当前位置:文档之家› 3G、GPRS、天线基础知识

3G、GPRS、天线基础知识

3G、GPRS、天线基础知识
3G、GPRS、天线基础知识

3G、GPRS、天线等基础知识

3G是英文3rd Generation的缩写,指第三代移动通信技术。相对第一代模拟制式手机(1G)和第二代GSM、TDMA等数字手机(2G),第三代手机一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps(兆字节/每秒)、384kbps(千字节/每秒)以及144kbps的传输速度。

3G的技术标准

国际电信联盟(ITU)在2000年5月确定W-CDMA、CDMA2000和TDS-CDMA三大主流无线接口标准,写入3G技术指导性文件《2000年国际移动通讯计划》(简称IMT-2000)。

W-CDMA

即WidebandCDMA,也称为CDMADirectSpread,意为宽频分码多重存取,其支持者主要是以GSM系统为主的欧洲厂商,日本公司也或多或少参与其中,包括欧美的爱立信、阿尔卡特、诺基亚、朗讯、北电,以及日本的NTT、富士通、夏普等厂商。这套系统能够架设在现有的GSM网络上,对于系统提供商而言可以较轻易地过渡,而GSM系统相当普及的亚洲对这套新技术的接受度预料会相当高。因此W-CDMA 具有先天的市场优势。

CDMA2000

CDMA2000也称为CDMA Multi-Carrier,由美国高通北美公司为主导提出,摩托罗拉、Lucent和后来加入的韩国三星都有参与,韩国现在成为该标准的主导者。这套系统是从窄频CDMA One数字标准衍生出来的,可以从原有的CDMA One结构直接升级到3G,建设成本低廉。但目前使用CDMA的地区只有日、韩和北美,所以CDMA2000的支持者不如W-CDMA多。不过CDMA2000的研发技术却是目前各标准中进度最快的,许多3G手机已经率先面世。

TD-SCDMA

该标准是由中国大陆独自制定的3G标准,1999年6月29日,中国原邮电部电信科学技术研究院(大唐电信)向ITU提出。该标准将智能无线、同步CDMA和软件无线电等当今国际领先技术融于其中,在频谱利用率、对业务支持具有灵活性、频率灵活性及成本等方面的独特优势。另外,由于中国内的庞大的市场,该标准受到各大主要电信设备厂商的重视,全球一半以上的设备厂商都宣布可以支持TD-SCDMA 标准。它采用了智能天线、联合检测、接力切换、同步CDMA、软件无线电、低码片速率、多时隙、可变扩频系统、自适应功率调整等技术。

GPRS(General Packet Radio Service,通用无线分组业务)GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者X.25连接。GPRS在现有的GSM网络基础上叠加了一个新的网络,同时在网络上增加一些硬件设备和软件升级,形成了一个新的网络逻辑实体,提供端到端的、广域的无线IP连接。通俗地讲,GPRS是一项高速数据处理的科技,它以分组交换技术为基础,用户通过GPRS可以在移动状态下使用各种高速数据业务,包括收发E-mail、进行Internet浏览等。---- GPRS是一种新的GSM数据业务,在移动用户和数据网络之间提供一种连接,给移动用户提供高速无线IP和X.25服务。GPRS采用分组交换技术,每个用户可同时占用多个无线信道,同一无线信道又可以由多个用户共享,资源被有效的利用。GPRS技术160Kbps的极速传送几乎能让无线上网达到公网ISDN的效果,实现"随身'携带'互联网"。使用GPRS,数据实现分组发送和接收,用户永远在线且按流量、时间计费,迅速降低了服务成本。

wlmGPRS是通用分组无线业务(General Packet Radio Service)的英文简称,是在现有的GSM系统上发展出来的一种新的分组数据承载业务。GPRS与现有的GSM语音系统最根本的区别是,GSM是一种

电路交换系统,而GPRS是一种分组交换系统。因此,GPRS特别适用于间断的、突发性的或频繁的、少量的数据传输,也适用于偶尔的大数据量传输。这一特点正适合大多数移动互联的应用。 GPRS是分组交换技术,具有“实时在线”、“按量计费”、快捷登录”、“高速传输”、“自如切换”的优点。 1)实时在线

