当前位置:文档之家› 阻容降压原理和计算公式

阻容降压原理和计算公式

阻容降压原理和计算公式
阻容降压原理和计算公式

阻容降压原理和计算公式

阻容降压原理和计算公式

这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)

I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C

=0.44*220*2*3.14*50*C=30000C

=30000*0.000001=0.03A=30mA

f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆.

如果采用全波整流可得到双倍的电流(平均值)为:

I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C

=0.89*220*2*3.14*50*C=60000C

=60000*0.000001=0.06A=60mA

一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。

使用这种电路时,需要注意以下事项:

1、未和220V交流高压隔离,请注意安全,严防触电!

2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。

3、注意齐纳管功耗,严禁齐纳管断开运行。

电容降压式电源将交流式电转换为低压直流

电容降压原理

电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF 电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。

一、电路原理

电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

二、器件选择

1. 电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流 Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Id max小于Ic-Io时易造成稳压管烧毁.

2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

三、设计举例

图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc 为:

Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K

流过电容器C1的充电电流(Ic)为:

Ic = U / Xc = 220 / 9.65 = 22mA。

通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。

常规经验公式:220伏50HZ 1UF通过70毫安电流

降压电容器的容量计算

C=I/(314×V),I—负载所需的电流,V—交流电源电压,

对于220V电压来说C=I/(314×220)=14.5I(mA)

基本原理:

电容降压主要是用在直流稳压电源电路里。直流稳压电源电路的大致结构是:市电——变压(降压)——整流——滤波——稳压——直流输出

第一个环节,也就是变压,主要是降压,一般使用变压器来完成。但是变压器体积较大,成本也较高,如果电路简单,例如声光控制开关,那么加一个变压器就显得大材小用。这个时候用一个电容,就可以解决降压的问题,简化电路,节约成本。基本电路如图1:

图1半波整流

市电经过C1降压后到D2,D2完成半波整流,C2对整流后的脉动直流滤波,D3稳压,输出稳定的直流电压给负载。R1是电源关闭后C1的电荷泄放电阻。D1是为了在市电的负半周给C1提供充放电通路。因为要保证C1在整个交流电周期内都是工作的。

如果将C1后面的电路都看作负载的话,那么相当于C1和一个电阻串联在市电通路里,电容和电阻在交流下都是有阻抗的,串联分压,自然负载上的电压就小了。这样理解也对。但是更准确的理解应该是:C1起到了限流的作用,它决定了电路中的最大电流,当负载一定的情况下,C1也就决定了负载上可以得到的电压,最终起到了降压的作用。

例如:图1中如果负载短路,220V交流电全部加在C1上,电路中的电流等于C 1的充放电电流。

这个电流也就是电路中的最大电流。这里取得都是有效值。

当加上负载后,如果输出直流电压比较低(稳压管决定),则可以近似认为全部电压都加在电容上。由于是半波整流,所以电容C1后面的电路只能得到C1半个周期的充放电电流,也就是有效值的一半,大约34.5mA左右。由于负载上有电压,所以实际电流要小一点,大约30mA。当负载需要的电流不超过30mA时,电路就可以正常工作,电容也就起到了类似变压器的作用——降压。

对于桥式整流,C1后面的电路能得到C1整个周期的充放电电流,大约60mA。

图2 全波整流

当输出直流电压较小时(这是电容降压电路主要的应用领域),可以近似认为全部交流的电压加在电容上。计算过程如基本原理所述,整流电路是半波整流时,1UF的电容最大可以提供约30mA的电流,整流电路是桥式整流时,1UF的电容最大可以提供约60mA的电流。

有的时候电容降压用在纯交流电路中,由电容降压得到一个低于220V的交流电压。根据负载的电阻和所需电流的大小,由

即可推出Zc,进而推出电容的容值。

注意事项:

(1)电容降压是一种低成本,不安全的应用,没有和220V隔离,电路应该放在一般接触不到的地方;

(2)不能应用在大功率场合,不能用在负载变化或者不确定的场合;

(3)降压电容一般要接在火线上(纯交流电路除外),电路的零,火线不能接反,这一点可以用三脚插头来强制,或者标注清楚;

(4)降压电容必须是无极性电容,耐压值要大于400V(常用金属膜CBB);

(5)主要根据负载的电流大小和交流电频率来选择电容;

(6)需要直流输出,稳压管一定要有;

(7)需要直流输出,建议用半波整流,桥式整流后是需地,不安全;

(8)需要直流输出,负载一定要固定。

电容降压的5V直流稳压电源

下面这个电源,最大可以提供约55mA电流:

下面这个电源,最大可以提供约120mA电流:

对图一中8050和一个47UF电容以及两个电阻构成的电路的相位分析,其作用为电流滞后于电压,所以构成有源电感,其作用相当于一个电感L,起滤波作用.当然,三极管的放大倍数越大,等效电感越大,滤波作用越好.

