模形式理论
- 格式:pdf
- 大小:81.75 KB
- 文档页数:6
riemannzeta函数和模形式是数学领域中重要的概念,它们在数论、解析数论、自守形式等领域有着重要的作用。
本文将从理论和应用两个方面来介绍riemannzeta函数和模形式的基本概念、性质和相关的研究成果。
一、riemannzeta函数riemannzeta函数是数论中的重要函数,它被定义为复平面上的解析函数,其表达式为:\[ \zeta(s) = \sum_{n=1}^{\infty}\frac{1}{n^s} \]其中s是复数变量。
riemannzeta函数最初由黎曼在研究素数分布时引入,并在分析数论中占据着至关重要的地位。
riemannzeta函数具有许多重要的性质,比如在复平面上的解析性、黎曼函数方程等。
1.1 riemannzeta函数的解析性riemannzeta函数在复平面上的解析性是指它在定义域内是解析的,即对于复平面上的任意一点s,riemannzeta函数都有定义且在该点处有导数。
这一性质使得riemannzeta函数在复变函数论中占据着重要地位,也为研究riemannzeta函数的性质奠定了基础。
1.2 黎曼函数方程riemannzeta函数满足着著名的黎曼函数方程,即对于所有的s∈C\{1},都有:\[ \zeta(s) = 2^s\pi^{s-1}\sin(\frac{\pi s}{2})\Gamma(1-s)\zeta(1-s) \]这一函数方程表明了riemannzeta函数在复平面上的对称性,为研究riemannzeta函数的性质提供了极大的便利。
1.3 riemannzeta函数在数论中的应用riemannzeta函数在数论中有着许多重要的应用,其中最著名的莫过于黎曼假设。
黎曼假设是指所有非平凡的riemannzeta函数零点的实部都是1/2。
该假设在数论领域和素数分布领域有着深远的意义,然而至今尚未得到严格的证明。
二、模形式模形式是复变函数论中的一个重要概念,它起源于数论领域,随后发展成为一个独立的研究方向。
初中数学费马大定理的证明涉及到哪些数学分支和概念费马大定理的证明涉及到许多数学分支和概念,下面将详细介绍其中的一些主要数学分支和概念。
1. 代数几何:费马大定理的证明需要运用到代数几何的理论和方法。
代数几何是研究代数方程与几何图形之间的关系的数学分支。
在费马大定理的证明中,数学家们需要将方程a^n + b^n = c^n转化为几何图形,并通过几何的分析和研究来推导出结论。
代数几何的概念和工具在费马大定理的证明中发挥了重要的作用。
2. 数论:费马大定理是一个数论问题,涉及到了整数的性质和数学结构。
数论是研究整数及其性质的数学分支。
在费马大定理的证明中,数学家们需要研究方程a^n + b^n = c^n在整数域上的性质,探究其解的可能性。
数论的概念和理论为费马大定理的证明提供了基础和工具。
3. 模形式理论:费马大定理的证明涉及到了模形式理论的概念和方法。
模形式理论是研究特殊类型的复函数的数学分支,与费马大定理的证明有密切的联系。
数学家们利用模形式理论的工具和技巧,对费马大定理进行了深入的研究和探索,为证明提供了重要的思路和方法。
4. 椭圆曲线理论:费马大定理的证明涉及到了椭圆曲线理论的概念和技巧。
椭圆曲线理论是研究椭圆曲线及其性质的数学分支,与费马大定理的证明有重要的关联。
数学家们利用椭圆曲线理论的工具和方法,对费马大定理进行了深入的研究和分析,从而推动了证明的进展。
5. 调和分析:费马大定理的证明涉及到了调和分析的概念和技巧。
调和分析是研究周期函数的一种数学分支,与费马大定理的证明有一定的联系。
数学家们运用调和分析的方法和理论,对费马大定理进行了进一步的研究和分析,为证明提供了重要的工具和思路。
此外,费马大定理的证明还涉及到了其他数学分支和概念,如模论、解析数论、群论、模数论等。
数学家们通过运用多个数学分支的理论和方法,不断尝试和探索,才得以逐步接近费马大定理的证明目标。
总的来说,费马大定理的证明涉及到了代数几何、数论、模形式理论、椭圆曲线理论、调和分析等多个数学分支和概念。
1、概述Schur定理是裙论中的一个重要定理,它阐述了裙的中心有限指数的条件下,导裙是有限裙的结论。
本文将介绍Schur定理的定义、叙述及证明,从而深入理解该定理的内涵和应用。
2、Schur定理的定义在介绍Schur定理之前,我们先来了解一下裙的中心和导裙的概念。
(1)裙的中心:对于一个裙G,其中心Z(G)定义为所有满足对任意的g∈G都有gx=xg(其中x∈Z(G))的元素x的集合。
中心是裙中与所有元素都可交换的元素的集合。
(2)导裙:对于一个裙G,其导裙G'定义为由所有满足对任意的g,h∈G都有ghg^(-1)h^(-1)∈G'的元素组成的集合。
直观上讲,G'包含了G中“局部性质”的信息,它是G的一个重要的子裙。
有了上述概念的铺垫,我们可以正式介绍Schur定理。
Schur定理:如果一个裙的中心有限指数,则其导裙是有限裙。
3、Schur定理的叙述Schur定理的叙述是一个重要的结论,它指出了中心有限指数的裙的导裙是有限裙。
如果一个裙的中心的陪集数量是有限的,则其导裙是有限裙。
这一叙述对裙论的研究具有重要的指导意义,它为进一步研究裙的基本性质以及其结构提供了有力的支持。
4、Schur定理的证明Schur定理的证明涉及到一些裙论的基本知识和技巧,下面我们从几个重要步骤来梳理Schur定理的证明过程。
(1)引理1:设H是一个无限裙,N是H的一个有限指数的正规子裙,那么存在H的一个非平凡的正规子裙K,使得N∩K是K的有限指数的正规子裙。
(2)引理2:设Z(G)是一个有限指数的裙G的中心,那么对任意的a∈G,都有[C_G(a):C(a)∩Z(G)]<∞。
(3)引理3:设G是一个有限裙,那么G'的指数有界。
(4)证明:根据引理1和引理2,我们可以推出H的导裙G'是有限裙。
另外,根据引理3,我们可以得出G'的指数有界,从而可知G'是有限裙。
通过以上几步推理和引理,我们可以得出Schur定理的证明结论,即如果一个裙的中心有限指数,则其导裙是有限裙。
数学证明的实例分析在数学领域中,证明是非常重要的。
通过证明可以确定一个数学命题的真实性,解答各种问题,以及推进数学研究的发展。
本文将通过详细分析数学证明的实例,展示数学证明的重要性和基本方法。
实例一:费马大定理的证明费马大定理是数学史上最具盛名的问题之一,其原命题是:当整数n大于2时,关于x、y和z的方程x^n + y^n = z^n没有整数解。
曾经有数学家试图在几百年的时间里寻找证明,但直到1994年,安德鲁·怀尔斯(Andrew Wiles)才最终证明出来。
怀尔斯使用了模形式理论、代数几何和矩形陈理论等一系列高深的数学工具,通过构造性证明方法解决了费马大定理。
他首先通过建立两个椭圆曲线的等同性,从而证明了费马方程的奇特性质。
然后,他使用了模形式和Galois 表示等概念,最后在两个代数曲线的交点上应用了上面所说的矩形陈理论。
实例二:三角函数恒等式的证明三角函数恒等式是数学中常见的证明题型。
例如,我们可以考虑证明三角函数的和差公式:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)。
为了证明这个恒等式,我们可以利用欧拉公式和三角函数的定义。
首先,我们将a和b表示成欧拉公式的形式,即a = α + β,b = γ + δ,其中α、β、γ、δ为实数。
然后,我们将欧拉公式代入到sin(a + b)的式子中,经过一系列化简和替换,最后可以得到sin(a + b) = sin(a)cos(b) + cos(a)sin(b),从而证明了和差公式的正确性。
实例三:数学归纳法的应用数学归纳法是一种重要的证明方法,可用于证明一类有序命题的正确性。
例如,我们可以利用数学归纳法证明1 + 2 + 3 + ... + n = n(n +1)/2。
首先,我们证明当n = 1时等式成立,即1 = 1(1 + 1)/2。
然后,我们假设当n = k时等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
费马四平方和定理费马四平方和定理费马四平方和定理,又称为费马猜想或费马大定理,是数学中的一个重要问题,它是由法国数学家皮埃尔·德·费马在17世纪提出的。
这个定理的内容是:任何一个大于2的自然数都可以表示成不超过4个自然数的平方和。
历史背景德·费马于1637年在他所写的《阿基米德原本》中提出了这个猜想。
