的材料厂家并提出详细的进场计划,严格执行验收与检测程序,确保原材料的质量。 第三章施工进度安排 3.1施工部署 本工程为低氮改造工程,首先得安排设备采购订货,尤其是锅炉的采购,预计需要四十天; 其次,组织施工进场,在甲方指定位置引入水电,安排临时生活设施和现场预制加工场地;

小型锅炉低氮改造技术说明

小型锅炉低氮改造技术说明 烟台龙源电力技术股份有限公司 2012-11

一、概述 为响应国家“节能减排”号召,进一步降低锅炉氮氧化物排放浓度,全国电厂都在进行锅炉低氮燃烧改造。我公司在这一领域起步最早,一直处于国内领先地位。 目前,我公司的锅炉低氮改造技术主要有三种:一是双尺度低氮燃烧技术,主要针对四角切圆机组,通过空间尺度上的改造和过程尺度上的控制达到三场特性差异化,从而在两个尺度上形成炉内利于防渣、低NOx、稳燃功能的三场特性。二是旋流低氮燃烧技术,主要针对前后墙对冲机组,通过更换煤粉燃烧器及改造二次风、三次风来降低锅炉氮氧化物含量。三是W火焰锅炉低氮燃烧技术,把锅炉前后拱煤粉燃烧器更换为特殊结构的低氮燃烧器,为尽可能减少正常运行中对燃烧组织的影响,二次风的结构基本不变。以上三种低氮燃烧技术,在改造中都取得了很好的降氮效果。 现在,有许多小型锅炉(100MW及以下机组,主要是四角切圆形式)也需要进行低氮改造,但如果采用我公司常规的低氮改造技术,投资成本相对较高,对于小型锅炉来讲,可能不能承受,经济效益也会受影响。针对这种情况,我公司经过认真研究、仔细分析推出了小型锅炉低氮改造技术,通过对影响锅炉氮氧化物产生的主要过程进行控制与改造,以较小的改造成本达到大幅降低锅炉氮氧化物排放浓度的目的。 小型锅炉低氮改造方案设计、技术标制作、技术支持及工程设计调试由微油事业部负责。 二、小型锅炉低氮改造技术方案 1、改造煤质要求:一般情况下要求Var>18%,Aar<35%。NOx排放浓度<300mg/m3。如果煤质较差需具体分析。 2、具体改造方案: (1)增加燃尽风。为了实现炉膛空气深度分级燃烧,预留出较大的燃尽空间及还原空间。在炉膛四角上部各设立1个燃尽风喷口(可上下摆动,采用高位燃尽风布置方式,保证足够的还原高度)。燃尽风管道上设有插板门。燃尽风喷嘴设有密封装置。燃尽风的改造是降低燃料型及热力型NOx的主要手段。 (2)取消三次风。三次风喷口取消,原来三次风管道加装分离器,经过浓淡分离后的风,浓侧加入到上二次风,淡侧充当燃尽风。将三次风引入到二次风中,可以减少原主燃烧器区域二次风量,同时,可以把三次风中的一部分煤粉提前(与原来的高位布置相比)送入炉膛中,因为位置降低,也就相当于延长了三次风中煤粉在炉内的燃烧时间,

低氮锅炉改造方案

为有效解决当前大气污染防治工作进入瓶颈期、氮氧化物浓度持续高位、夏季O 3反弹的问题,按照环保要求,各相关单位按照文件精神开展燃气锅炉及锅炉的氮氧化物改造工作。 持续开展大气污染防治行动,坚决打赢蓝天保卫战,实现环境效益、经济效益和社会效益多赢。至2020年经过3年努力,大幅减少主要大气污染物排放总量,协同减少温室气体排放,燃气锅炉及锅炉均完成低氮改造,进一步明显降低细颗粒物(PM ) 2.5浓度,明显减少重污染天数,明显改善环境空气质量,明显增强人民的蓝天幸福感。 专业从事燃气锅炉低氮改造工作,以下为改造具体方案,可供参考: 改造施工现场 一、改造施工前准备工作如下: 做好施工人员进场准备,办理各项有关手续,按规定搭设临时设施,如现场布置、工地办公室、仓库、材料堆放场地、临时水、电到位,以及生活、卫生设施的落实。 1.对施工图纸进行全面会审,技术复核,熟悉图纸,了解各种工艺技术、材料性能及施工方法。 2.进一步深化施工组织设计,确定施工方案,认真做好对各工种施工前的技术交底。了解消防配套、弱电综合布线以及土建施工单位的工程实施计划,制定相应的配合施工计划。 3.按材料种类分类,做好垃圾清运工作。 4.根据燃烧器厂家提供的锅炉燃烧器图纸和辅机资料对燃烧器及辅机进行检验。对技术资料、图纸进行检查、清点。