和其他电容降压电路相比,这个电路的巧妙之处在于利用有源电感滤波,纹波应该很小

关于C4的电压

C4上承受的电压可以这样估算(以第一个电路为例):

流过T2(8050)的电流是60mA,这是由1uF的降压电容决定的,无论有无负载,也无论负载电流大小,都是恒定不变的。因此,R6上的电压是0.6V,假定8050的β值100,则基极电流是0.6mA,R5上的压降是0.6*4.7=2.8V。由此算出C4上的电压为:5+0.6+0.7+2.8=9.1V(其中0.7是8050的B-E结电压)。

由此可见,T2及其附属电路呈现的静态电阻很低,等于(9.1-5)/0.06=68欧姆,而对于100Hz的纹波而言,它呈现出的动态阻抗要高得多,几乎可以看成等于R7,与TL431很低的动态电阻相配合,可以获得很好的滤波效果。

在刚开电源时,由于C3上的电压尚未建立,T2瞬时相当于开路,C4上的电压有一个短暂的上冲,实际观测到的上冲值约15V,很快便降至稳定值8-9V左右。

C3上的电压很低,不必考虑耐压问题。

R1是为了抑制开机时可能出现的冲击电流,稳态时的功耗略高于1/4W,但考虑到瞬时的冲击电流,功率应该取大一些。

这个电路是实际使用过的

这个电路是实际使用过的。C4上的电压实测只有8V左右,开机时的冲击电压也只有15V左右,因此,T2完全没有必要改用高耐压的大功率管。

oldzhang认为T2是有源电感的看法很对,这个电路就是想利用它具有低的静态电阻和高的动态阻抗来抑制纹波。用示波器实际测量,输出端几乎观察不到纹波。(示波器拨到交流5mV档,探头拨到X1)

为了考验电路的可靠性,我曾经故意将电源插头在插座上反复多次胡乱插拔,没有发生问题。

上面有人说到输出电压提高到8V的问题,不知道是否是打算在后面再加一个7805(78L05)?这个电路的目的,就是为了不用7805而达到与7805相似的稳压效果和纹波效果。实际试验的结果证明这个目的是达到了的。

附带说明一下,用示波器测量时,示波器的地线必须与大地绝缘,否则,桥式整流就变成半波整流了。

最后再提醒一下:使用这种电路,千万要注意安全。

这种电源,一般适合于用在绝缘的全密闭的小型电子设备中。

电容降压电路的电流可以这样近似计算:

1uF电容在市电网中的电流是:220*2πfC=69mA

上式是按有效值算的,但整流滤波成直流后,应该取平均值。平均值与有效值的换算比率是SQR(2)*2/π=0.9,所以69*0.9=62MA。

实际应用时要留一定余量,所以我只说55mA。

关于ljw1128的第1个问题。加电后的第一个周期(由于是全波整流,以10ms为一个周期),C4与C1构成的电容分压比是1/101,因此,交流峰值过后,C4上分得的电压约3V。在第二个周期的交流峰值时,C4在3V的基础上再累加3V。因此,加电后的最初若干个周期里,C4上的电压大致是以3V/10ms的速率上升的。与此同时,C3通过R3、R4、R5充电,而且,随着C4电压的上升,C3充电的速率越来越快。当C3电压升到0.65V左右时,T2开始导通,C4电压的上升势头受到遏制;当T2电流达到60mA左右(这是1uF降压电容的限流值),C4的电压就不会再上升了。这个过程的准确计算比较困难,粗略估算,这个过程大约经历5-6个周期,也就是50-60ms。加电后C4上的电压上冲是这样形成的,不是电源插头多次抖动所产生的。