他写道:“我有一种非常美妙的证明方法,但是这里没有足够的空间来容纳它。
”然而,直到他去世后,这个证明一直没有被找到。
随着时间的推移,越来越多的数学家尝试着证明这个猜想。
其中最著名的就是欧拉、拉格朗日、勒让德等人。
但他们都没有成功。
直到1908年,英国数学家哈代才发表了一篇论文,在其中给出了一个完整而严格的证明。
但是这份证明过于复杂,并且使用了20世纪初才发展起来的现代数学工具。
因此,在哈代之后,还有许多其他人尝试着给出更加简洁的证明。
其中最著名的就是苏联数学家维尔斯特拉斯在1975年给出的证明。
定理内容费马四平方和定理的内容非常简单,可以用一句话来概括:任何一个大于2的自然数都可以表示成不超过4个自然数的平方和。
换句话说,对于任意一个大于2的自然数n,都存在四个自然数a、b、c、d,使得:n = a² + b² + c² + d²这里a、b、c、d可以相等,也可以不相等。
证明方法费马四平方和定理的证明是非常复杂的。
以下是一种基于群论和模形式理论的较为简单的证明方法。
首先,假设存在某个大于2的自然数n无法表示成不超过4个自然数的平方和。
我们将这些无法表示成平方和的自然数称为“反例”。
接下来,我们考虑对每一个反例n构造一个模形式f(n)。
具体来说,我们定义:f(n) = Σ exp(2πi(a²+b²+c²+d²)n)其中Σ表示对所有满足a²+b²+c²+d²=n且a≤b≤c≤d的四元组(a,b,c,d)求和。
形式逻辑中的模型理论研究形式逻辑是一门研究推理和证明的学科,它以符号和形式化的语言为基础,通过建立逻辑系统和推理规则来分析推理的有效性和正确性。
而模型理论则是形式逻辑中的一个重要分支,它探讨的是逻辑语句在不同模型下的真值赋值情况,从而揭示了逻辑语句与现实世界之间的关系。
在形式逻辑中,一个模型是由一个非空集合和一组对集合中元素的赋值所组成的。
模型理论的研究对象是逻辑语句,通过为逻辑语句中的变量赋值,可以确定逻辑语句在不同模型下的真值。
模型理论的目标是研究逻辑语句的真值赋值规律,从而揭示逻辑语句的语义含义。
在模型理论中,一个重要的概念是满足关系。
满足关系是指在一个模型中,逻辑语句的真值赋值情况。
通过研究满足关系,可以确定逻辑语句的真值情况,从而判断逻辑语句的合法性和有效性。
满足关系可以用形式化的方式表示,例如使用真值表、真值函数等。
模型理论的研究方法主要包括语义方法和语法方法。
语义方法是通过研究逻辑语句在不同模型下的真值赋值情况,来揭示逻辑语句的语义含义。
语义方法的优点是直观、易于理解,但是缺点是计算复杂度较高。
语法方法是通过研究逻辑语句的形式和结构,来推导逻辑语句的真值赋值情况。
语法方法的优点是计算简单、效率高,但是缺点是对逻辑语句的形式和结构要求较高。
模型理论在形式逻辑中具有广泛的应用。
首先,模型理论可以用于验证逻辑系统的一致性和完备性。
通过构建逻辑系统的模型,可以验证逻辑系统中的公理和推理规则是否一致,并且可以确定逻辑系统是否完备。
其次,模型理论可以用于研究逻辑语句的语义含义。
通过研究逻辑语句在不同模型下的真值赋值情况,可以揭示逻辑语句的语义含义和逻辑结构。
最后,模型理论还可以用于研究逻辑语句的可满足性和有效性。
通过研究逻辑语句在不同模型下的真值赋值情况,可以确定逻辑语句是否可满足和有效。
总结而言,模型理论是形式逻辑中的一个重要分支,它研究的是逻辑语句在不同模型下的真值赋值情况。
通过研究满足关系和使用语义方法和语法方法,可以揭示逻辑语句的语义含义和逻辑结构。
费马引理的证明引言费马引理(Fermat’s Last Theorem)是数学史上一个著名的问题,由法国数学家皮埃尔·德·费马(Pierre de Fermat)在17世纪提出。
费马引理的内容是:对于任何大于2的正整数n,不存在满足以下方程的正整数解:a^n + b^n = c^n。
费马引理的证明是一个复杂且困难的数学问题,经历了几个世纪的努力才最终被证明。
本文将介绍费马引理的证明过程,并简要概述其中的关键思想和方法。
费马引理的证明过程费马引理的证明过程可以分为多个阶段,每个阶段都有其独特的思路和方法。
下面将逐步介绍这些阶段。
1. 初步尝试最早的证明尝试来自费马本人,他在边书中写下了“我有一个非常美妙的证明,但这里的空间太小,无法容纳。
”这句话成为了数学史上的经典之谜,也为后来的数学家们提供了巨大的启发。
2. 特殊情况的证明费马引理在特殊情况下的证明比较容易,比如当n=3时,费马引理可以被直接证明。
这个证明是由英国数学家安德鲁·怀尔斯(Andrew Wiles)在1994年完成的,他使用了复杂的代数几何工具和模形式理论。
3. 椭圆曲线方法费马引理的证明过程中,椭圆曲线方法起到了至关重要的作用。
这个方法是由法国数学家雅克·迪利涅(Jacques de Dines)和德国数学家海因里希·韦伊斯特拉斯(Heinrich Weber)提出的。
椭圆曲线方法的关键思想是将费马引理转化为椭圆曲线上的一个问题。
通过研究椭圆曲线的性质和结构,数学家们可以得到关于费马引理的有用信息。
4. 贝兹等式的应用费马引理的证明还需要用到贝兹等式(Bezout’s identity)。
贝兹等式是代数几何中的一个基本定理,它描述了两个多项式的最大公因式与它们的系数之间的关系。
通过应用贝兹等式,数学家们可以得到费马引理的一些限制条件,从而进一步缩小证明的范围。
5. 基于模形式的证明最后,费马引理的证明使用了模形式(Modular Forms)理论。
《费马大定理》教学设计教学目标:知识与技能1、了解费马大定理的产生和证明过程;2、了解类比推理是从特殊到特殊的推理;3、正确认识合情推理在数学中的重要作用;4、养成从小开始认真观察事物、分析问题、发现事物之间的联系的良好个性品质,善于发现问题,探求新知识。
过程与方法通过学习费马大定理,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。
情感态度与价值观认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
教学重点:能利用类比进行简单的推理。
教学难点:由费马大定理总结出,类比推理,并用类比进行推理,做出猜想。
教具准备:与教材内容相关的资料。
课时安排:1课时教学过程:一、费马大定理1、业余数学家之王费马(Fermat,1601—1665),法国数学家,他非常喜欢数学,常常利用业余时间研究高深的数学问题,结果取得了很大的成就,被人称为“业余数学家之王”,费马凭借丰富的想象力和深刻的洞察力,提出一系列重要的数学猜想。
2、费马小猜想1640年,费尔马在研究质数性质时,发现了一个有趣的现象:当n=1时,22n+1=221+1=5;当n=2时,22n+1=222+1=17;当n=3时,22n+1=223+1=257;当n=4时,22n+1=224+1=65537;猜测:只要n是自然数, 22n+1一定是质数1732年,欧拉进行了否定3、费马小定理如果P是一个质数,那么对于任何自然数n,n P-n一定能够被P整除.这个猜想已证明是正确的,这个猜想被称为“费马小定理”,利用费马小定理,是目前最有效的鉴定质数的方法4、费马大定理1637年前后,费马在读古希腊丢番图的《算术》这本书的靠近问题8的页边处记下这样一个结论(现在的写法):同时又写下一个附加的评注:“对于该命题,我确信已发现一种奇妙的证明,可惜这里的空白太小,写不下”5、费马大定理产生的历史性背景费尔马大定理,启源于两千多年前,挑战人类三个多世纪,多次震惊全世界,耗尽人类最杰出大脑的精力,也让千千万万业余者痴迷。
一、政策制定的理论模型什么是模型模型是现实世界某些方面的简单化呈现。
它可以是:--一个实体的呈现(如飞机模型)--一种图示(如流程图)--一种公式(如S=v〃t)--一段文字表述的概念(如“桌子是由一个面板及其下面的四条木棍支撑而成的一种家具”)什么是政策分析模型政策分析模型是公共政策的一种的简单化呈现。
通常以概念的方式出现(概念模型)政策分析模型有何作用1.简化我们对公共政策的思维2.指出政策议题的重要方面3.通过将注意力在政治生活的重要特征,有助于我们进行有效的沟通4.提出公共政策中不重要的因素,加深我们的了解5.解释公共政策的要素,预测其影响人们很少能选定那些一劳永逸、自成一体、所有人都能领会的政策。
政策分析的目的不是产生某种一锤定音的政策建议,而是要帮助人们对现实可能性和期望之间有逐渐一致的认识,产生一种新型的社会相互关系与“社会心理”模式。