5.仔细阅读燃烧器安装使用说明书,查看厂家对燃烧器安装有无特别要求。 6.带施工图纸到安装现场查看,锅炉基础及附件基础是否与图纸相符,施工现场是否与图纸一致。 7.在施工改造前,锅炉房内先进行断水、断电、断气后,确认无安全隐患,再进行原有燃烧器拆除,必要时采用专用工具。 8.在拆除后对燃烧器法兰接口尺寸进行校核,否则重新加工处理。 9.按照安装图纸施工现场配料,材料包括附件、阀门、仪表、管道、和保温材料等。所用的主要材料、设备及半成品应符合国家或相关部门标准,燃烧器厂家应提供国家特检院出具的燃烧器形式试验报告及证书。 10.之后到现场查看是否具备安装条件,包括锅炉运输道路是否畅通,是否具备锅炉就位的条件,现场是否干净,基础硬化情况,以及水电、工人施工居住条件等。 11.落实技术交底工作:组织各班组长及各工种技术业务骨干进行技术交底、质量交底、安全交底及文明施工交底,并逐级下达全体施工人员进行实施。 已改造完毕20t/h燃气锅炉 二、改造施工工艺及步骤: 1、打开锅炉前盖板,拆除旧燃烧机。 2、拆除后,测量盖板上固定燃烧机的螺栓孔。若孔距和低氮燃烧机的孔距相同,就可以直接安装新的燃烧机。若孔距不同,就要采取相应措施把新燃烧机固定在盖板上。

锅炉低氮燃烧器改造工程施工组织设计方案

第一章编制依据 本施工组织专业设计主要依据下列文件进行编制: 通辽霍林河坑口发电有限责任公司#2炉低氮燃烧器改造工程招标文件 通辽霍林河坑口发电有限责任公司#2炉低氮燃烧器改造工程设计图纸 通辽霍林河坑口发电有限责任公司#2炉低氮燃烧器改造工程技术协议 哈尔滨博深科技发展有限责任公司质量、职业健康安全、质量管理体系《管理手册》 哈尔滨博深科技发展有限责任公司企业标准 《火电施工质量检验及评定标准》(锅炉篇)1996年版 《电力建设施工及验收技术规范》(锅炉机组篇)DL/T5047-95 《火力发电工程施工组织设计导则》

第二章工程概况 2.1 工程概况 通辽霍林河坑口发电有限责任公司锅炉为哈尔滨锅炉有限责任公司根据引进的美国ABB-CE 燃烧工程公司技术设计制造的亚临界压力,一次中间再热,单炉膛,强制循环汽包锅炉;型号为HG-2080/17.5—HM12。炉膛燃烧方式为正压直吹四角切圆燃烧,燃烧器喷口可摆动。炉膛四角布置摆动式燃烧器,燃烧器上方布置高位OFA燃烬风,保证NOx排放值。制粉系统配置7台MPS225HP-Ⅱ型中速辊式磨煤机,锅炉燃用设计煤种满负荷运行时,6台运行1台备用。锅炉采用二级高能点火系统,整台炉共布置16支油枪(每角4只),油枪采用机械雾化喷嘴,点火枪和油枪均为可伸缩式,设计油枪的最大出力为20%MCR负荷。锅炉采用冷炉点火,将A层4 台主燃烧器改造为兼有等离子点火功能的燃烧器。在锅炉点火和稳燃期间,该燃烧器具有等离子点火和稳燃功能;在锅炉正常运行时,该燃烧器具有主燃烧器功能,且在出力方面及燃烧工况与原来保持一致。根据原主燃烧器的结构,等离子发生器采用径向插入方式。 为响应国家“节能减排”号召,通辽霍林河坑口发电有限责任公司决定对#2燃煤锅炉进行低NOx燃烧改造,该改造工程由哈尔滨博深科技发展有限公司总承包,改造的方案为:更换现有一、二次风组件,增加高位SOFA燃尽风系统及附件,原有的径向等离子点火系统升级为轴向等离子点火系统,对原等离子燃烧器及发生器作同步升级。 第三章施工范围及主要工程量 通辽霍林河坑口发电有限责任公司#2炉低氮燃烧器改造包括以下工程内容(但不限于此):

