当前位置:文档之家› 2011版高中数学二轮专题复习学案-1.2函数、基本初等函数的图象与性质

2011版高中数学二轮专题复习学案-1.2函数、基本初等函数的图象与性质

2011版高中数学二轮专题复习学案-1.2函数、基本初等函数的图象与性质
2011版高中数学二轮专题复习学案-1.2函数、基本初等函数的图象与性质

专题一:集合、常用逻辑用语、不等式、函数与导数

第二讲 函数、基本初等函数的图象与性质

【最新考纲透析】

1.函数

(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 (3)了解简单的分段函数,并能简单应用。

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。 (5)会运用函数图象理解和研究函数的性质。 2.指数函数

(1)了解指数函数模型的实际背景。

(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。 (4)知道指数函数是一类重要的函数模型。 3.对数函数

(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。[来源:学§科§网Z §X §X §K]

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。 (3)知道对数函数是一类重要的函数模型。

(4)了解指数函数x

y a =与对数函数log a y x =互为反函数(0,1a a >≠且)。 4.幂函数

(1)了解幂函数的概念

(2)结合函数1

2

3

21

,,,,y x y x y x y y x x

=====的图象了解它们的变化情况。

【核心要点突破】

要点考向一:基本初等函数问题

考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。

2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。

考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。

2.熟记幂和对数的运算性质并能灵活运用。

例1:(2010·全国高考卷Ⅱ文科·T4)函数y=1+ln (x-1)(x>1)的反函数是 (A ) y=1

x e +-1(x>0) (B) )y=1

x e -+1(x>0)

(C) y=1x e

+-1(x ∈R) (D )y=1

x e

-+1 (x ∈R)

【命题立意】本题考查了反函数的概念及其求法。 【思路点拨】运用求反函数的方法解。

【规范解答】 选D ,y=1+ln (x-1),ln (x-1)=y-1,x-1=e

1

-y ,所以反函数为y=1

x e

-+1 (x ∈R)

【方法技巧】求反函数的步骤:(1)反解x,即用y 表示x. (2)把x 、y 互换,

(3)写出反函数的定义域,即原函数的值域。本题注意指数式与对数式的互化。

例2:(2010·天津高考文科·T6)设554a log 4b log c log ===25,(3),,则( )

(A)a

【思路点拨】根据对数的性质及对数函数5log y x =的图像,可得550log 3log 41<<<,

4log 51c =>。

【规范解答】选D ,由对数函数5log y x =的图像,可得550log 3log 41<<<,

∴2

55(log 3)log 4b =<,又4log 51,c b a c =>∴<<。 【方法技巧】比较对数函数值的大小问题,要特别注意分清底数是否相同,如果底数相同,直接利用函数

的单调性即可比较大小;如果底数不同,不仅要利用函数的单调性,还要借助中间量比较大小。

要点考向二:函数与映射概念的应用问题

考情聚焦:1.该考向在高考中主要考查与函数、映射概念相关的定义域、映射个数、函数值、解析式的确定与应用。

2.常结合方程、不等式及函数的有关性质交汇命题,属低、中档题。 考向链接:1.求函数定义域的类型和相应方法。

2.求f(g(x))类型的函数值时,应遵循先内后外的原则,面对于分段函数的求值问题,必须依据条件准

确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性。

3.求函数的解析式,常见命题规律是:先给出一定的条件确定函数的解析式,再研究函数的有关性质;解答的常用方法有待定系数法、定义法、换元法、解方程组法、消元法等。

4.映射个数的计算一般要分类计数。

例3:(2010·天津高考理科·T8)若函数f(x)=21

2

log ,0,log (),0x x x x >??