——米切尔〃怀特主要的政策制定理论模型1.精英模型2.团体模型3.多元模型4.完全理性模型5.有限理性模型6.渐进模型7.混合扫描模型8. 系统模型从完全理性的假设(最优)→有限理性(满意)→非理性的假设(合理)(一)精英模型代表人物及著作:1970年托马斯.戴伊(Thom as Dye)和哈蒙.齐格勒(Harmo n Zeigler)在《民主的嘲讽》中总结了前辈的精英理论基本内容:精英决策模型是将公共政策看成是反映占统治地位的精英(elite)们的价值和偏好的一种决策理论。
从政治精英到社会精英从圣西门到拉斯韦尔基本要点:社会可以划分为拥有权力的少数人,以及不拥有权力的多数人。
只有少数人才有权为社会分配价值,而群众则不能决定公共政策少数管理者并不代表多数被管理者。
精英大多从社会经济地位较高的上层阶级中选拔非精英往精英地位的流动必须缓慢而持续,以维持社会稳定并避免革命发生。
CHAPTER IINTRODUCTIONIntroduction to the First(1992)EditionThis book is in three sections.First,we describe in detail an algorithm based on modular symbols for computing modular elliptic curves:that is,one-dimensional factors of the Jacobian of the modular curve X0(N),which are attached to certain cusp forms for the congruence subgroupΓ0(N).In the second section,various algorithms for studying the arithmetic of elliptic curves(defined over the rationals)are described.These are for the most part not new, but they have not all appeared in book form,and it seemed appropriate to include them here. Lastly,we report on the results obtained when the modular symbols algorithm was carried out for all N≤1000.In a comprehensive set of tables we give details of the curves found, together with all isogenous curves(5113curves in all,in2463isogeny classes1).Specifically, we give for each curve the rank and generators for the points of infinite order,the number of torsion points,the regulator,the traces of Frobenius for primes less than100,and the leading coefficient of the L-series at s=1;we also give the reduction data(Kodaira symbols,and local constants)for all primes of bad reduction,and information about isogenies.For N≤200these curves can be found in the well-known tables usually referred to as “Antwerp IV”[2],as computed by Tingley[67],who in turn extended earlier tables of curves found by systematic search;our calculations agree with that list in all281cases.For values of N in the range200<N≤320Tingley computed the modular curves attached to newforms forΓ0(N)only when there was no known curve of conductor N corresponding to the newform: these appear in his thesis[67]but are unpublished.As in[2],the curves E we list for each N have the following properties.(1)They have conductor N,as determined by Tate’s algorithm[65].(2)The coefficients given are those of a global minimal model for E,and these coefficients(or,more precisely,the c4and c6invariants)agree with the numerical values obtained from the modular calculation to several decimal places:in most cases,depending on the accuracy obtained—see below—differing by no more than10−30.(3)Their traces of Frobenius agree with those of the modular curves for all primes p<1000.We have also investigated,for each curve,certain numbers related to the Birch–Swinnerton-Dyer conjecture.Let f(z)be a newform forΓ0(N)with rational Fourier coefficients,and E the elliptic curve defined over Q attached to f.The value of L(f,1)is a rational multiple of a period of f,and may be computed easily using modular symbols(see[37]and Section2.8below).We have computed this rational number in each case,andfind that it is always consistent with the Birch–Swinnerton-Dyer conjecture for E.More specifically,letΩ0(f)be the least positive real period of F andΩ(f)=2Ω0(f)orΩ0(f)according as the period lattice of f is or is not rectangular.Then wefind that L(f,1)/Ω(f)=0if(and only if)the Mordell-Weil group E(Q) 1In thefirst edition,these numbers were given as5089and2447respectively,as the curves of conductor702 were inadvertently omitted.12I.INTRODUCTIONhas positive rank,and when E(Q)isfinite wefind in each case thatL(f,1)/Ω(f)= p|N c p·|E(Q)|−2·Swith S∈N(in fact S=1in all but four cases:S=4in three cases and S=9in one case). This is consistent with the Birch–Swinnerton-Dyer conjecture if the Tate–Shafarevich group X isfinite of order S.