“实时在线”,即用户随时与网络保持联系。举个例子,用户访问互联网时,手机就在无线信道上发送和接受数据,就算没有数据传送,手机还一直与网络保持连接,不但可以由用户端发起数据传输,还可以从网络端随时启动push类业务,不像普通拨号上网那样断线后还得重新拨号才能上网冲浪。

2)按量计费

用户可以一直在线,按照用户接收和发送数据包的数量来收取费用,没有数据流量传递时,用户即使挂在网上,也是不收费的。打个很形象也很意思的比喻:发呆是免费的。

3)快捷登录

GPRS的用户一开机,就始终连接在GPRS网络上,每次使用时只需一个激活的过程,一般只需要1~3秒的时间就能登录至互联网,而固定拨号方式接入互联网需要拨号、验证用户名密码、登录服务器等过程,至少需要8~10秒甚至更长的时间。

4)高速传输

GPRS采用分组交换的技术,数据传输速率最高理论值能达171.2KB/s,但实际速度受到编码的限制和手机终端的限制,可能会有所不同。而GSM网络的速率为每秒9.6K比特,可以看出GPRS比现有的GSM 在速度上占有很大优势。

5)自如切换

GPRS还具有数据传输与话音传输可同时进行或切换进行的优势。也就是说用户在用移动电话上网冲浪的同时,可以接收语音电话。举个例子,原来的电话拨号上网,接入之后就不能再打电话,也不能接电话,而GPRS就类似于固定电话的ISDN的概念,电话上网两不误

天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等

1、天线的输入阻抗

天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。

2、天线的极化方式

所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方

向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。)3、天线的增益

天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。一般地,GSM定向基站的天线增益为18dBi,全向的为11dBi。

4、天线的波瓣宽度

波瓣宽度是定向天线常用的一个很重要的参数,它是指天线的辐射图中低于峰值3dB处所成夹角的宽度(天线的辐射图是度量天线各个方向收发信号能力的一个指标,通常以图形方式表示为功率强度与夹角的关系),天线垂直的波瓣宽度一般与该天线所对应方向上的覆盖半径有关。因此,在一定范围内通过对天线垂直度(俯仰角)的调节,可以达到改善小区覆盖质量的目的,这也是我们在网络优化中经常采用的一种手段。主要涉及两个方面水平波瓣宽度和垂直平面波瓣宽度。水平平面的半功率角(H-Plane Half Power beamwidth):(45°,60°,90°等)定义了天线水平平面的波束宽度。角度越大,在扇区交界处的覆盖越好,但当提高天线倾角时,也越容易发生波束畸变,形成越区覆盖。角度越小,在扇区交界处覆盖越差。提高天线倾角可以在移动程度上改善扇区交界处的覆盖,而且相对而言,不容易产生对其他小区的越区覆盖。在市中心基站由于站距小,天线倾角大,应当采用水平平面的半功率角小的天线,郊区选用水平平面的半功率角大的天线;垂直平面的半功率角(V-Plane Half Power beamwidth):(48°, 33°,15°,8°)定义了天线垂直平面的波束宽度。垂直平面的半功率角越小,偏离主波束方向时信号衰减越快,在越容易通过调整天线倾角准确控制覆盖范围。

5、前后比(Front-Back Ratio)

表明了天线对后瓣抑制的好坏。选用前后比低的天线,天线的后瓣有可能产生越区覆盖,导致切换关系混乱,产生掉话。一般在25-30dB之间,应优先选用前后比为30的天线

WIFI天线基础知识

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强 用事实拆穿双天线成倍增益的神话 双天线只能减少覆盖范围内的盲点 先看总结: 性能的区别主要来自芯片而不是品牌 这次参加横评的产品一共14款,但他们的芯片只有4种,而使用相同芯片的产品在性能上的差距根本不大,所以购买前了解产品的芯片组是一个重要环节。当然也不是说要放弃品牌的概念,各个品牌对产品质量的控制还是不一样,这也会让产品造成很大的差异(主要体现在产品质量)。 现阶段802.11N无线路由器已大幅度超越54M 从54M到11N,经历了好几年的时间,不过这次横评我们看到了11N的优势,看到了希望。实际测试表明,11N产品在产品整体性能上高出54M很多,速度、覆盖都有了质的飞跃。