?-f(-a),则实数a 的取值

范围是 ( )

(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 【命题立意】考查对数函数的图像和性质。

【思路点拨】对a 进行讨论,通过图像分析f(a)>f(-a)对应的实数a 的范围。

【规范解答】选C ,当a>0,即-a<0时,由f(a)>f(-a)知212

log log a a >,在同一个坐标系中画出2log y x

=和12

log y x =函数的图像,由图像可得a>1;当a<0,即-a>0时,同理可得-1

范围是(-1,0)∪(1,+∞)。

要点考向三:函数图象问题[来源:学科网ZXXK]

考情聚焦:1.函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已成为各省市高考命题的一个热点。

2.常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。 考向链接:1.基本初等函数的图象和性质,函数图象的画法以及图象的三种变换。

2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。

3.在研究一些陌生的方程和不等式时常用数形结合法求解。

例4:(2010·山东高考理科·T11)函数2

2x

y x =-的图象大致是( )

【命题立意】本题考查函数的图象,函数的基础知识以及数形结合的思维能力, 考查了考生的分析问题解决问题的能力和运算求解能力。 【思路点拨】利用特殊值对图象进行估计分析.

【规范解答】选A ,因为当x =2或4时,220x x -=,所以排除B 、C ;当x =-2时,2x -2

x =

1

4<04

-,故排除D ,所以选A.

要点考向四:函数性质问题

考情聚焦:该考向是各省市高考命题大做文章的一个重点。常与多个知识点交汇命题,且常考常新,既有小题,也有大题,主要从以下三个方面考查:

1.单调性(区间)问题,热点有:(1)确定函数单调性(区间);(2)应用函数单调性求函数值域(最值)、比较大小、求参数的取值范围、解(或证明)不等式。

2.奇偶性、周期性、对称性的确定与应用。

3.最值(值域)问题,考题常与函数的其他性质、图象、导数、基本不等式等综合。 例5:(2010辽宁文数)(21)(本小题满分12分)

已知函数2()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;

(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-.

解:(Ⅰ) f (x )的定义域为(0,+∞),2121

()2a ax a f x ax x x

+++'=+=. 当a ≥0时,()f x '>0,故f (x )在(0,+∞)单调增加; 当a ≤-1时,()f x '<0, 故f (x )在(0,+∞)单调减少;

当-1<a <0时,令()f x '=0,解得x 当x ∈)时, ()f x '>0;

x ∈+∞)时,()f x '<0, 故f (x )在(+∞)单调减少.

(Ⅱ)不妨假设x 1≥x 2.由于a ≤-2,故f (x )在(0,+∞)单调减少. 所以1212()()4f x f x x x -≥-等价于12()()f x f x -≥4x 1-4x 2,

即f (x 2)+ 4x 2≥f (x 1)+ 4x 1.

令g (x )=f (x )+4x ,则1()2a g x ax x +'=++4=2241

ax x a x

+++.

于是()g x '≤2441x x x -+-=2

(21)x x

--≤0.

从而g (x )在(0,+∞)单调减少,故g (x 1) ≤g (x 2),

即 f (x 1)+ 4x 1≤f (x 2)+ 4x 2,故对任意x 1,x 2∈(0,+∞) ,1212()()4f x f x x x -≥-.

【高考真题探究】

1. (2010·上海高考理科·T8)对任意不等于1的正数a ,函数f(x)=log (3)a x +的反函数的图像都经过点P ,则点P 的坐标是

【命题立意】本题考查对数函数的性质及反函数的有关性质.

【思路点拨】根据对数函数的性质找到原函数过的定点,再由反函数的性质找到关于直线y=x 的对称点. 【规范解答】)2,0(-.因为函数)3(log )(+=x x f a 的图像过定点)0,2(-,由反函数的性质可知,反函数的图像过定点)2,0(-.

2. (2010·全国Ⅰ理科·T8)设2log 3=a ,2ln =b ,2

15-

=c ,则( )

A a

【命题立意】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用以及数形结合的数学思想.