(Here c p is the local index[E(Q p):E0(Q p)];see[58,p.362].)When L(f,1)=0,we compute the sign w of the functional equation for L(f,s),and verify that w=+1if and only if the curve has even rank.More precisely,we also compute the value of L(r)(f,1),where r is the rank,the regulator R,and the quotientS=L(r)(f,1)r!Ω(f) (c p)R|E(Q)tors|2.In all but the four cases mentioned above wefind that S=1to within the accuracy of the computation.Our algorithm uses modular symbols to compute the1-homology ofΓ0(N)\H∗where H∗is the extended upper half-plane{z∈C:Im(z)>0}∪{∞}∪Q.While similar in some respects to Tingley’s original algorithm described in[67],it also uses ideas from[37]together with some new ideas which will be described in detail below.One important advantage of our method, compared with Tingley’s,is that we do not need to consider explicitly the exact geometric shape of a fundamental region for the action ofΓ0(N)on H∗:this means that highly composite N can be dealt with in exactly the same way as,say,prime N.Of course,for prime N there are other methods,such as that of Mestre[43],which are probably faster in that case,though not apparently yielding the values of the“Birch–Swinnerton-Dyer numbers”L(f,1)/Ω(f).There is also a strong similarity between the algorithms described here and those developed by the author in his investigation of cusp forms of weight two over imaginary quadraticfields[12], [13],[15].A variant of this algorithm has also been used successfully to study modular forms forΓ0(N)with quadratic character,thus answering some questions raised by Pinch(see[48] or[49])concerning elliptic curves of everywhere good reduction over real quadraticfields.See [14]for details of this,and for a generalization toΓ1(N):one couldfind cusp forms of weight two with arbitrary character using this extension of the modular symbol method,though at present it has only been implemented for quadratic characters,as described in[14].It is not our intention in this book to discuss the theory of modular forms in any detail, though we will summarize the facts that we need,and give references to suitable texts.The theoretical construction and properties of the modular elliptic curves will also be excluded, except for a brief summary.Likewise,we will assume that the reader has some knowledge of the theory of elliptic curves,such as can be obtained from one of the growing number of excellent books on the subject.Instead we will be concentrating on computational aspects, and hope thus to complement other,more theoretical,treatments.In Chapter2we describe the various steps in the modular symbol algorithm in detail.At each step we give the theoretical foundations of the method used,with proofs or references to the literature.Included here are some remarks on our implementation of the algorithms,which might be useful to those wishing to write their own programs.At the end of this stage we have equations for the curves,together with certain other data for the associated cusp form:Hecke eigenvalues,sign of the functional equation,and the ratio L(f,1)/Ω(f).Following Chapter2,we give some worked examples to illustrate the various methods.In Chapter3we describe the algorithms we used to study the elliptic curves we found using modular symbols,including thefinding of all curves isogenous to those in the original list.INTRODUCTION TO THE SECOND(1996)EDITION3 These algorithms are more generally applicable to arbitrary elliptic curves over Q,although we do not consider questions which might arise with curves having bad reduction at very large primes.