第2个图中的T3是起扩流作用。由于这个电路电流较大,120mA,当负载空载时,全部电流要由TL431承担,超过了TL431的额定值,所以用了一个8550来扩展电流。按照图中的接法,TL431只需承担8550的基极电流和R5的电流,大部分电流由T3(8550)承担。T3的集电极所接的电阻R9(33欧姆/1W)是为了降低T3的功耗。120mA电流流过T3时,R9上的压降为4V,T3的C-E电压仅有1V,T3的发热大大减少。

第2张图中的R6确实不起多大作用,可以短接。

但R5的作用并不是限流。TL431需要有一个最低电流才能起并联稳压作用。根据资料,这个电流值大约是0.4mA。如果没有R5(断开),这个电流流入T3基极,将会放大β倍,如果T3的β=100,就是40mA。这就是说,由TL431与8550组合而成的并联稳压元件本身需要占用至少40mA的电流。这将使负载可用的电流减少。有了R5(1K),0.4mA电流产生的压降是0.4V,T3尚不足以导通,避免了这个最低电流值被T3放大。

由此也可知,R5增大到2K是不适当的。

阻容降压原理图及电路图

阻容降压原理及电路 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁. 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏 V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。

阻容降压原理和计算公式

阻容降压原理和计算公式 通常降压电容C1的容量C与负载电流Io的关系可近似认为: C=14.5 I,其中C的容量单位是μF,Io的单位是A。 ---------------------------------------------------------------------------------------------------------------------- 1μF,在交流输入为220V/50Hz容抗Xc为: Xc=1 /(2 πf C) = 1/(2*3.14*50*1*10-6) = 3184.7Ω 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 3184.7 = 69mA。 ---------------------------------------------------------------------------------------------------------------------- 一、能提供的电流 采用半波整流时,每微法电容可得到电流(平均值)为:30mA 如果采用全波整流可得到双倍的电流(平均值)为:60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。

二、电容降压式电源将交流式电转换为低压直流 1.电容降压原理电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz 的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 2.电路原理电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。 在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

阻容降压原理及计算公式

阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。 采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(A V)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位(F)法拉;V为电源电压单位伏V;Zc=1/(2*Pi*f*C)为阻抗,阻值单位欧姆。 如果采用全波整流可得到双倍的电流(平均值)为: I(A V)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W 的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上

阻容降压原理和计算公式修订稿

阻容降压原理和计算公 式 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

阻容降压原理和计算公式 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=*V/Zc=*220*2*Pi*f*C ?=*220*2**50*C=30000C ?=30000*==30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=*V/Zc=*220*2*Pi*f*C ?=*220*2**50*C=60000C ?=60000*==60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。

电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz 的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理

阻容降压原理和计算公式及LED照明应用原理基础

阻容降压原理和计算公式及LED照明应用原理基础 作者:113007060提交日期:2010-5-2 17:52:00 | 分类:照明技术应用 | 访问量:234 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏 V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号

频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF 的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1. 电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流 Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁. 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

电容工作原理

电容工作原理 电容串联可以隔直通交,并联可以滤波。 电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。滤波电路是把脉冲通到地去了,不是通到输出端。 正因为通交流,才能把交流成分通向地,保留直流成分. 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 其实主要是充放电的工作原理。其实电容就相当于 一个水库,让过来的有波动的水变的很平稳 电解电容的作用有滤波,一般用在整流桥的后面。 你可以看一下电容是并连还是串连在回路里,并联的话是率除高频,串联的话是率除低频。还有降压电容。还有隔直的作用,一般做保护用! 电容串联和并联在电路中各有什么作用? 电容的作用是储存、释放电荷,可起到隔直通交、滤波、振荡作用 电容在电路中:如串联使用一般作为交流信号隔离,如音频功放、视频放大器等 如并联使用一般作为滤波,如电源、信号处理电路中噪声去除等 如与电感或其他芯片并联可组成振荡回路,如无线信号发射、接收、调制、解调等 电容并联可增大电容量,串联减小。比如手头没有大电容,只有小的,就可以并起来用,反之,没有小的就可以用大的串起来用。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。

