当前位置:文档之家› 电磁铁的设计计算

电磁铁的设计计算

电磁铁的设计计算
电磁铁的设计计算

电磁铁的设计计算

1原始数据

YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数

额定工作电压 UH=24V

额定工作电压时的工作电流 IH ≤1A 2 测试数据

测试参数工作行程δ =1mm 吸力 F=7.5kg 电阻 R=3.5Ω

4 设计程序

根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能

4.1 确定衔铁直径 dc

电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力 F=7.5kg 则电磁铁的结构因数

K =

F/δ 7.5/0.1=27 (1)

电磁铁的结构形式应为平面柱挡板中心管式

根据结构因数查参考资料,可得磁感应强度 BP=10000 高斯

当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式

F= (Bp/5000)2×Π/4×dc2 (2)

式中 Bp磁感应强度(高斯) dc 活动铁心直径(毫米)

可以求得衔铁直径为

dc=

5800× F

Bp

=

5800× 7.510000

=1.59cm=15.9mm

取 dc=16 mm

4.2 确定外壳内径 D2

在螺管式电磁铁产品中它的内径 D2与铁心直径 dc之比值 n 约为 2~ 3 ,选取 n=2.7 D2=n ×dc=2.76× 16=28.16 毫米 (3) 式中 D2 外壳内径毫米 4.3 确定线圈厚度

bk=

D2?dc

2

?Δ (4)

式中 bk -----线圈厚度毫米

Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米

bk=

28.16?16

2

?1.7 =4.38毫米

今取bk=5 毫米 4.4 确定线圈长度

线圈的高度lk与厚度bk比值为β,则线圈高度

lk=β×bk (5) lk------线圈长度毫米

β值根据参考资料选取经验数据为β=3.4 则线圈高度 lk=β×bk=3.4× 5=17毫米 4.5 确定导线直径

导线直径 d=

4×ρ×Dcp×IW

U

(6)

式中平均直径 Dcp=dc+bk=0.016+0.005=0.021( 米) IW----- 线圈磁势 (安匝)

IW= (IW)z + (IW) cm+ (IW)k

式中 (IW)z ------消耗在气隙中的磁势

(IW)z=Bp×δ

μ0

×10?8

(IW) cm和 (IW)k 消耗在铁心中和非工作气隙中磁势的安匝数约为总磁势的 15~30% ,即

(IW) cm+ (IW)k=α×(IW)

式中α=0.15 ~0.3

由此可得线圈的磁势为

(IW)=

Bp×δμ0×(1?α)

×10?8 (安匝) (7)

式中 Bp单位为高斯,δ单位为厘米空气导磁系数μ0=1.25 ×10?8亨/厘米

电磁铁在实际应用时电压可能降低至 85%UH 为了保证在电压降低后电磁铁仍然能够可靠地工作上式计算所得安匝数应该是指电压降低至0.85UH时的磁势用 (IW)1表示

(IW)1=

10000×0.11.25×10?8×(1?0.3)

×10?8

=1143安匝

显然,电源电压为额定值时的磁势为

IW=

(IW)1

0.85

=1344 安匝

电磁铁容许最高工作温度 240℃,由参考资料选取电阻系数ρ=0.03208 欧. 毫米2

d= 4ρ?Dcp?IWU= 4×0.03208×0.021×134424

=0.388 毫米

查线规表其最邻近的直径为 d=0.41 毫米带绝缘后的直径

d =0.45 毫米

4.6 确定线圈匝数 W

W=

1.28(IW)jd2

(8)

式中 j ---容许电流密度 (安毫米2

) ,

j=Iq

=

4UπRd2

=

4×24π×3.5×0.412

=51安毫米2

(9)

W=1.28(IW)jd2=1.28×134451×0.41

2=200 匝 4.7 确定电阻

线圈平均匝长 lcp

=

π(DH+D1)

2

(10)

DH=D1+2bk (11) D1=dc+2Δ (12) 式中 DH ---线圈外直径 D1 ---线圈内直径

D1=dc+2Δ=16+2×1.7=19.4毫米 DH=D1+2bk=19.4+2×4.38=27.4 毫米lcp=

π(DH+D1)

2

=

π(27.4+13.4)