天线根数与速度没关系 虽然这次评测分了两个组,双天线和多天线,但测试结果说明单从速度上来讲,双天线与三天线区别不大。(天线原理介绍过了,和我们的实际情况是一致的。当然是同一类芯片的基础上进行比较,不同种类芯片没有可比性)但是覆盖上确实有区别,所以要购买的用户不用总是迷恋多天线,从自己的实际情况出发,一般环境双天线已经足够了。 新的功能将改善人们使用无线网络的习惯 譬如WPS快速加密这样的新功能,将会改善人们使用无线网络的习惯,按下终端和路由器上的两个键就会自动连接并加密,拒绝输入繁琐的密码,进一步降低了无线网络的门槛,让用户更轻松使用。 802.11N是构建数字家庭的主干 除了改变人们的使用习惯,802.11N的传输速率已经可以完全应付高清影片的流畅传输,而传说中的数字家庭也可以由802.11N网络担当主角,撑起整个平台:无线播放高清媒体文件、无线控制家电产品、各种终端都无线,让你的家远离布线烦恼。 目前产品单调需要更多个性化产品问世 不过话又说回来,任何东西都是需要发展的,现在11N可以算是刚刚出道,所以还有许多可以改进的地方,譬如这次评测的产品除了提供无线上网之外,附加功能都比较少,让IT产品更个性,这是一个发展方向,让看不到的无线也能多姿多彩。 802. 11N横评第一波结束更多低价产品会接踵而来 这次评测历时1个月,在测试过程中又出现了多个新品,它们没有赶上这次横评很遗憾,但是我们还有的是机会,因为低价11N时代马上就要来临了,各个品牌都会有更多更优秀的产品放出,请继续关注泡泡网无线频道,更多的精彩会接踵而来.....

天线基础知识大全

天线基础知识大全 1天线1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要 1天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。 1.3 天线方向性的讨论

天线基础知识培训资料

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

天线基本知识解析

天线基本知识 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。

1.3 天线方向性的讨论 1.3.1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图 1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。 1.3.2 天线方向性增强

(整理)天线的基础知识.

天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类:可分为通信天线、电视天线、雷达天线等; 按工作频段分类:可分为短波天线、超短波天线、微波天线等; 按方向性分类:可分为全向天线、定向天线等; 按外形分类:可分为线状天线、面状天线等。 电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。 必须指出,当导线的长度 L 远小于波长λ时,辐射很微

弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b 。

天线基础知识

一. 方向性系数: 物理意义:方向图函数E(,)θφ或f (,)θφ表示了离辐射源相同距离上各点在各个方向上辐射场的相对大小,它不能明确表示天线辐射能量在某个特定方向上集中的程度,因而必须引进方向性系数这一指标参数。方向性系数是用来表征天线辐射能量集中程度的一个参数。 定义1:在相同辐射功率r r P P =o 情况下,某天线在给定方向i i (,)θφ的辐射强度i i U(,)θφ与理想点源天线在同一方向的辐射强度U o 之比,即 2220 4r r i i i i i P i i P i i U(,) f (,) D(,)U f (,)sin d d ππ θφπθφθφθφθθφ == ?? o o @ 定义2:在给定方向i i (,)θφ产生相同电场强度M E E =o 下,理想点源天线的辐射功率r P o 与某天线辐射功率r P 之比。即: 2220 4M r i i i i r i i i E E P f (,) D(,)P f (,)sin d d πθφθφθφθθφ == ?? o o @ 图0:两种条件下的某天线方向图和理想点源方向图 一般方向性系数我们都是指最大波束(,)θφo o 处的方向性系数(是否可以这么理解,工程上主要考虑最大波束方向上的能量集中的程度),则最大波束处的方向性系数可以表示为: 20000220 4f (,) D(,)f (,)sin d d ππ πθφθφθφθθφ = ?? 方向性系数表示无量纲的量,工程上一般采用分贝表示: 10dB D (,)lg D(,)θφθφ=o o o o 方向性系数两种定义的物理解释: 前面已经提到,天线的方向性系数是用来表征天线辐射能量集中程度的一个参数,对于最大辐射方向上的方向性系数D(,)θφo o 来说,其值愈大,天线的能量辐射就愈集中,定向性能就愈强。下面针对方向性系数的两种定义方法用图解来说明。图0所示为方向性系数的 两种定义方法对应的两种条件下某天线和理想点源天线的方向图。在相同辐射功率条件下,