LED驱动电源阻容降压原理及稳压电源设计

LED驱动电源阻容降压原理及稳压电源设计LED驱动电源电容降压电源的特点 概述 电子工程师总是在不断追求减小设备体积,优化设计,以期最大限度地降低设备成本。其中,减小作为辅助电源的直流稳压电源电路部分的体积,往往是最难解决的问题之一。 普通的线性直流稳压电源电路效率比较低,电源的变压器体积大,重量重,成本较高。 开关电源电路结构较复杂,成本高,电源纹波大,RFI和EMI干扰是难以解决 的。 下文介绍的是一种新颖的电容降压型直流稳压电源电路。 这种电路无电源变压器,结构非常简单,具体有: 体积小、重量轻、成本低廉、动态响应快、稳定可靠、高效(可达90%以上)等特点。 电容降压原理当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板 上的电荷,极板间的电场都是时间的函数。也就是说: 电容器上电压电流的有效值和幅值同样遵循欧姆定律。 即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic 。容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合 适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。 电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。 原理方框图

电路由降压电容,限流,整流滤波和稳压分流等电路组成。 1. 降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED P OLYESTER FILM CAP ACITOR) 2. 限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此 时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。 3. 整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。 4. 稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。 四、设计势实例 规格要求:输出DC电压12V, DC电流300mA输入电源220V AC/50HZ市电。 )降压电容C1的选择:1 a. C1容值的选择: 电容值取决于负载电流,负载电流I确定后,可得:C1?1/2 JI fU 式中交流电源U值计算时取负10% 即:I=300mA,U=220V*(-10%)=198V f=50H Z,

阻容降压原理设计详解

阻容降压原理设计详解 一、概述 普通的线性直流稳压电源电路效率比较低,电源的变压器体积大,重量重,成本较高。 开关电源电路结构较复杂,成本高,电源纹波大,RFI和EMI干扰是难以解决的。 下文介绍的是一种新颖的电容降压型直流稳压电源电路。 这种电路无电源变压器,结构非常简单,具体有:体积小、重量轻、成本低廉、动态响应快、稳定可靠、高效(可达90%以上)等特点。 二、电容降压原理 当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。 即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。 电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。 三、原理方框图 电路由降压电容,限流,整流滤波和稳压分流等电路组成。 1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。 2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。 3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。 4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。 四、设计势实例 1.桥式全波整流稳压电路:

阻容降压的原理及计算公式

阻容降压原理和计算公式 一、能提供的电流 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。 采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 0.44:半波整流的平均值系数 F:电源频率单位HZ; C:电容容值单位F法拉; V:电源电压单位伏V; Zc=2*Pi*f*C:阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 二、电容降压式电源将交流式电转换为低压直流 电容降压原理 1.电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF

实用可靠地阻容降压电路分析

以前在论坛上看到阻容降压电路,很多人都说不稳定,不可靠,比较危险,但是仔细想想声控开关、触摸开关、定时插座等等那么小的东西,如果不采用阻容降压的方式,怎么取电呢?那么多大量实际应用,足以说明阻容降压电路可以设计的稳定可靠。当然如果是电力行业、工业领域等要求比较严格的场合,那就另当别论了。 先转载一下阻容降压电路的原理吧: 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理

阻容降压原理和计算公式

阻容降压原理和计算公 式 -CAL-FENGHAI.-(YICAI)-Company One1

阻容降压原理和计算公式 阻容降压原理和计算公式,电容降压式电源将交流式电转换为低压直阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于 所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电 流(平均值)为:(国际标准单位) I(AV)=*V/Zc=*220*2*Pi*f*C =*220*2**50*C=30000C =30000*=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏 V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=*V/Zc=*220*2*Pi*f*C =*220*2**50*C=60000C =60000*=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的 更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大 工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压

几个实用电路阻容降压原理

几个实用电路阻容降压原理 将交流市电转换为低压直流的常规方法是采用变压器 降压后再整流滤波,当受体积和成本等因素的限制时,最简单 实用的方法就是采用电容降压式电源 采用电容降压时应注意以下几点 根据负载的电流大小和交流电的工作频率选取适当的电容 而不是依据负载的电压和功率 .而且限流电容必须采用无极性电容,绝对不能采用电解电容 电容的耐压须在400V 以上.最理想的电容为铁壳油浸电容 电容降压不能用于大功率条件,因为不安全. 4 电容降压不适合动态负载条件 5 同样,电容降压不适合容性和感性负载 当需要直流工作时,尽量采用半波整流.不建议采用桥式整流. 而且要满足恒定负载的条件