2

=64 毫米=0.064 米

线圈电阻

下载文档到电脑,查找使用更方便

1下载券 1385人已下载

下载

还剩2页未读,继续阅读

R=ρ40?

lcp?w

π

4

?d2=0.01991×

0.064×1093

π

4

×0.252=28 欧 (13)

现在已初步确定了电磁铁的结构尺寸绘制电磁铁结构草图如图 2

5 特性验算

虽然根据设计要求已完成了初步设计但是由于在初步设计中作了不少简化有

些参数的选择和估计是极其近似的因此为了电磁铁的工作可靠起见还需要根据初步设计的结构尺寸和数据做进一步详细的验算 5.1 吸力计算 F=(

Φ5000

)2?

1

S(1+αδ)

(14)

忽略铁磁阻和漏磁通这样气隙中的磁通ΦZ=IW?GZ?10?8 (15) 式中磁导 GZ =

μ0?

πdC24δ

(16)

式中空气导磁系数μ0=1.25 ×10?8亨/厘米

GZ =μ0?

πdC24δ

=1.25 ×10?8

×

π×1.024×0.065

=15×10?8亨

ΦZ=IW?GZ?10?8=961×15×10?8×108=14415 麦

式中α

-----修正系数取α=4

S -------铁心截面积

S=

πdC24

=

π×1.02

4

=0.785 厘米 2

(17) F=(

Φ5000

)2?

1

S(1+αδ)

=(

144155000

)2

?

1

0.785×(1+4×0.065)

=8.4 公斤

可见吸力是满足设计要求的 5.2 线圈温升计算

线圈容许温升θ=110℃,查参考资料可得散热系数为

μm=12.89×10?4瓦厘米2

金属骨架线圈其传导能力较强ηm≈1.7 线圈的散热表面S= π DH+ ηmD1 lk=(2.74+1.7×1.34 )×2.38=37.5 厘米 2

线圈温升

θ=

PμmS

=

4

12.89×10?4×37.5

=82.7℃ (18)

温升小于 110℃可见是合格的。 6 结论

到目前为止虽然设计电磁铁的方法有许多种但是都还没有一套既严谨准确又使计算简便的方法很大部分还只能依靠经验数据来选择经过某些理论计算最后试制样品加以验证证实所设计的结构参数是否合理必要时作适当修改本产品试验数据如下电压 V 工作行程 mm 吸合力 kg 电阻电流 A 27 0.65 6.7 29.73 0.91 经试验证明该电磁铁的设计满足使用要求

电磁铁设计

直流电磁铁设计 共26 页 编写: 校对:

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=21 μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kυ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁吸力计算(20201004205208)

电磁铁相关知识 (参考电磁铁设计手册) 、磁和电的关系: 螺皆経圏的禺塢 、电磁铁型式: 电谶鉄的型式 磁桶若向 a)螺管式电磁铁;

b)盘式电磁铁; c), d)拍合式电磁铁; e)n式电磁铁; f)装甲螺管式电磁铁; g)E形电磁铁; 应用举例: 电鈴的工作隔邂 磁通和磁感应強度 磁場旣然是假宦由許多磁力綫所构成的,郑么描述与計算磴場的数尽黄系时’用磁力耀的槪念也是最淸楚的门在电工半上規宜.矗吃撑二^积;S的磁力繙潼称为丽\通常用符号龙来表示U磁通的单位为麦克斯屯(簡称麦儿怛是仅仅用磁通的多少尸还不能确切地表达出磁場的强弱,必勿用单位載面积上斯洗过的磁力綫数的多少”才能說明該处的礁場大小〉因此,規定单位噩面租上寡过的磁力綫数称为磁感应靈度,或BS通密度,用字母E表示Q琳感应强度B的单位为高斯,用於式表%: B^S~ 式中B——磁感应强宦(高斯); 必——硝通(麦); S——戰面枳(平方厦米)e 应用上式于磁堀我磁歛內部』貝更如逍某裁面&中的镒通切为多少,就可計算出融感应强度占来,反之亦然。