【思路点拨】利用换底公式,将2log 3=a ,2ln =b 变成以2为底的对数.根据对数函数 和指数函数的图像进行分析. 【规范解答】选C. a=3log 2=

21log 3, b=In2=21

log e

,而22log 3log 1e >>,所以a

2

5

-

222log 4log 3>=>,所以a c <,综上c

2

x x

f x +=的图象( ) A .关于原点对称 B .关于直线y=x 对称 C .关于x 轴对称 D .关于y 轴对称

【命题立意】本小题考查函数的对称性,考查奇函数、偶函数的概念,考查运算求解的能力,考查数形结合的思想方法.

【思路点拨】根据选项,可以判断函数()f x 是否为奇函数、偶函数,即判断()f x -与()f x 的关系;如果不是,再判断选项B ,C 是否正确.

【规范解答】选D

【解法1】()412x x f x --+-=(41)424x x x x

--+?=?21422x x x -+=?41

()2

x x f x +==,是偶函数,图象关于y 轴对称; 【解法2】()241(2)1

22x x x x

f x ++== 22x

x

-=+,有()22()x x

f x f x --=+=,所以函数()41

2

x x f x +=的图象关于y 轴对称.

【方法技巧】(1)指数运算24(2)x x =在变形整理中起其重要作用; (2)分式加法的逆向运算是本题的变形技巧.

4. (2010·北京高考文科·T6)给定函数①1

2

y x =,②12

log (1)y x =+,③|1|y x =-,④12x y +=,

其中在区间(0,1)上单调递减的函数序号是 (A )①② (B )②③ (C )③④ (D )①④

【命题立意】考查几类基本初等函数的单调性及简单的图像变换。 【思路点拨】画出各函数的图象,再判断在(0,1)上的单调性。

【规范解答】选B 。各函数在(0,1)上的单调性:①增函数;②减函数;③减函数;④增函数。 5. 10.(2010·浙江高考理科·T10)

设函数的集合211()log (),0,,1;1,0,122

P f x x a b a b ??==++=-=-???

?

,平面上点的集合

11

(,),0,,1;1,0,122Q x y x y ??==-=-????

,则在同一直角坐标系中,P 中函数()f x 的图象恰好..

经过Q 中两个点的函数的个数是( )

(A )4 (B )6 (C )8 (D )10

【命题立意】本题考查对数型函数的图象,集合元素的表示,考查学生对数运算能力和数形结合的思想。 【思路点拨】把Q 中的点表示在坐标系中,逐个分析P 中的每一个函数的图像,找出恰过两点的函数。 【规范解答】选B 。

Q 中有12个点,表示在坐标系中;P 中共有12个函数,逐个分析P 中的每一个函数的图像,可知恰过两

个点的函数有2()log f x x =,2()log 1f x x =+21

()log ()2

f x x =+,

21

()log ()12

f x x =++,2()lo

g (1)1f x x =+-,2()log (1)1f x x =++共6个。

6. (2010·江苏高考·T11)已知函数21,0()1,

0x x f x x ?+≥=?的x 的取

值范围是_____。

【命题立意】本题考查分段函数的图像、单调性以及数形结合和化归转化的思想。

【思路点拨】结合函数21,0()1,

0x x f x x ?+≥=?的条件,可以得出2

1x -与2x

之间的大小关系,进而求解x 的取值范围.

【规范解答】画出21,0

()1,

0x x f x x ?+≥=?

由图像可知,若2

(1)(2)f x f x ->, 则2

2

1012x x x

?->?

->?

,即11

11x x -<

?

-<<-??

【答案】(11)-

【跟踪模拟训练】

一、选择题(本大题共6个小题,每小题6分,总分36分) 1.设函数f (x )=log 2x 的反函数为y=g (x ),若4

1

)11(=-a g ,则a 等于( )

A .-2

B .2

1

-

C .