低氮燃烧炉内脱硝技术介绍

低氮燃烧炉内脱硝技术介绍 低NOx燃烧方案 NO系列低NOx燃烬风系统是LPAmina公司的核心技术,主要由NO30、NO50、NO70三大方案组成。低NOx系统基于空气分级原理,通过增加燃烬风系统降低NOx排放量,同时兼顾强化燃烧、进步燃烧效率,防止结渣、高温腐蚀,优化机组性能等。我们针对不同客户情况,使用相应的燃烧布置方案。尽可能的保存原结构,保持锅炉运行参数不发生变化,实现改造的有效性和经济性。 低NOx方案的制定以对机组的全面了解和正确分析为条件,它涉及对机组设计、运行的数据的广泛采集和对比验证,方案设计基于公道有效的机组信息,采用计算流体力学模拟软件,并结合综合模拟试验,对机组改造前后的情况进行比对,保证改造的有效性,经济性和可靠性。 针对不同锅炉的低NOx解决方案 LPAmina根据客户需求提供一系列的低NOx解决方案。在美国有25%的电厂采用了我们的技术,应用在四角切圆、墙式燃炉和W火焰等形式的锅炉项目上,机组大小从50MW到1000MW。我们的方案基于对整个燃烧系统的评估,通常会包括燃烧器改造、增加OFA或SOFA等,达到降低NOx,减少结渣,进步锅炉效率的目的。 四角切圆炉解决方案 LPAmina提供三种方案帮助客户降低NOx。NO30方案保持原有风箱高度,压缩主燃烧区,尽可能利用原有OFA喷口。如锅炉没有OFA喷口,就需要改造现有风箱,转移一部分空气到顶部喷口。主风箱的顶二次风及上层煤粉喷口位置通常被用来安装新的OFA喷口。在这种情况下,主要是通过减少主燃烧区的氧气量达到减少燃料型NOx的目的。

NO50方案采用了火上风(SOFA)技术。在实验室和实际应用中均已证实:SOFA喷口与主燃烧区域间隔较远,能够很大程度上减少NOx的天生。NO30方案相对简单,由于它的OFA流量小,间隔主燃烧区近,降低NOx的能力有限,而NO50方案,间隔增加,风量增加,减少NOx 的能力也有较大的进步。由于SOFA风与主燃烧区域分离,使得主燃烧区处于富燃料状态,这将有利于燃料型NOx转化成N2成分。同时,分级燃烧避免了炉内局部温度过高,这样也有利于减少热力型NOx的天生。 NO70方案综合了NO30和NO50,NO70能够最大程度上进行空气分级,是降低NOx最有效的方法。 墙式锅炉解决方案 No70R低氮燃烧器应用于燃煤或煤油混燃的墙式燃炉。在全世界安装使用超过2000支。同四角切圆锅炉解决方案相同,No70R燃烧器在垂直和水平方向产生分级燃烧效果。通过使用专利的文丘里喷口和低旋分配器,可以有效降低NOx。在喷口中心一次风聚集,形成富燃料区域,当通过分配器后,煤粉流被叶片分成四股,这些煤粉流螺旋状进进炉膛,产生煤粉与二次风的逐步混合。二次风依次通过挡板、燃烧器筒身及导流板进进炉膛,在燃烧器出口形成富燃料区,能有效降低燃料型NOx,同时降低了火焰的峰值温度,使得热力型NOx减少。 产品特性: 降低NOx:单独使用NO70R低氮燃烧器最高可降低50%的NOx排放,配合使用SOFA系统,效果可达70%; 对UBC的影响:基本不会对UBC和锅炉效率产生影响; 两个独立通道控制气流,低旋分配器产生的分股气流能很好的保持风/粉比。 能有效降低燃料型NOx,同时降低了火焰的峰值温度,使得热力型NOx减少。