凡是硝通都耍沿一定的路徑閉伞而成回賂。如果我們用一根鉄俸捕入上节所述的燥管踐圈卡,另外再在饌棒两端用鉄条联成閉路°那么,我們将发現在綫圈磴势相同的信况下,其1K通将比空心綫圈时大为增加,而且大都分的滋通都会集中地流入鉄棒和鉄条内'而沿鉄棒外碁他路徑閉合的磁通非常之少弋这是因也墜和a±t銚比通过空气阪力小僵多a因此我們把鋼鉄之类的金属称作鉄磁物质,作为磁通賂徑的鉄磁体叫做导磁体口 通常应用的电磁鉞,就是将経圈歩在一定形状的号做体上所构成的。衽这样的綫圈中'只耍通进很小的激礦电流J就可以产生很强的砸堀(即很多磁砸),产生强大的毀力。 磁势=磁通*磁阻 磁势二电流*线圈的匝数 C *R m*10-8=IW 磁阻的大小与磁胳的长度成;正此,而与硝路裁面积成反? 比〔图2-8),这个关系可表示为: = (2-4) 式中心一磁阻(1/亨); I——磁賂长度(厘二 米); 4——导磁系数(亨/厘来”

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压UH=24V 额定工作电压时的工作电流IH ≤1A 2 测试数据 测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数 K = F/δ7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800×F Bp = 5800×7.510000 =1.59cm=15.9mm 取dc=16 mm 4.2 确定外壳内径D2 在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ(4) 式中bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度

电磁铁计算公式

第一章常用低压电器 电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。 根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。 定义:一种能控制电能的器件。 第一节电磁式低压电器的结构和工作原理 ●低压电器:用于交流1200V、直流1500V以下电路的器件 ●高压电器:用于交流1200V、直流1500V以上电路的电器。 电力传动系统的组成: 1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。 特点:电流大 2)控制电路:由接触器线圈、继电器等电器元件组成。 特点:电流小 ●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。 一、低压电器的分类 1、按使用的系统

1)低压配电电器 用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性) 例如:低压断路器、熔断器、刀开关和转换开关等。 2)低压控制电器 用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操作频率、电气和机械寿命等) 例如:接触器、继电器、控制器及主令电器等。 2、按操作方式 1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器 3、按工作原理 1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。 感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。 执行部分:触点系统。 二、电磁机构

电磁铁电磁力计算方法

电磁铁电磁力计算方法 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 2 22322121(21)=222(21)10()4D D D D L D D l DN N d L D D m d ππππ-++-==-=?绕

根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 20.0178./mm m ρ-Ω铜的电阻率 2S mm -漆包线的截面积() 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势 23102(21) d U IN D D ρ=?+ 2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: H -磁场强度(A/m) L m -该段磁介质的长度() 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能

很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 0H -气隙处磁场强度(A/m) mm δ-气隙长度()即行程 而0 00=B H μ 其中: 0B -气隙中的磁感应强度(特斯拉) -70μπ-?导磁率,410亨/米 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+ 3电磁力的计算 根据26000 1102F B S μ=? 其中:

电磁铁设计计算书

电磁铁设计计算书 河北科技大学电气工程学院 张刚 电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电 磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。 设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公 斤,用在电压110V 直流电路上,线圈容许温升为65℃。 1) 初步设计 第一步:计算极靴直径 电磁铁的结构因数为: 0.8 2.2F K φδ = = ≈ 查空气气隙磁感应强度与结构因数的经济表格,如下图所示: 从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。 极靴的表面积为: 2 2 2500050000.852000n p S F cm B ????==?= ? ? ????? 极靴直径为: 445 2.52 3.14 n n S d cm π ?= = = 取n d =2.5cm ,则2 4.9n S cm =。磁感应强度p B 增加为2040Gs 。 第二步,计算铁芯直径 材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:

222040 4.9 1.1811000 p n cm cm B S S cm B σ??= = = 铁芯直径为: 1.52c d cm = = = 取 1.5c d cm =,则2 1.77cm S cm = 第三步,计算线圈磁动势 线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记 为: ()()()cm n NI NI NI NI δ=++ 计算中,可取: ()()()cm n NI NI a NI += 这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的 15%~30%。 因此,线圈的磁动势应为: ()()() 42 7 102040100.4109321141010.3p p B B NI a a δ μδμπ---????==?=≈--?-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为: ()1 10950.85 NI NI = =安匝 计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为: ()2 1.051150NI NI =?=安匝 第四步,计算线圈尺寸 1)推导计算线圈厚度公式 线圈的温升公式为: m P S θμ= ? 这里: θ:温升,单位℃; P :功率,单位W ; m μ:线圈的散热系数,单位2/W cm ?℃;