2

1

D .2

2.已知一容器中有A 、B 两种菌,且在任何时刻A ,B 两种菌的个数乘积为定值1010

,为了简单起见,科学

家用)lg(A A n P =来记录A 菌个数的资料,其中A n 为A 菌的个数,则下列判断中正确的个数为 ( ) ①1≥A P

②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A 菌个数多了10个 ③假设科学家将B 菌的个数控制为5万个,则此时5.55<

A .0

B .1

C .2

D .3 3.函数||y x =与y =

( )

4.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2

x x

a a S x --=,

()2

x x

a a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是( )

①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+. (A )①③

(B )②④

(C )①④

(D )①②③④

5.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是( ) A .()f x =

1x

B. ()f x =2(1)x - C .()f x =x

e D ()ln(1)

f x x =+ 6. f(x)=???≥<+4

,24

),1(x x x f x ,则()2log 3f =( )

(A )-23

(B )11

(C )19 (D )24

二、填空题(本大题共3个小题,每小题6分,总分18分)

7.已知函数2()log f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则n m += .

8.已知a =

,函数()x

f x a =,若实数m 、n 满足()()f m f n >,则m 、n 的大小关系为 . 9.给出下列四个命题:

①函数x x x f +-=2ln )(在区间),1(e 上存在零点 ②若)('0x f =0,则函数)(x f y =在0x x =取得极值; ③m ≥-1,则函数)2(log 2

2

1m x x y --=的值域为R ;

④“1=a ”是“函数x

x

ae

e a x

f +-=1)(在定义域上是奇函数”的充分不必要条件。 其中真命题是 (把你认为正确的命题序号都填在横线上) 三、解答题(10、11题每小题15分,12题16分,总分46分)

10.据调查,安徽某地区有100万从事传统农业的农民,人均年收入3000元.为了增加农民的收入,当地

政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作. 据估计,如果有x(x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x%,而进入企业工作的农民人均年收入为3000a 元(a >0为常数).

(I )在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x 的取值范围;

(II )在(I )的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大? 11.已知函数f(x)=lnx-

a

x

(a ∈R). (1)当a ∈[-e,-1]时,试讨论f(x)在[1,e ]上的单调性;

(2)若f(x)

12.(探究创新题)若函数f(x)对定义域中任意x 均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.

(1)已知函数f(x)=2x mx m

x

++的图象关于点(0,1)对称,

求实数m 的值;

(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x ∈(0,+∞)时,g(x)=x 2+ax+1,求函数g(x)在

(-∞,0)上的解析式;

(3)在(1)(2)的条件下,当t>0时,若对任意实数x ∈ (-∞,0),恒有g(x)

参考答案

1. 【解析】选C 因为函数f (x )=log 2x 的反函数为2,x y =所以()2,x

g x =由4

1)11(

=-a g 得11

111

2

,2,.412

a a a -=∴=-=- 2. 【解析】选B 当1A n =时0A P =,故①错误;若1,10A A P n ==则,若2,100A A P n ==则,故②错误;

设B 菌的个数为104

5

4

10510210,lg()lg 2 5.510

B A A A n n P n =?∴==?∴==+?, lg 20.414,= 又所以5.55<

3. 【解析】选A 因为||x ≤

所以函数||y x =的图像在函数y =的下方,排除C 、D ;

||x x →∞当时,B ,故选A 。

4. 【解析】选D 因为()2x x a a S x --=,()2x x

a a C x -+=

()

()(),

2

()()()()2222

11

[()()][()()]4411,222

()()()()().x y x y x x y y x x y y

x y y y y x y y y y x y x y x y x y a a S x y a a a a a a a a S x C y C x S y a a a a a a a a a a a a a a a a S x y S x C y C x S y +-+---------+-+---∴+=-++-+=+=++-+-++--=-=∴+=+

同理可证其它3个式子也成立。

5. 【解析】选A 依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确。

6. 【解析】选D 2log 24

22222(log 3)(log 31)(log 32)(log 33)(log 24)2

24.f f f f f =+=+=+===

7. 【解析】由已知得2222221111

,01,1,[,][,],()log 2log 2().m m n m n n f n f n n n n n

=<<>∴====

所以()f x 在区间2[,]m n 上的最大值为22

11

()2().2log 2,1, 2..2

f f n n n n m n =∴=>∴== 故5.2n m += 答案:5

.2

8.