(For example,we do not consider how to factorize the discriminant in order tofind the bad primes,as in all cases in the tables this is trivially achieved by trial division).Here we compute minimal equations,local reduction types,rank and torsion,generators for the Mordell–Weil group,the regulator,and traces of Frobenius.This includes all the information published in the earlier Antwerp IV tables.Thefinal calculations,relating to the Birch–Swin-nerton-Dyer conjecture,are also described here;these combine values obtained from the cusp forms(specifically,the leading coefficient of the expansion of the L-series at s=1,and the real period)with the regulator and local factors obtained directly from the curves.Thus we can compute in each case the conjectural value S of the order of X,the Tate–Shafarevich group.Finally,in Chapter4we discuss the results of the computations for N≤1000,and introduce the tables which follow.All the computer programs used were written in Algol68(amounting to over10000lines of code in all)and run on the ICL3980computer at the South West Universities Regional Computing Centre at Bath,U.K..The author would like to express his thanks to the staffof SWURCC for their friendly help and cooperation,and also to Richard Pinch for the use of his Algol68multiple-length arithmetic package.At present,our programs are not easily portable, mainly because of the choice of Algol68as programming language,which is not very generally available.However we are currently working on a new version of the programs,written in a standard version of the object-oriented language C++,which would be easily portable.The elliptic curve algorithms themselves are currently(1991)available more readily,in a number of computer packages.2In particular,the package apecs,written in Maple and available free via anonymousfile transfer from Ian Connell of McGill University,will compute all the data we have included for each curve.(A slightly limited version of apecs,known as upecs,runs under UBASIC on MS-DOS machines).There are also elliptic curve functions available for Mathematica(Silverman’s Elliptic Curve Calculator)and in the PARI/GP package.These packages are all in the process of rapid development.An earlier version of Chapter2of this book,with the tables,has been fairly widely circulated, and several people have pointed out errors which somehow crept in to the original tables.We have made every effort to eliminate typographical errors in the tables,which were typeset directly from datafiles produced by the programs which did the calculations.Where possible, the data for each curve has been checked independently using other programs.Amongst those who have spotted earlier errors or have helped with checking,I would like to mention Richard Pinch,Harvey Rose,Ian Connell,Noam Elkies,and Wah Keung Chan;obviously there may still be some incorrect entries,but these remain solely my responsibility.Introduction to the Second(1996)EditionSince thefirst edition of this book appeared in1992,some significant advances have been made in the algorithms described and in their implementation.The second edition contains an account of these advances,as well as correcting many errors and omissions in the original text and tables.We give here a summary of the more substantial changes to the text and tables.Of course,the most significant theoretical advance of the last four years is the proof by Wiles,Taylor–Wiles and others of most cases of the Shimura–Taniyama–Weil