电磁铁设计

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁的设计计算

电磁铁的设计计算 一. 电磁铁的吸力计算 1. 曳引机的静转矩 T=[(1-φ)Q ·g ·D/(2i )]×10-3 式中:φ-------对重系数(0.4-0.5) g---------重力加速度 9.8m/s 2 i----------曳引比 Q---------额定负载 kg D--------曳引轮直径 mm T=[(1-Text1(3))×Text1(0) ×9.8×Text1(1)/(2×Text1(2))]×10-3 = Text1(16) Nm 2. 制动力矩 取安全系数S=1.75-2 取S= Text1(5) Mz=S ·T= Text1(5)×Text1(16)= Text1(6) Nm 3. 电磁铁的额定开闸力 u--------摩擦系数 0.4-0.5,取0.45; Dz------制动轮直径 Dz= Text1(8)mm F N = ) 321(103 1L L L uD L M Z Z ++? = Text1(6)×Text1(11)×103/(Text1(7)×Text1(6)×Text1(9)) = Text1(12)N L1,L2,L3所示详见右图 4. 电磁铁的过载能力 5.11=N F F F1----电磁铁的最大吸力; 5. 所需电磁铁的最大吸力 F1=1.5F N =1.5×Text1(12)= Text1(13)N 6. 电磁铁的额定功率 1021 F P == Text1(14) W 7. 电磁铁的额定工作电压,设计给定 U N =110 V 8. 额定工作电流 N N U P I == Text2(13) A 9. 导线直径的确定 (电密 J=5—6 A/mm 2 ) J= Text2(1) A/mm 2 裸线 J I d N π4'0== Text2(12) mm 绝缘后导线直径 d ’ = Text2(6) mm 10. 衔铁的直径(气隙磁密 B δ=0.9-1T )取B δ= Text2(2) T

电磁铁的吸力计算

我将有关电磁铁吸力的计算方法稍作整理,如下: 1、凡线圈通以直流电的电磁铁都称之为直流电磁铁。通常,直流电磁铁的衔铁和铁心均由软钢和工程纯铁制成。当电磁线圈接上电源时,线圈中就有了激磁电流,使电磁铁回路中产生密集的磁通。该磁通作用于衔铁,使衔铁受到电磁吸力的作用产生运动。 从实践中发现,在同样大小的气隙δ下,铁心的激磁安匝IW越大,作用于衔铁的电磁吸力Fx就越大;或者说,在同样大小的激磁安匝IW下,气隙δ越小,作用于衔铁的电磁吸力Fx就越大。通过理论分析可知,电磁吸力Fx与IW和δ之间的关系可用下式来表达: Fx=5.1×I2×(dL/dδ)(其中L—线圈的电感) (1~1) 在电磁铁未饱和的情况下,可以近似地认为线圈电感L=W2Gδ(式中Gδ—气隙的磁导)。 于是式(1~1)又可写为Fx=5.1×(IW)2×d Gδ/dδ(1~3)这就是说,作用于衔铁的电磁吸力Fx是和电磁线圈激磁安匝数IW的平方以及气隙磁 导随气隙大小而改变的变化率d Gδ/dδ成正比。 气隙磁导Gδ的大小是随磁极的形状和气隙的大小而改变的。如果气隙中的磁通Φδ为均匀分布,则气隙磁导可以表示为: Gδ=μ0×(KS/δ)(亨)(1~4) 式中:μ0—空气的磁导率,=1.25×10-8(亨/厘米); S-决定磁导和电磁吸力的衔铁面面积(厘米2); δ—气隙长度,即磁极间的距离(厘米); K—考虑到磁通能从磁极边缘扩张通过气隙的一个系数,它大于1,而且δ值越大,K值也就越大。 可以推导出:d Gδ/dδ=-μ0×(S/δ2) 于是有:F x=-5.1×{μ0 (IW)2S/δ} 式中的负号表示随着气隙δ的减小,电磁吸力Fx随之增大,若不考虑磁极边缘存在的扩散磁通的影响(K≈1),则气隙磁感强度为: B=Φ/S={(IW)Gδ}/S={(IW)μ0S}/Sδ=(IWμ0)/δ 所以电磁吸力的公式还可写为:F x=5.1B2S/μ0