电路 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳 稳压管。所能提供的电流大小正比于限流电容容量。采用半 波整流时,每微法电容可得到电流(平均值)为:国际标 准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安

全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V 交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V ),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电路 最简单的电容降压直流供电电路及其等效电路如图 1 ,C1 为降压电容,一般为0.33~3.3uF 。假设C1=2uF ,其容抗 XCL=1/(2PI*fC1)=1592 。由于整流管的导通电阻只有几欧姆,稳压管VS 的动态电阻为10 欧姆左右,限流电阻R1 及负载电阻RL 一般为100~200 ,而滤波电容一般为

阻容降压原理和计算公式

阻容降压原理和计算公式 阻容降压原理和计算公式,电容降压式电源将交流式电转换为低压直阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于 所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电 流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的 更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大

工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压 加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产 生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这 个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生 的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到 220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为 8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联 接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为 70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负 载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时 ,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给 C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2 的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

电容降压电路原理详解

电容降压电路原理详解和案例 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为:

Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 电容降压电源原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(A V)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 如果采用全波整流可得到双倍的电流(平均值)为: I(A V)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。 图一为一个实际的采用电容降压的LED驱动电路﹕请注意﹐大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管﹐建议连接上﹐因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间( 如雷电﹑大用电设备起动等)有效地将突变电流泄放﹐从而保护二级关和其它晶体管﹐它们的响应时间一般在微毫秒级。

电容加压原理

注意:只有交流电路中才能使用电容降压

电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最 大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。

阻容分压原理详解

二、电容降压原理 当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。 即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。 电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。 三、原理方框图 电路由降压电容,限流,整流滤波和稳压分流等电路组成。 1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。 2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。 3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。 4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。 四、设计势实例 1.桥式全波整流稳压电路:

规格要求:输出DC电压12V,DC电流300mA;输入电源220V AC/50HZ 市电。 1)降压电容C1的选择: a. C1容值的选择: 电容值取决于负载电流,负载电流I确定后,可得: C1≥1/2лfU 式中交流电源U值计算时取负10%,即:I=300mA,U=220V*(-10%) =198V,f=50HZ, C1≥0.3(2*3.14156*50*198)=4.82uF) 电容值只可取大,不可取小,本例电容C1取值5uF。 b. 耐压值的选择: 要考虑电源正10%的情况,如本例用市电,C1要选择250V AC的金属膜电容。 c. 耐瞬间冲击电流的选择: 金属膜电容的内阻是很低的,允许电容在吞吐能量时,有大的电流流过,这个电流的大小取决于电容值和它的du/dt值,此值由电容的结构,金属膜的类型,引出线的方式决定的。 du/dt值与电容的耐压值有关,耐压越高,du/dt值越大,不同厂家产品du/dt值也有很大的差别,如耐压为250VAC电容值为5uF的金属膜电容的 du/dt值一般在3-30之间选择。 在本例中:C1=5uF,du/dt值取3,则C1耐瞬间冲击电流值为: I=Cdu/dt=5*3=15(A) 2)限流电阻R1的选择: 先求C1的容抗:Xc=1/2лfC=1/(2*3.1416*50*0.000005)=636.36Ω 则复阻抗:|Z|=638.3Ω(R1取值为47Ω) 求得电流有效值为:I=U/|Z|=220/638.3344.7mA 电阻实际承受的有效电压值:UR=344.7mA*47Ω =16.2V 求出电阻实际承受的功率:PR=16.2V*344.7mA=5.58W(R1选用线绕电阻器,功率取7.5W) 3)稳压分流电路: 稳压管ZD1和T1管E-B结,R3组成稳压电路,T1,R2组成分流电路。 ZD1选用11.3V的稳压管;R3阻值取180Ω1/6W;T1管响应负载电流的大小变化,负载电流可在0-300mA内变化,T1选用2W的PNP管,电流放大倍数≥200;R2用作负载电流较小时,分担一部分T1管的功率,R2取值30Ω/3W。

电容降压式电源原理及电路

电容降压式电源原理及电路 电容降压式电源 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极

管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。 请看: 电容降压式电源电路的计算与元件选择 电容降压式电源电路又称恒流电源电路,由于省去了笨重的交流电源变压器,体

相关主题
文本预览
相关文档 最新文档