conjecture,which almost makes the word“modular”in the title of this book redundant.However,the only effect the new results have on this work are to guarantee that every elliptic curve defined over the rationals and of conductor less than1000is isomorphic to one of those in our Table1.2See the end of the introduction for more on obtaining these packages.4I.INTRODUCTIONChapter2.Section2.1has been completely rewritten and expanded to give a much more coherent,self-contained,and(we hope)correct account of the theoretical background to the modular symbol method.The text here is based closely on some unpublished lecture notes of the author for a series of lectures he gave in Bordeaux in1995at the meeting“´Etat de la Recherche en Algorithmique Arithm´e tique”organized by the Soci´e t´e Math´e matique de France.In Section2.4,we give a self-contained treatment of the method of Heilbronn matrices for computing Hecke operators,similar to the treatment by Merel in[42],as this now forms part of our implementation.In Section2.10,we give a new method of computing periods of cusp forms,as described in[18],which is as efficient as the“indirect”method;this largely makes the indirect method redundant,but we still include it in Section2.11.Also in Section2.11,we include some tricks and shortcuts which we have developed as we pushed the computations to higher levels, which can greatly reduce the computation time needed tofind equations for the curves of conductor N,at the expense of not necessarily knowing which is the so-called“strong Weil”curve in its isogeny class.Section2.14has been rewritten to take into account the results of Edixhoven on the Manin constant(see[21]),which imply that the values of c4and c6which we compute for each curve are known a priori to be integral.This means that the values we compute are guaranteed to be correct,and eliminates the uncertainty previously existing as to whether the curves we obtain by rounding the computed values are the modular elliptic curves they are supposed to be.Section2.15is entirely new:we show how to compute the degree of the modular parametriza-tion mapϕ:X0(N)→E for a modular elliptic curve of conductor N,using our version(see [17])of a method of Zagier[69].This method is easy to implement within the modular sym-bol framework,and we have added it to our programs,so that we now compute the degree automatically for each curve wefind.The appendix to Chapter2,containing worked examples,now includes the Heilbronn matrix method,and also illustrates some of the tricks mentioned in Section2.11.Implementation changes.The implementations of all the algorithms described here have been completely rewritten in C++,to be easily portable.We use the GNU compiler gcc for this.For multiprecision arithmetic we use either the GNU package libg++or the package LiDIA.For solving the systems of linear equations giving the relations between M-symbols, we use sparse matrix routines which not only reduce memory requirements,but also speed up that part of the computations considerably.These routines were written by L.Figueiredo specifically for his work on imaginary quadraticfields(see[24])which in turn built on the author’s work in[12]and[13].Chapter3.In Section3.1we give simpler formulae for recovering the Weierstrass coefficients of a curve from the invariants c4and c6;this enables us to simplify the Kraus–Laska–Connell algorithm slightly.In Section3.4we give a slightly improved formula for the global canonical height,and include this as a separate algorithm.Section3.5now contains references to other bounds between the naive and canonical heights,and other