电磁铁的设计计算

电磁铁的设计计算 一.电磁铁的吸力计算 1.曳引机的静转矩 T=[(1-φ)Q·g·D/(2i)]×10-3 式中:φ-------对重系数(0.4-0.5) g---------重力加速度9.8m/s2 i----------曳引比 Q---------额定负载kg D--------曳引轮直径mm T=[(1-Text1(3))×Text1(0) ×9.8×Text1(1)/(2×Text1(2))]×10-3 = Text1(16) Nm 2.制动力矩取安全系数S=1.75-2 取S= Text1(5) Mz=S·T= Text1(5)×Text1(16)= Text1(6) Nm 3.电磁铁的额定开闸力 u--------摩擦系数0.4-0.5,取0.45; Dz------制动轮直径Dz= Text1(8)mm F N = = Text1(6)×Text1(11)×103/(Text1(7)×Text1(6)×Text1(9)) = Text1(12)N L1,L2,L3所示详见右图 4.电磁铁的过载能力 F1----电磁铁的最大吸力; 5.所需电磁铁的最大吸力 F1=1.5F N =1.5×Text1(12)= Text1(13)N 6.电磁铁的额定功率 = Text1(14) W 7.电磁铁的额定工作电压,设计给定 U N =110 V 8.额定工作电流 = Text2(13) A 9.导线直径的确定(电密J=5—6 A/mm2)J= Text2(1) A/mm2 裸线= Text2(12) mm 绝缘后导线直径d’ = Text2(6) mm 10.衔铁的直径(气隙磁密Bδ=0.9-1T)取Bδ= Text2(2) T

电磁铁吸力的计算

5050、、电磁铁吸力的计算电磁铁吸力的计算 吴义声 电磁铁在工业生产中有着广泛的应用,大的如电磁铁起重机,小的如电气控制箱中的继电器,都要用到电磁铁。电磁铁吸力的大小,是电磁铁应用中必须考虑一个问题。 下面分别计算直流电磁铁和交流电磁铁对衔的吸力。 一、直流电磁铁的吸力 如图50-1所示,当面积为A 的扁平衔铁C ,受电磁铁的吸引力F 而移动距离dx 时,力F 作功为 Fdx dW = 与此同时,空气隙处的体积减小了dV Adx dV = 设空气隙内的磁感应强度为B 0,那么,空气隙中的磁场能量密度m w 是 2 021μB w m = 对于直流电磁铁而言,在衔铁被吸引的过程中,B 0保持不变,即铁心与衔铁之间空气隙的磁通密度保持不变。由于当衔铁C 移动距离dx 时,对衔铁C 作功dW ,从而使空气隙的体积减小了dV ,于是空气隙处的磁场能量减少了dEm ,即 图50-1

Adx B dV B dV w dEm m 0 2 00202121μμ=== 根据能量守恒,减少的磁场能量转变成衔铁的机械能,即 Adx B Fdx 0 2 021μ= 则电磁铁的吸引力为 A B F 0 2 021μ= (1) 用式(1)计算电磁铁吸引力时,还需注意,此式是在假定磁极端面附近磁通密度均匀分布(即B 0=C )的条件下得到的,因此,只适用于计算空气隙长度δ较小时的情况(如衔铁在吸合位置或接近吸合位置)。另外,还要指出,如使用的是蹄形电磁铁,而且空气隙处的B 0的数值又相同,则电磁铁产生的吸引力应当是式(1)所得数值的两倍。 二、交流电磁铁的吸力 若电磁铁线圈中通以交流电,它所激发的磁场是交变磁场,这时,在交流电磁铁中,磁感应强度是随时间变化的。由式(1)可知,对衔铁的吸力也是随时间而变化的。设空气隙中的磁感应中度为 B 0=B m sin ωt 式中,B m 为空气隙处的磁感应强度的最大值。由式(1)可得交流电磁铁的吸引力为 t A B F m ωμ20 2 sin 21= 令Fm A B F m m ,210 2μ=是吸引力F 的最大值,则 F=F m sin 2ωt 那么,在一个周期T 内,交流电磁铁的吸引力的平均值为 tdt F T Fdt T F T T m ω∫∫==00 2sin 11 A B F m m 0 2 4121μ== (2)