【解析】(0,1)a =

,函数()x f x a =在R 上递减。由()()f m f n >得:m

9. 【解析】①正确:显然x x x f +-=2ln )(在),1(e 上是增函数,且(1)10,()10,f f e e =-<=-> 所以函数x x x f +-=2ln )(在区间),1(e 上存在零点;②不正确,例32(),()30,f x x f x x '==≥

()00,f x x '==由得30()x f x x ==但不是的极值点;③正确:

21,440,2m m x x m ≥-∴?=+≥-- 能取到所有的正实数,所以函数的值域为R.对于④:

若1=a ,则11(1)1

(),()().11(1)1x x x x x x x x x

x e e e e e f x f x f x e e e e e --------=∴-====-++++又1()1x x e f x e -=+的定义域为R ,所以1a =?“函数x x ae e a x f +-=1)(在定义域上是奇函数”;若函数x

x

ae

e a x

f +-=1)(在定义域上是奇函数,则()()f x f x -=-恒成立。因为()1

()1(1)x x x x x x x

x

a e a e e ae f x ae ae e e a

--------===+++, 所以222

1,()()(1)(1),(1)11x x x x x x x x x

a e ae a e a e ae ae a e a ae e a

--=-∴-+=--+-=-++即恒成立,

所以2

10,1,a a -=∴=±,故“函数x

x

ae

e a x

f +-=1)(在定义域上是奇函数” 推不出“1=a ”, 所以④正确。综上正确的为①③④。 答案:①③④

10. 【解】(I )据题意,(100-x )·3000·(1+2x%)≥100×3000,

即x2-50x ≤0,解得0≤x ≤50. 又x >0,故x 的取值范围是(0,50]. (II )设这100万农民的人均年收入为y 元,则

y =

2(100)3000(1)3000100

100

x

x ax -?+

+

=-3

5

[x -25(a +1)]2+3000+475(a +1)2 (0

(1)若0<25(a +1)≤50,即0<a ≤1,则当x =25(a +1)时,y 取最大值; (2)若25(a +1)>50,即a >1,则当x =50时,y 取最大值.

答:当0<a ≤1时,安排25(a +1)万人进入加工企业工作,当a >1时,安排50万人进入企业工作,才能使这100万人的人均年收入最大. 11. 【解析】(1)f(x)的定义域为(0,+∞),

2221(),0a x a

f x x x x x

+'=

+=>显然 当-e ≤a ≤-1时,1≤-a ≤e,令f ′(x)=0得x=-a,于是当1≤x ≤-a 时,f ′(x)≤0,∴f(x)在[1,-a ]上为

减函数,当-a ≤x ≤e 时,f ′(x)≥0,∴f(x)在[-a,e ]上为增函数.

综上可知,当-e ≤a ≤-1时f(x)在[1,-a ]上为减函数,在[-a,e ]上为增函数.

(2)由f(x)

x

xlnx-x 2.令g(x)=xlnx-x 2,要使a>xlnx-x 2在[1,+∞)上恒成立, 只需a>g(x)max ,g ′(x)=lnx-2x+1,令φ(x)=lnx-2x+1,则φ′(x)= 1

x

-2,

∵x ≥1,∴φ′(x)<0,∴φ(x)在[1,+∞)上单调递减,∴φ(x)≤φ(1)=-1<0,因此g ′(x)<0,故g(x)在[1,+∞)上单调递减,则g(x)≤g(1)=-1, ∴a 的取值范围是(-1,+∞).

12. 【解析】(1)由题设可得f(x)+f(-x)=2,即2x mx m x +++2x mx m

x

-+-=2,解得1m =.