methods for the infinite descent step,but without details.The main changes in this chapter are to Section3.6on two-descent algorithms.On the one hand,we give a better explanation of the theoretical basis for these algorithms,making the account more self-contained(though we do not include all proofs).We have also moved the discussion on testing homogeneous spaces for local and global solubility forward,as this is common to the two main algorithms(general two-descent and two-descent via2-isogeny).On the other hand,several parts of the algorithm have been subject to major improvements over the last few years,thanks to collaboration with P.Serf,S.Siksek and N.P.Smart,and theseINTRODUCTION TO THE SECOND(1996)EDITION5 are now included.Notable here are the syzygy sieve in the search for quartics,the systematic use of group structure in the2-isogeny case,and the use of quadratic sieving in searching for rational points on homogeneous spaces.We also simplify the test for equivalence of quartics and the process of recovering rational points on the curve from points on the homogeneous spaces.Many of these improvements are from the author’s paper[20],which contains some proofs omitted here.Implementation changes.As with the modular symbol algorithms,we have rewritten all the elliptic curve algorithms in C++.In the case of the program tofind isogenies,which is very sensitive to the precision used,we have written an independent implementation in PARI/GP; using this we have a check on the isogeny computations which gave the isogenous curves listed in Table1.(The standard precision version of this program,while much faster,does miss several of the isogenies,for reasons given in Section3.8.)Versions of our algorithms will shortly become generally available in two forms.First,the package LiDIA(a library of C++classes for computational number theory,developed by the LiDIA group at the Universit¨a t des Saarlandes in Germany)will include them in a coming release.Secondly,the package Magma is also in the process of implementing the algorithms.In addition to these packages and those mentioned in the original Introduction,we should also mention the package Simath,developed by H.G.Zimmer’s research group in Saarbr¨u cken, which also has a large collection of very efficient elliptic curve algorithms.See the end of this Introduction for how to obtain more information on these packages.Chapter4and Tables.The two main changes in the tables are to include all the data for N=702in Tables1–4and include the new Table5giving the degree of the modular parametrization for each strong Weil curve.The omission of level702in thefirst edition is hard to explain;in our original implementation andfile structure,it was not possible to distinguish between a level which had run successfully,but with no rational newforms found,and a level which had not yet run.The original runs were done as batch jobs on a remote mainframe computer,with manual record-keeping to keep track of which levels had run successfully.Our current implementation is much more robust in this respect.We are grateful to Henri Cohen whofirst discovered this error on comparing our data with his own tables(of modular forms of varying weight and level,computed by him together with Skoruppa and Zagier).The omission was also noted by Jacques Basmaji of Essen,who recomputed Table3independently.The new implementationfinds the newforms at each level in a consistent order.In the original runs,the order in which the newforms were found changed as the program developed. Unfortunately,we did not recompute the earlier levels with thefinal version of the