天线基本知识(快速入门)

天线基本知识 6.1 天线 6.1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 6.1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。 6.1.3 天线方向性的讨论 1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部 分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈” 形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。

RFID天线基础知识

RFID天线基础知识 一、RFID系统组成 二、天线基础知识 2010-05-13 alay 2010-5-13

一、RFID系统的基本组成部分 v最基本的RFID系统由三部分组成: v标签(Tag):由耦合组件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象; v阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式; v天线(Antenna):在标签和读取器间传递射频信号。 2010-5-13

RFID无线识别电子标签基础介绍v无线射频识别技术(Radio Frequency Idenfication,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实现对被识别物体的自动识别。 2010-5-13

v RFID系统至少包含电子标签和阅读器两部分。电子标签是射频识别系统的数据载体,电子标签由标签天线和标签专用芯片组成。依据电子标签供电方式的不同,电子标签可以分为有源电子标签(Active tag)、无源电子标签(Passive tag)和半无源电子标签(Semi—passive tag)。有源电子标签内装有电池,无源射频标签没有内装电池,半无源电子标签(Semi—passive tag)部分依靠电池工作。 2010-5-13

v电子标签依据频率的不同可分为低频电子标 签、高频电子标签、超高频电子标签和微波 电子标签。依据封装形式的不同可分为信用 卡标签、线形标签、纸状标签、玻璃管标签、圆形标签及特殊用途的异形标签等。 v RFID阅读器(读写器)通过天线与RFID电 子标签进行无线通信,可以实现对标签识别 码和内存数据的读出或写入操作。典型的阅 读器包含有高频模块(发送器和接收器)、控 制单元以及阅读器天线。 2010-5-13

一些天线基本知识

一些天线基本知识 一、电磁波产生的基本原理 按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。 周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。 电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。 当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。 对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递出去。不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高效的发射和接收,也就形成了天线这门学问。

高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。 二、天线 在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置称为天线。发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向出去。到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。 综上所述,天线应有以下功能: 1.天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统,其次要求天线与发射机或接收机匹配。 2.天线应使电磁波尽可能集中于确定的方向上,或对确定方向的来波最大限度的接受,即方向具有方向性。 3.天线应能发射或接收规定极化的电磁波,即天线有适当的极化。 4.天线应有足够的工作频带。 这四点是天线最基本的功能,据此可定义若干参数作为设计和评价天线的依据。 把天线和发射机或接收机连接起来的系统称为馈线系统。馈线的形式随频率的不同而分为又导线传输线、同轴线传输线、波导或微带线等。所以,所谓馈线,实际上就是传输线。 天线的电参数 天线的基本功能就是能量转换和定向辐射,所谓天线的电参数,就是能定量表征其能量转换和定向辐射能力的量。 1. 天线的方向性

天线的基础知识

第一讲天线的基础知识 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。 1.1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB 的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1.2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保 证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为 5dB,比单极化天线提高约2dB。) 1.3 天线的增益