电磁铁设计

一、引言 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 电磁铁有许多优点:电磁铁磁性的有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数来控制;也可改变电阻控制电流大小来控制磁性大小;临朐昌盛磁电它的磁极可以由改变电流的方向来控制,等等。即:磁性的强弱可以改变、磁性的有无可以控制、磁极的方向可以改变,磁性可因电流的消失而消失。 电磁铁是电流磁效应(电生磁)的一个应用,与生活联系紧密,如电磁继电器、电磁起重机、磁悬浮列车、电磁流量计等。电磁铁可以分为直流电磁铁和交流电磁铁两大类型。如果按照用途来划分电磁铁,主要可分成以下五种:(1)牵引电磁铁──主要用来牵引机械装置、开启或关闭各种阀门,以执行自动控制任务。(2)起重电磁铁──用作起重装置来吊运钢锭、钢材、铁砂等铁磁性材料。(3)制动电磁铁──主要用于对电动机进行制动以达到准确停车的目的。(4)自动电器的电磁系统──如电磁继电器和接触器的电磁系统、自动开关的电磁脱扣器及操作电磁铁等。(5)其他用途的电磁铁──如磨床的电磁吸盘以及电磁振动器等。

二、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1 μ0nI 。 8、磁效率 图1-1 电磁铁工作循环图

电磁铁参数计算方式

电磁铁参数计算方式 (2012-02-17 11:00:53) 标签: 文化 为确保您所使用的螺线管式电磁铁(包括我们通常所说的各式旋转电磁铁、推拉式电磁铁、直动式电磁铁、圆管式电磁铁等能可靠的工作和达到应有的寿命,我们在选用各种螺线管式电磁铁时,应注意以下几个方面: 1、螺线管式电磁铁都是以直流电工作的,因此当工作电源为交流电时,请使用全波整流方式将交流电转换为直流电; 2、通电率(或通电持续率),是用线圈通电时间和断开时间的比率来表示: 除通电率之外,有时还注出了每一次的最长通电时间的规定,这都是为防止线圈温度过度上升,从而导致螺线管电磁铁动作失误或寿命的减短,因此务必请在低于规定的数值下使用。 3、线圈中通过的电流值和线圈的圈数的乘积算做安培匝数。各种螺线管式电磁铁的线圈数据中对应每个通电率周期都提供有参数值,螺线管式电磁铁的机械输出力的大小与其安培匝数成正比。 4、随着线圈温度的变化会引起螺线管电磁铁总体性能的变化。当线圈接通电源施加上电压后,线圈的温度会逐渐上升,线圈的电阻也就随之增加,通过线圈的电流会降低,从而,造成安培匝数的减少,螺线管电磁铁的机械输出功率也就变小。一般产品样本或目录上所列的线圈数据和特性数据,均以环境温度20℃时为依据,线圈温度和线圈电阻,安培匝数之间的关系如表1所示。 线圈温度(℃)-40 -20 0 20 40 60 80 100 120 电阻系数0.764 0.843 0.921 1 1.079 1.157 1.236 1.314 1.393 安培匝数比 1.309 1.186 1.086 1 0.927 0.864 0.809 0.761 0.718 线圈温升是按电器温升检 测试验标准检测并以下式计算 确定式中: 100% 50% 25% 10%

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁吸力的有关公式

电磁铁吸力的有关公式 这里的所有的对象都应该是铁. 1.F=B^2*S/(2*u0) 此式中,F=焦耳/厘米,B=韦伯/平方厘米,S= 平方厘米 该式改变后成为:F=S*(B/5000)^2 此式中,F=Kg,B=高斯,S= 平方厘米 当加入气隙后,F=(S*(B/5000)^2)/(1+aL) a是一个修正系数,一般是3--5,L是气隙长度. 2.F=u0*S0*(N*i)^2/8(L^2) S0:空气隙面积 m^2 N :匝数 i :电流 L :气隙长度 3.F=(B^2*S*10^7)/(8*PI) 这个式子和第一个式子是相等的. 当不存在气隙的时候,就应该是电磁铁在端面处所产生的力. 1. u0就是μ0吧? 2. 有这句话:“当加入气隙后...”,就意味着,原公式不是针对“空心线圈”?是吗? 3. 我的理解是:上述公式是应用于“气隙比较于磁链长度相对较短的铁心线圈”。 如果不是针对"空心线圈",那么线圈内部的材质是什么呢?能在公式的哪里体 现出来? 应该在B里面体现出来. 那么,我们是否可以这样做个假定,来匹配现在的情况? 假定,悬浮体是一个通电圆导线,电流I,半径R.匀强磁场B垂直通过其所在平面.那么它所受到的力应该如何计算? 由通电圆导线所形成的磁场,是否可以类比于悬浮磁体?假设电流I足够大,两者的半径R相等,从而达到两者所在平面的磁感应强度相等.