锅炉低氮燃烧器改造- 氮氧化物排放小于30mg

近年来,国家大力推进清洁空气计划,压减燃煤。不论是集中供暖使用的燃煤锅炉、还是农村做饭取暖的小煤炉,都陆续在相关政策下被清洁能源进行替代。因此,近年来,大气中的二氧化硫、粉尘含量持续减少。但值得注意的是,天然气越来越多的使用,也造成了一定的氮氧化物污染。 天然气虽是清洁能源,但燃烧过程中会产生氮氧化物,也是形成雾霾的成分之一。按照“十三五”时期的能源规划,从2014年到2020年,天然气消耗量将由146亿立方米增长到200亿立方米。如不采取低氮改造,天然气燃烧将成为氮氧化物污染的主要来源,从而产生大量NOx。 从NOx的产生机理来看,燃气锅炉控制NOx的技术也主要着眼于两个方向:降低燃烧火焰温度和降低氧含量,很多低氮燃烧器厂家都是依据锅炉低氮燃烧改造原理而设计而成的。从目前的低氮改造方向上来看来看,几乎所有的锅炉低氮改造方式都会从燃烧器着手,那么低氮改造有哪些厂家比较专业呢?

上图为:中鼎SZS型超低氮双锅筒燃气锅炉 郑州中鼎锅炉股份有限公司是高新技术企业,拥有A级锅炉制造许可证和I、II类压力容器设计制造许可证、一级锅炉安装许可证,公司通过美国ASME认证,取得锅炉S 和压力容器U钢印,公司还通过ISO9001国际质量体系认证、环境管理体系认证及职业健康管理体系认证。 ★先进装备是保证高品质锅炉制造的保障。 1、先进燃油燃气(低氮、超低氮)锅炉生产线。主要设备包括:30m行程超厚板数控等离子生产线,100mm液压卷板机、4m大型立车、5套汽包自动焊机、6套先进TIG和MIG管板焊接专机、螺纹烟管自动生产线; 2、全套流水线式中电华强品牌膜式壁生产线。主要设备包括:2套大型20头日本松下焊机膜式水冷壁生产线、1600mm顶墩式成排弯管机、扁钢精整校正机,管子喷砂除锈机,二十余台电动管子坡口机; 3、全套流水线式流水线式中电华强品牌大型蛇形管生产线。主要设备包括:管子喷砂除锈机,十余台电动管子坡口机,48m超长导轨数控自动环缝焊接线,工业电视成像探伤室,75m全自动蛇形管弯制生产线,十余台数控弯管机。