(2)当x<0时,-x>0且g(x)+g(-x)=2, ∴g(x)=2- g(-x)=-x 2

+ax+1. (3)由(1)得f(t)=t+1

t

+1(t>0),其最小值为f(1)=3.

g(x)= -x 2

+ax+1=-(x-a/2)2

+1+2

4

a ,

①当2

max 0,013,(24

a a a a <<=+

<∈-即时,g(x)得

②当max 0,0,()3,[0,);2().

a

a g x x a a ≥≥<<∈+∞∈-+∞即时得由①②得

【备课资源】

1.已知函数2log 0()2

x

x

x f x x >?=?≤?,若1

()2

f a =

,则实数a = ( ) (A )-1 (B

(C )-1

(D )1

或2. f(x)=12

322(),log (1)

2

x e

x f x x x -?

(A)0 (B)1 (C)2

(D)3

3. 设a=π0.3,b=log π3,c=30,则a,b,c 的大小关系是( ) (A)a>b>c

(B)b>c>a (C)b>a>c

(D)a>c>b

4. 已知函数y=f(x)与y=e x 互为反函数,函数y=g(x)的图象与y=f(x)的图象关于x 轴对称,若g(a)=1,则实数a 的值为

( )

5.已知f(x)是定义在R 上的奇函数,若f(x)的最小正周期为3,f(1)>0,f(2)=23

1

m m -+,则m 的取值范围是( )

(A )3(,)2-∞ (B )3(,1)(1,)2-∞ (C )3(1,)2- (D )3(,1)(,)2

-∞-+∞ 6.如图是函数(,,)m n

y x m n N m n *

=∈、互质的图象,则 ( )

(A ),1m m n n <是奇数且

(B ),1m

m n n

>是偶数是奇数且 (C ),1m m n n <是偶数是奇数且 (D ),1m

m n n

>是奇数是偶数且

7.函数y=f(x)的图象如图所示,则函数12

log ()y f x =的图象大致是( )

8. 若定义在R 上的函数g(x)满足:对任意x 1,x 2有g(x 1+x 2)=g(x 1)+g(x 2)+1,则下列说法一定正确的是( )

(A)g(x)为奇函数 (B)g(x)为偶函数(C)g(x)+1为奇函数(D)g(x)+1为偶函数 9.设1

21()log 1

ax

f x x -=-为奇函数,a 为常数.

(1)求a 的值得;

(2)证明f(x)在区间(1,+∞)内单调递增;

(3)若对于区间[3,4]上的每一个x 的值,不等式1()()2

x

f x m >+恒成立,求实数m 的取值范围.

参考答案

1. 【解析】选C 。当a >0时,21

log 2

a =

,解得

a a ≤0时,1

22

a =

,解得a =-1 2. 【解析】选C.∵f(2)=log 3(22-1)=1, ∴f(f(2))=f(1)=2e 1-1=2.

3. 【解析】选D.∵a=π0.3>π0=1,0c>b.

4. 【解析】选C.由已知得f(x)=lnx,又y=g(x)与y=f(x)的图象关于x 轴对称,∴g(x)=-f(x)=-lnx,又

g(a)=1,∴-lna=1,∴a=.

5. 【解析】选C 由已知f(2)=f(3-1)=f(-1)=-f(1).又f(1)>0, ∴

23

1

m m -+<0?(1)(23)0m m +-<.解得312

m -<<

。 6. 【解析】选C.

将分数指数化为根式,y =

R ,值域为[0,+∞)知n 为奇数,m 为

偶数,又由幂函数y=x α,当α>1时,图象在第一象限的部分下凸,当0<α<1时,图象在第一象限的部分上凸,故选C.或由图象知函数为偶函数,∴m 为

偶数,n 为奇数.又在第一象限内上凸,∴

m

n

<1. 7. 【解析】选C.由f(x)图象知f(x)≥1, ∴12

log ()y f x =≤0,结合图象知先C.