那你的意思是:上述公式是针对"空心线圈"?若是,气隙如何定义?你的这个思路非常有趣。让我慢慢来画一个图,配合这个思路。 (原文件名:思路非常有趣1.JPG) 引用图片 是这个意思吧?

差不多就是这个意思. 只不过两个线圈所产生的B不一样.而且右边线圈的半径要小于左边的线圈. 作为第一步,我们可以将题目中的“磁铁”改成“铁块”,“电磁线圈”改成“无铁心电磁线圈”。 ---------------------------------------------- 这样似乎更复杂了,因为“铁块”是被电磁线圈磁化产生磁性,才和电磁线圈产生力的,那“铁块被磁化”如何量化? 下面说说我找的资料: 库仑磁力定律: (原文件名:18864f550ffc2c29f8b9d79da17f2fa2.png) 引用图片 其中m1 m2是两个磁极的磁通量,单位韦伯,d是两磁极距离。 这个公式即我们常说的“磁力和距离的平方成反比”概念。 通过这个公式,F和L(d)的关系就出来了吧。 不过这个公式好像不常用,一般计算磁的相互作用力都等效成电流环来算,有个台湾教授说这个公式是假设磁单级子存在的情况,难道因为磁单级子不存在,因此这个公式没有实际意义?从公式的形式上看很明显和库仑电力定律是一个样的,点电荷 => 磁单级子,是这个原因吗? 别的还在看,水越来越深了,微积分、向量、相对论量子力学都提到了,越看越迷糊,现在很晕。 我要回到“浅水区”去了,从H-B学起。 “浅水区”在:“■从“烧结型铷铁硼的磁性能参数表”中学一些磁的基础知识”。 圆电流全空间磁感应强度B 的分布 https://www.doczj.com/doc/a19558313.html,/xuebao/download.ashx?filePath=~/UpLoadFolder/ OtherFile/200601/060126.pdf 直导线旁的磁感应强度和载流圆线圈轴线上磁感应强度 https://www.doczj.com/doc/a19558313.html,/teacherweb/uploadfile/tonghua/20071206105603443. ppt 安培力 https://www.doczj.com/doc/a19558313.html,/view/115015.html

设计电磁铁

设计直流电磁铁 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7 享/米 相对磁导率μr = μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1 μ0nI 。

面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏

磁通大,面积Ⅱ就大。 9、机械效率 K 1= A A A :输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 K 2= A G G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。 11、结构系数K φ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁 铁长,吸力大的电磁 铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J 这个判据。 K φ= Q Q-初始吸力(kg ) δ-气隙长度(cm ) Q 正比于电磁铁的横截面;δ正比于电磁铁的轴向长度。 结构系数可以从设计的原始数据求得。 12、电磁铁工作的过渡过程