锅炉低氮燃烧器改造

锅炉低氮燃烧器改造 作者:李伟刘帅点击:1399 浅论HG-1020/18.58-YM型自然循环锅炉 低氮燃烧器改造 1 概述 大唐鲁北发电有限责任公司 2×330MW机组分别与2009年9月、2009年12月投产运行,锅炉采用哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的HG-1020/18.58-YM23型自然循环锅炉。锅炉燃烧系统采用水平浓淡煤粉燃烧技术,烟气中氮氧化物含量在600mg/Nm3左右。随着国家对火电厂节能减排高度重视,环保标准将越来越高。根据《火电大气污染排放标准》要求,2014年1月1日起现有发电厂锅炉NOx排放浓度限值不大于100mg/Nm3。本着对社会负责,对企业负责的态度,大唐鲁北发电有限责任公司决定对本工程配套建设脱硝装置,脱硝装置投产后机组NOx排放浓度将降至排放标准以下。 按照脱硝工程设计要求,需对我公司燃烧器系统进行改造,将锅炉出口NOx排放浓度降低至 200 mg/Nm3以下。本文列举了大唐鲁北发电有限责任公司针对以上问题做出的相对应改造以及取得的效果。 2 设备简介 2.1工作原理 大唐鲁北发电有限责任公司2×330MW机组锅炉是哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的,配330MW汽轮发电机组的亚临界、一次中间再热、燃煤自然循环汽包锅炉,型号为HG-1020/18.58-YM23。1号机组2009年9月投产,2号机组2009年12月投产。 锅炉燃烧系统采用摆动式燃烧器,燃烧器为四角布置,共5层分别对应5台磨煤机(由下往上依次是A、B、C、D、E)燃烧器四周通有周界风,在AB、BC、DE层布置由三层机械雾化油枪,燃用#0轻柴油,按锅炉30%BMCR负荷设计,单支最大用油量1.68t/h。本燃烧器采用水平浓淡煤粉燃烧技术,以提高锅炉低负荷运行的能力,燃烧器可以上下摆动,其中一次风喷嘴可上下摆动20度,二次风喷嘴可上下摆动30度,顶部燃尽风喷嘴可向上摆动30度,向下摆动5度。正常运行时摆动燃烧器作为调整再热汽温的主要手段。 3 出现问题及原因分析 原燃烧器主要存在以下问题: 1) 原 SOFA 风量占总二次风量的 25%左右,占总风量的 20%左右,这样造成在主燃烧器区域的过量空气系数就已经达到了 1.0~1.05,这对于抑制 NOx的生成没有起到应有的效果。 2) 原 SOFA 与主燃烧器之间的还原区高度仅不到 4 米(喷嘴中心间隔 5 米),对于 NOx 还原所需的空间不够,没有实现较好的 NOx 还原作用。 3) 采用原水平浓淡分离装置以及浓淡喷嘴钝体设计存在结构问题,首先由于分离器问题,导致浓淡两侧风速偏差较大,淡侧出口风速远低于浓侧,浓侧虽然煤粉较多但风量同样较多,导致煤粉浓缩效果不明显,浓侧煤粉浓度较低;同时由于淡侧煤粉风速过低,易导致淡侧煤粉喷嘴附近结渣,不利于安全经济运行。其次由于在喷嘴出口采用钝体分离及导流煤粉,造成钝体运行环境恶劣,既要承受煤粉冲击磨损,同时又处于高温环境,容易造成钝体在一年左右时间损坏。 4) 在四角切圆燃烧燃烧中,由于主燃烧器区域的燃烧器设计中没有保护水冷壁壁面氧量控制的设计,容易造成炉膛水冷壁的结渣和高温腐蚀的发生。

2018年河南省燃气锅炉低氮改造奖补方案

2018年河南省燃气锅炉低氮改造奖补方案 河南远大锅炉是国内最早建立起来的工业锅炉生产单位,我公司主要从事燃气锅炉,生物质锅炉,燃煤锅炉等环保锅炉的研发与生产,燃煤锅炉改造以及低氮锅炉改造等。 很多用户对我省的煤改气,燃气锅炉低氮改造项目不是很清晰,下面简答介绍一下。 为落实国家财政部、环保部《大气污染防治专项资金管理办法》,省财政厅、省环保厅《河南省省级大气污染防治专项资金管理办法》,推动我市大气污染防治工作,进一步改善环境空气质量,市政府决定对2018年度大气污染防治治理项目实施资金奖励或补助,现结合我市实际,制定本方案。 一、奖补原则和范围 (一)奖补原则 “早完成、严标准、多减排、多奖励”原则。 (二)奖补范围 1.严于国家或地方污染物排放标准实施的大气污染工程 治理示范工程改造项目; 2.严于国家、省要求的结构调整项目; 3.在工程治理、节能改造等领域严于国家、省有关要求 的、具有前瞻意义的试点工程项目或科研攻关项目; 4.严于国家、省有关要求的,鼓励类清洁能源结构改造 项目。 (三)资金来源 奖补资金来源中央及省财政拨给本市可用于大气污染防治项目的资金,不足部门由市级财政承担。 二、奖补标准 (一)燃煤锅炉拆改。10蒸吨以上燃煤锅炉拆改实施逐年递减的资金奖补方式,对2018年10月底前(含2016年、2017