天线基本知识试题

天线基本知识试题 1、天线的基本作用是什么? 转成为自由空间的电磁波,将传输线中的高频电磁能转成为自由空间的电磁波,或反之将自由空间中的电磁波转化为传输线中的高频电磁能。因此,的电磁波转化为传输线中的高频电磁能。 2、天线的基本结构形式是什么?天线的工作带宽是如何确定的?它的物理本质是什么? 天线的基本结构是两根长度大于波长的电流增加形成较强辐射导线天线的工作宽带是 在规定的驻波比下天线的工作频带宽度决定的驻波比下天线的工作频带宽度决定的。天线 的工作宽带是在规定的驻波比下天线的工作频带宽度决定的。它的物理本质是张开并且长 度相当于波长的两导线载入方向相同的交变电流产生相同方向感应电动势产生较强辐射。 流产生相同方向感应电动势产生较强辐射。 4、天线的极化是如何定义的?它可分为哪几种极化不同的天线? 天线辐射的电磁场的电场方向就是天线的极化方向。可分为双极化天线,天线辐射的 电磁场的电场方向就是天线的极化方向。可分为双极化天线,圆极化天线,垂直极化天线, 水平极化天线,度倾斜的极化、圆极化天线,垂直极化天线,水平极化天线,+45度倾 斜的极化、-45度倾斜的极化天线 5、天线的方向图表明了天线的什么特性?3dB波束宽度及10dB波束宽度是如何定 义? 天线的方向图表明了天线的方向性的特性3dB天线的方向性的特性。天线的方向图表 明了天线的方向性的特性。波束宽度是主瓣两半功率点度的波瓣宽度,间的夹角为60度 的波瓣宽度,10dB波束宽度是主瓣两半功率点间的夹角为120度的波瓣宽度。度的波瓣 宽度。 6、为了使天线辐射的方向性更强即波束的方向图更窄,我们通常采用什么方法来改变 天线辐射的方向性,它的物理原理是什么? 一般说来,为了使天线辐射的方向性更强即波束的方向图更窄,一般说来,为了使天 线辐射的方向性更强即波束的方向图更窄,我们通常采用提高天线的增益来改变天线辐射 的方向性,采用提高天线的增益来改变天线辐射的方向性,它的物理原理是主瓣波束宽度越窄,天线增益越高。可将对称振子组阵控制辐射能,或使用反射面等方法。越窄,天线 增益越高。可将对称振子组阵控制辐射能,或使用反射面等方法。使用的是改变磁场、光 反射等物理原理。使用的是改变磁场、光反射等物理原理。 7、天线的前后比是如何定义的?前后比与水平瓣宽的关系?方向图中,前后瓣最大电 平之比称为前后比,水平瓣宽的宽度越窄,方向图中,前后瓣最大电平之比称为前后比,瓣电平及前后比正常的情况下,可用下式近似表示 水平瓣宽的宽度越窄,前后比越大。比越大。当旁瓣电平及前后比正常的情况下, 当旁 8、天线的上副瓣及下副瓣的零点对网络覆盖产生什么影响? 上副瓣零点易形成跨区干扰,下副瓣零点易形成塔下黑。上副瓣零点易形成跨区干扰, 下副瓣零点易形成塔下黑。 9、什么是天线的增益?天线的增益与天线的水平波束宽度及垂直波束宽度有什么关系?在移动通信应用中,天线的增益越高越好,这句话对吗? 天线的增益是指在输入功率相等的条件下,天线的增益是指在输入功率相等的条件

天线基础知识大全

天线基础知识大全 导读:无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。 关键字:天线 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。

天线地基础的知识

天线的基础知识(2009-05-17 22:14:38) 1 天线工作原理及作用是什么? 天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。 2 天线有多少种类? 天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。 按工作频段可划分为超长波、长波、中波、短波、超短波和微波。 按其方向可划分为全向和定向天线。 3 如何选择天线? 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。 4 什么是天线的增益? 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,

在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 5 什么是电压驻波比? 天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通 信系统正常工作。 电压驻波比1.0 1.1 1.2 1.5 2.0 3.0 反射功率% 0 0.2 0.8 4.0 11.1 25.0 传输功率% 100 99.8 99.2 96 88.9 75.0 6 什么是天线的方向性? 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。 7 如何理解天线的工作频带宽度? 天线的电参数一般都于工作频率有关,保证电参数指标容许的频率变化范围,

相关主题
文本预览
相关文档 最新文档