(完整版)电磁阀的结构设计与理论计算

知识堂:电磁阀的结构设计与理论计算字体大小:大中小2010-03-29 11:16:13 来源:真空技术网 电磁阀设计要解决的主要问题是密封问题,必须通过对电磁力、弹簧力和气体压力的计算确保电磁阀断电时气路被隔断,在通电时电磁力能够克服弹簧力和气体压力迅速打开气路。同时合理设计密封结构,选用合适的材料保证电磁阀在高温(+50℃)和低温(-20℃)环境中正常工作。 1、电磁阀结构设计 要实现电磁阀密封要求,首先要保证主要密封件的结a构设计合理,加工容易保证。参考进口减压阀的工作原理,进行了如下改进设计。 1.1、阀杆的设计 进口电磁阀的密封形式是利用阀杆两端锥面,通过阀杆的移动分别密封入口端和放气口端。这种密封形式要求阀杆的加工精度很高,特别是阀杆两端锥面的同轴度要求在0.01mm以内。这两锥面用一般数控机床加工必须经过在两次定位分别加工,锥面同轴度要求很难保证,因此进口电磁阀在使用过程中性能很不稳定,使用寿命较短,而国内传统电磁阀只能应用于低压工作范围,图2为阀杆工作原理图。 在电磁阀的设计当中,通过改变阀杆结构形式,将原来阀杆两端锥面密封形式改为一侧端面密封,另一侧保持锥面密封。这样锥面的同轴度和端面的垂直度和跳动度用普通数控机床可以在一次定位中加工出来,阀杆的

设计精度就比较容易保证,同时降低了加工成本。图3为阀杆改型设计简图。 1.2、密封力的设计 在电磁阀设计中,引进气动密封力概念,即通过改变进气口两端面的横截面积S1、S2,使截面S1>S2,在通入高压气体P0时,作用在两截面的气体压力分别是: F′1=P0·S1 F′2=P0·S2 这样,当电磁阀闭合时,由于两截面均密封,在截面两端形成压力差F′1-F′2,产生气动密封。此时电磁阀闭合时的密封力由气体密封力和弹簧力共同提供,既保证了电磁阀闭合时所需要的密封力,同时可以降低了弹簧的设计强度,延长弹簧的使用寿命。 3.2、电磁阀理论计算 3.2.1、电磁力计算 电磁铁设计形式为Ⅲ型电磁铁,具体外形见图4。 在该磁系统的磁路中,由于工作气隙较小,故虽然存在漏磁通,但相对于主磁通来说可以忽略,故由《平衡力电磁铁设计计算及实验研究》中电

电磁铁设计

直流电磁铁设计 共 26 页 编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B=S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、 磁通Φ=M R NI

磁阻R M =s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使 Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 K 1=0A A A :输出的有效功

直流电磁铁设计

直流电磁铁设计共26 页 编写:

校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 ?(TB=) 1、均匀磁场S2、磁势F=NI,电流和匝数的乘积(A)NI(A/m),H=建立了电流和磁场的关系。 3、磁场强度L该公式适用于粗细均匀的磁路 B建立了磁场强度和磁感应强度(磁通密度)的关系。 4、磁导率=? H?-7 = 10相对磁导率享/米×=4 π??r0?0NIΦ5、磁

通=R M l =R磁阻M s这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。. F,磁感应强度与力的关系。6、磁感应强度的定义式B=qv7、真空中无限长螺线管B=μnI。对于长螺线管,端面处的01 nI。B=μ0ψ 2 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作

点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。. 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A =K1A0A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G = K2A0G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正 确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数K φ每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K 这个判据。J. Q =Kφ Q-初始吸力(kg) δ-气隙长度(cm)

电磁铁设计

精心整理 直流电磁铁设计 共26页 编写: 1234、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10 -7 享/米相对磁导率μr = μμ 5、 磁通Φ= M R NI

磁阻R M = s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7 8(2)9、机械效率 K 1= 0A A A :输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数

G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。 11 K Q 12 一部分用来建立磁场,当电流达到稳定值后,磁场的能量不再增加,电磁铁从电源吸收的能量全部消耗于线圈子的发热上,磁场的能量用来产生吸力和作功。 13、工作制 (1)热平衡公式 热平衡公式:Pdt=CGdτ+μsτdt

式中:Pdt供给以热体的功率和时间 CGdτ-提高电磁铁本身温度的热量。C-发热体比热 G-发热体质量dτ-在dt时间内电磁铁较以前升高的温度。 μsτdt-发散到周围介质中的热量。μ-散热系数。S-散热面积。τ-电磁铁超过周围介质的温度。 (2 升。 (3 度达不到温升τy。工作停止后,产品的温度又降到周围介质温度。短期工作制CGdτ(产品本身热容)是主要的方面。 短期工作制电流密度按13~30A/mm2。 重复短期工作制:产品工作和停止交替进行,工作时产品温度达不到温升τy,停止时产品降不到周围介质温度。

相关主题
文本预览
相关文档 最新文档