8. 【解析】选C.由已知:令x 1=x 2=0得,g(0)=2g(0)+1,∴g(0)=-1,

令x 1=x,x 2=-x,则有g(0)=g(-x)+g(x)+1,∴有g(x)+1=-[g(-x)+1],故g(x)+1为奇函数. 9. 【解析】(1)由已知f(x)+f(-x)=0即

1

122

2222

122

2221122

11log log 0,1111log 0,1,11110,1()log log (1),1ax ax

x x a x a x x x x

a x a f x x a -++=-+--=∴=----====--∴亦即:即()又时,无意义,舍去.=-1.

(2)由(1)得1

2

1

()log ,1

x f x x +=- 12211212121212121

1122

212112()

1,0,11(1)(1)

11

0,11

11

log log ,11

()(),

()(1,)x x x x x x x x x x x x x x x x x x f x f x f x ++-<<-=>----++∴

>>--++<--<∴+∞设则从而即在内单调递增.

(3)原不等式可化为1

()().2

x

f x m ->

31

2

1

()()(),()[3,4]2

()[3,4].()[3,4]3(),31199

log (),.31288

x x f x x m x x m x x x m ?????=->∴=+-=-∴<-- 令则对于区间上的每一个都成立等价于

在上的最小值大于在上为增函数,当时,取得最小值

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

【精品】高中数学函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映. 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。 因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。 1.掌握描绘函数图象的两种基本方法——描点法和图象变换法. 2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点. 例1设a>0,求函数 ) ln( ) (a x x x f+ - =(x∈(0,+∞))的单调区间. 分析:欲求函数的单调区间,则须解不等式 ()0 f x '≥ (递增)及 ()0 f x '< (递减)。

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中各种函数图像画法与函数性质

一次函数 二次函数

反比例函数 1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线 反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。 2、性质: 1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x (a>0,a≠1) 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数; 当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

2017高中数学抽象函数专题

三、值域问题 例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0 )2()(2 ≥? ? ? ? ? =x f x f , 又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法, 例6、设对满足x ≠0,x ≠1的所有实数x ,函数f(x)满足,()x x x f x f +=?? ? ??-+11 ,求f(x)的解析式。 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且Θ---- ,1 2)11()1(:x 1-x x x x f x x f x -=-+-得代换用 (2) :)1(x -11 得中的代换再以x .12)()x -11f(x x x f --=+---(3)1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 例8.是否存在这样的函数f(x),使下列三个条件: ①f(n)>0,n ∈N;②f(n 1+n 2)=f(n 1)f(n 2),n 1,n 2∈N*;③f(2)=4同时成立? 若存在,求出函数f(x)的解析式;若不存在,说明理由. 解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x (x ∈N*) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解. 练习:1、.23 2|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:0 2)x (x f 3 x ,x 1)x (f 2)x 1(f ,x x 12 =++=-与已知得得代换用,. 23 2 |)x (f |,024)x (9f 02 ≥ ∴≥?-≥?得由 3、函数f (x )对一切实数x ,y 均有f (x +y)-f (y)=(x +2y+1)x 成立,且f (1)=0, (1)求(0)f 的值; (2)对任意的11 (0,)2 x ∈,21(0,)2 x ∈,都有f (x 1)+2