年)完成拆改的燃煤锅炉,给予不低于6万元/蒸吨奖补;对2019 年10 月底前完成拆改的燃煤锅炉,给予不低于4 万元/蒸吨奖补。 2016 年、2017 年按期完成拆除任务的10 蒸吨以下(含10 蒸吨)燃煤锅炉给予不低于2万元/蒸吨奖补。 (二)煤气发生炉拆改。2018年10月底前煤气发生炉(含2016 年、2017 年)完成实施拆除或改用清洁能源的,给予拆除单位每台10万元奖补。 (三)生物质锅炉拆改。2018年10月底前(含2016年、2017 年)生物质锅炉实施拆改的,给予不低于2 万元/蒸吨资金奖补。 (四)重点行业示范工程建设。 1.2018 年9 月底前,完成烟气超低排放示范工程建设,污染物排放浓度颗粒物≤10毫克/立方米、二氧化硫≤50毫克/立方米、氮氧化物≤100毫克/立方米的熟料生产水泥企业,市级财政按照设备投资额的15%进行奖补,最高不超过500万/家。 2.2018 年9 月底前,完成烟气超低排放改造示范工程建设,煅烧、焙烧工序烟尘、二氧化硫、氮氧化物排放浓度要分别不高于10毫克/立方米、35毫克/立方米、50毫克/立方米的碳素企业,市级财政按照设备投资额的15%进行奖补,最高不超过500万/家。 3.2018 年9 月底前,完成烟气超低排放改造示范工程建设,烟尘、二氧化硫、氮氧化物排放浓度要分别不高于10毫 克/立方米、35毫克/立方米、50毫克/立方米的生活垃圾焚烧发电、医疗废物、危险废物焚烧处置等设施,市级财政按照设备投资额的15%进行奖补,最高不超过500万/家。 (五)天然气锅炉低氮改造项目。2018年6月底前,完成低氮改造示范工程建设,氮氧化物排放浓度要不高于30毫克/立 方米的天然气锅炉,市级财政按照设备投资额的40%进行奖补; 2018 年9 月底前,完成低氮改造示范工程建设,氮氧化物排放浓度要不高于30毫克/立方米的天然气锅炉,市级财政按照设备投资额的30%进行奖补;2019年4月底前,完成低氮改造工程建设,氮氧化物排放浓度要不高于30毫克/立方米的天然气锅炉,市级财政按照设备投资额的15%进行奖补。

燃气锅炉低氮改造标准、方案及费用

燃气锅炉低氮改造是我国工业锅炉行业发展的一个新发展方向,为了减少燃气锅炉废气中的氮排放,许多用户选择进行低氮改造。本篇文章就为您简单介绍一下燃气锅炉低氮改造的标准、技术方案和费用。 一、燃气锅炉低氮改造的标准 由于国家对于各地的锅炉低氮改造没有统一的标准,导致各地施行的低氮改造标准不同,大致分为30mg/m3和50 mg/m3两种。 1、京津冀地区,西安、太原、成都、长沙等几个省会城市:30mg/m3; 2、江浙沪皖等南方地区,山西、河南,济南:50mg/m3。 为了避免因二次低氮改造造成不必要的浪费,建议不管当地是否出台政策,新上锅炉或者低氮改造锅炉都按照30mg/m3标准进行。

二、燃气锅炉低氮改造方案: 燃气锅炉低氮改造主要通过配置低氮燃烧器和加大锅炉的炉膛尺寸来实现。为了帮助企业节约成本,配置合适的低氮燃烧器分级燃烧技术+烟气内循环技术可以实现低氮改造,将其排放量控制在小于30mg/m3。目前燃气锅炉的低氮改造方案有以下两种: 1、FGR技术,即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法。 采用FGR低氮燃烧技术,针对使用锅炉进行改造升级,采用超低氮燃烧机,将新进炉的冷空气过量系数降到尽可能低的水平,最终达到减少排烟热损失,降低排烟NOx含量的节能减排效果。 FGR低氮燃烧技术是一种利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环,燃烧烟气的热容量大,燃烧温度降低,NOx减少。另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有抑制氧化氮和节能双重效果。 2、全预混燃烧,全预混燃烧也可实现低氮排放,但是运行中问题较多,经常出现金属编制燃烧网堵塞导致燃烧问题,无法长期稳定运行,北京质监局已作出安全风险提示(见下图)

相关主题
文本预览
相关文档 最新文档