program before publishing thefirst edition of the tables,and the identifying letter for each newform given in the tables has now become standard.Hence our current implementation reorders the newforms during output to agree with the order as originally published(this is necessary for 147levels in all,the largest being450).Also concerning the order and naming of the curves:the convention we normally use is that in each isogeny class thefirst curve is the strong Weil curve whose period lattice is exactly that of the corresponding newform forΓ0(N),such as11A1for example.In precisely one case,an error caused thefirst curve listed in class990H to be not the strong Weil curve but a curve isogenous to it.The strong Weil curve in this class is in fact990H3and not990H1.In the notation of Section2.11,the correct values of l+and m+to obtain the strong Weil curve 990H3are13and8,but for some reason we had used the value m+=24which leads to the 3-isogenous curve990H1.In Table1,the other corrections are:N=160has the Antwerp codes corrected,and916B1 has a spurious indication of a non-existent3-isogeny removed.In Table2,we include the generators for the curves of conductor702and positive rank,and6I.INTRODUCTIONagain correct the Antwerp code for curve160A1.We also give the generator of427C1correctly as(−3,1)rather than(−3,0)as previously,and for990H we give the generator(−35,97)of the strong Weil curve990H3rather than a generator of990H1as before.In Table3,as well as inserting the data for N=702,we correct the eigenvalues for N=100 which had been given incorrectly.In Table4,we insert the data for N=702and also for600E–600I which had been omitted by mistake.Moreover,for N=990we give the data for990H3instead of990H1as before,as this is the strong Weil curve(the only difference being thatΩhas been multiplied by3and R divided by3).Extension of the ing our new implementation of the algorithms of Chapter2,we have extended the computations of all modular elliptic curves up to conductor5077(chosen as the smallest conductor of a curve of rank3).We have also computed in each case the other data tabulated here for conductors up to1000.For reasons of space,we cannot print extended versions of the tables:as there are17598newforms(or isogeny classes)and a total of31586 curves up to5077,this would have made this book approximately six times as thick as it is at present!Instead,the data for curves whose conductors lie in the range from1001to5077(and beyond, as they become available)may be obtained by anonymousfile transfer from the author’s web site at /personal/jec/ftp/data/INDEX.html Finally,many thanks to those who have told me of misprints and other errors in the First Edition,including J.Basmaji,G.Bailey,B.Brock,F.Calegari,J.W.S.Cassels,T.Kagawa, B.Kaskel,P.Serf,S.Siksek,and N.Smart.Apologies to any whose names have been omitted. Extra thanks are also due to Nigel Smart,who read a draft of Chapter3of the Second Edition, and made useful suggestions.web and ftp sitesMore information on the packages mentioned above,and in most cases the packages them-selves,can be obtained from the following web and ftp sites.Apart from Magma they are all free.apecs(for Maple):ftp://math.mcgill.ca/pub/apecsElliptic Curve Calculator(for Mathematica):ftp:///dist/EllipticCurve LiDIA:http://www-jb.cs.uni-sb.de/LiDIAMagma:.au:8000/comp/magma mwrank:ftp:///pub/cremona/progsPARI/GP:ftp://megrez.math.u-bordeaux.fr/pub/pariSimath:http://emmy.math.uni-sb.de/~simathupecs(for UBASIC):ftp://math.mcgill.ca/pub/upecsLinks to all of these can be found at the following place,which will be updated./personal/jec/packages.html。