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

高中数学函数专题经典.doc

高中数学函数专题 1.已知在实数域R 上可导的函数)(x f y =对任意实数21,x x 都有 ),()()(2121x f x f x x f ?=+若存在实数b a ,,使0)(0)(>'≠b f a f 且, 求证:(1)0)(>x f ;(2)),()(+∞-∞=在x f y 上是单调函数 证明:(1)2 )]2 ([)2()2()22()(x f x f x f x x f x f =?=+= 又()[()]()()0,()022222x x x x x f a f a f f a f =+-=?-≠∴≠,0)(0)]2 ([2 >>∴x f x f 即 (2)x x f b f x b f x f b f x b f x b f b f x x x ?-?=?-?=?-?+='→?→?→?1 )(lim )()()()(lim )()(lim )(000 即)() ()(]1)()[(lim )()()(1)(lim 00b f b f x f x x f x f x f b f b f x x f x x '?=?-?='∴'=?-?→?→? 0)(0)(,0)(,0)(>'∴>>'>∴x f b f b f x f )(x f ∴在R 上是单调递增函数. 2.已知抛物线C 的方程为F x y ,42 =为焦点,直线()00:1>=+-k k y kx l 与C 交于A 、 B 两点,P 为AB 的中点,直线2l 过P 、F 点。 (1)求直线2l 的斜率关于k 的解析式)(k f ,并指出定义域; (2)求函数)(k f 的反函数)(1 k f -;(3)求1l 与2l 的夹角θ的取值范围。 (4)解不等式()()1,0121log 1 ≠>>????? ?+-a a x xf a 。 解:(1)()???+==142x k y x y ???>>-=??=+-?0 0161604422 k k k y ky 10<-+= -k k k k f (3)?? ? ??∈∴<<∴<<=+-=4,0,10,10,)(1)(3πθθθtg k k k kf k k f tg Θ (4)4124121)(221 +=+=+-x x x xf ,∴原不等式为 ()0241log 2>>??? ? ? +x x a 当1>a 时,41,41222->∴->a x a x ;当10<

有关高中数学抽象函数问题专题

抽象函数问题专题 抽象函数是相对于具体函数而言的,它是指没有给出具体函数的解析式,仅仅给出函数的部分性质,如函数f (x )满足f (x +y )=f (x )+f (y )等,解题时依据题设所给的条件解决相关问题的一类函数。通过抽象函数设置的考题,主要考查函数的基本性质(单调性、奇偶性和周期性),考查学生的抽象思维、理性思维和严谨细腻的逻辑推理能力,因而它具有抽象性、综合性和技巧性等特点。因此对抽象函数的考查是历年高考的热点、焦点和难点。 由于抽象函数没有给出具体的函数解析式,具有一定的隐藏性和抽象性,不少学生在解决这类问题时不能透彻理解题设条件,缺乏严谨的推理和全面的思考,容易忽视某些隐藏的函数性质。对于抽象函数的考查,主要以选择题、填空题为主,有时也会在大题出现。 一、抽象函数与函数的函数值、定义域、值域、解析式以及复合函数 【例1】⑴(04全国IV )设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)= ········································································································································· ( ) A .0 B .1 C .52 D .5 ⑵(2010陕西)下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足 f (x +y )=f (x )f (y )”的是 ······························································································· ( C ) A. 幂函数 B. 对数函数 C. 指数函数 D. 余弦函数 ⑶(2011广东文10)设f (x ),g (x ),h (x )是R 上的任意实值函数.如下定义两个函数(f g )(x )和(f ?g )(x );对任意x ∈R ,(f g )(x )=f (g (x ));(f ?g )(x )=f (x )g (x ).则下列等式恒成立的是( ) A. ((f g ) ?h ) (x )=((f ?h )(g ?h ))(x ) B. ((f ?g ) h ) (x )=((f h )?(g h ))(x ) C. ((f g ) h ) (x )=((f h )(g h ))(x ) D. ((f ?g ) ?h ) (x )=((f ? h )?(g ?h ))(x ) 【例2】⑴已知函数f (x )的定义域是[1,4],则f (x +2)的定义域是 ; ⑵已知函数f (x )的定义域是[1,4],则f (x 2)的定义域是 ; ⑶已知函数f (x +2)的定义域是[1,4],则f (x )的定义域是 ; ⑷已知函数f (x 2)的定义域是[1,4],则f (x )的定义域是 ; ⑸已知函数f (x )的值域是[1,4],则函数g (x)=f (x )+4f (x )的值域是 . 【例3】已知f (x )是二次函数,且f (x +1)+f (x -1)=2x 2-4x ,求f (x ).

相关主题
文本预览
相关文档 最新文档