当前位置:文档之家› CFB锅炉冷渣器的分类与选型

CFB锅炉冷渣器的分类与选型

CFB锅炉冷渣器的分类与选型
CFB锅炉冷渣器的分类与选型

文章编号:C N23-1249(2004)02-0030-02

CFB锅炉冷渣器的分类与选型

谭云松,刘海峰

(哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046)

摘 要:根据近几年来循环流化床锅炉冷渣器的应用情况,着重从冷渣器的分类与选型原则2个方面地行阐述,以期帮助用户选择出合理的炉底渣排放和冷却设备。

关键词:循环流化床;锅炉;冷渣器;分类;选型

中图分类号:TK229.66 文献标识码:B

Type and Selection of CFB Boiler Ash Cooler

T AN Yun-song,LIU Hai-feng

(Harbin Boiler C o.,Ltd.,Harbin150046,China)

Abstract:Based on the application of CF B boiler ash cooler in resent years,it was introduced from type and selection rule aspects to help users to select the equipments for slay tappying and cooling.

K eyw ords:CF B boiler;boiler;ash cooler;typical;type selection

0 前 言

在流化床锅炉的发展过程中,由于燃料筛分的扬析所造成的燃烧与脱硫效率低,已引起国内外科技人员的广泛重视,鼓泡床的燃尽措施层出不穷,循环流化床的循环方式不断推陈出新,但大颗粒的沉积形成的炉底渣(俗称冷渣)带来流化质量的恶化,燃烧与脱硫效率的降低,结焦等问题仍未彻底解决,它是循环流化床锅炉大型化过程中必须解决的另一新的课题。炉底渣的排放与冷却装置已成为循环流化床锅炉不可分割的组成部分。

1 冷渣器的分类

由冷渣机的发展历史可以看出,冷渣器的种类很多。下面按不同分类方法对其进行分类,并评价其优缺点。1.1 湿法冷渣方式

将热渣直接放入水中冷却(如冷渣池),在锅炉底渣排渣管的下方,设置一大的密封水池,将炉底渣直接排入池内进行冷却,这种冷渣方式的冷却效果好,但热渣经水浸泡后渣的反应活性被破坏,降低了渣的综合利用价值,同时存在水的2次污染,目前使用这种冷却方式的企业不多。

1.2 干法冷渣方式

热渣在冷却过程中不与水直接接触。这样,渣的反应活性不被破坏,也没有水的2次污染,有利于环境保护和废物的结合利用,现在各企业均是使用这类冷渣设备。它的种类很多,分述如下: 1.2.1 搁管式冷渣器:管子固定,热渣在管内或管间流动,有单管和多管之分,前者是热渣在管内流动,被管壳夹套中的水进行冷却:后者是热渣在管间流动,被管内流动的水所冷却。螺旋式冷渣器有单螺旋和双螺旋2种。热渣在螺旋叶片间被

第2期2004年5月

锅 炉 制 造

BOI LER M ANUFACT URI NG

N o.2

M ay.2004

推进,被转动轴及外壳夹层中的水进行冷却。1.2.2 振动式冷渣器:热渣在被振动推进过程中,一方面被振动槽中的水夹层所冷却,同时热渣敞开于大气,被自然冷却。

1.2.3 滚筒式冷渣器:有风冷及风水冷2种,前者是热渣,送入具有一定倾角的旋转装备内运动的过程中被强制送入的风所冷却,为了提高冷却效率,有的在热渣入口处加上一块螺旋板,以增加热渣与风及水冷壁的接触。

1.2.4 滚笛螺旋式:该机是把滚筒和螺旋2种方式综合在一起,螺旋叶片改成螺旋状水冷壁,增加了受热面积,增加了热渣在滚笛与螺旋片的接触方式,把螺旋推进物料变成物料在筒体内翻滚并与受热面接触,以达到更好的换热效果,同时减少了受热面的磨损。

1.2.5 移动床式冷渣器:热渣不是依靠支撑物的运动而流动,而是依靠重力或其它力的推动,与冷却元件作相对移动,且相互接触而被冷却。

1.2.6 流化床式冷渣器:这类装置品种较多,但基本的形式有彭泡床式和密孔板式2种。渣在流化床内翻滚与空气接触,同时也与流化床内的埋管碰撞而被冷却。

2 按传热方式分类

(1)直接传热:热渣与冷却介质(空气或水)直接接触的冷渣器均属此类。由于直接接触比间接接触的传热效果好,有条件时应尽可能选用直接接触传热。

(2)间接传热:热渣与冷却介质(空气或水)不直接接触,通常用水与热渣间接接触,传热作为冷渣的主要冷却手段。

3 冷渣器的选择

为了选择符合自己需要的冷渣器首先应根据自身情况确定选择冷渣器的原则,我们主要应遵循下述基本原则和要求冷渣器具有传热系数高和连续冷却的功能,能及时连续有效地把排放出来的炉底渣迅速冷却到安全温度以下。(1)运行故障少,检修工作量少,做到长期稳定、安全、可靠地运行。(2)能有效地回收炉底渣的余热,提高锅炉的热效率。(3)能改善流化质量,改善燃烧工况,提高锅炉燃烧效率。(4)尽可能减少环境污染,提高灰渣的利用率。(5)成本低、体积小、运行费用少。(6)便于实现自动化、智能化和大型化。

目前国内循环流化床锅炉大多选用风水联合冷渣器。它共分为1个分室,第1个分室采用气力选择性冷却,在气力冷却灰渣的过程中还可以把较细的底渣(含未燃尽的颗粒,未反应的石灰石颗粒等)重新送回到燃烧室;第二、第三分室内布置埋管受热面与灰渣进行热交换,可以把渣冷却到150℃以下,然后排至除渣系统。每个分室均有独立的布风板和风箱,布风板为钢板式结构,在其上面布置有大直径的钟罩式风帽。同时布风板上敷设有200mm厚的耐磨耐火材料,并且微倾斜布置有利于渣的定向流动,每个分室均布置有底部排渣等,在第3个分室还布置有溢流灰管。3个分室的配风来自于总风机串联的冷渣器流化风机。冷渣器埋管受热面内的工质为除盐水,来自回热系统,完成换热丘送至回热系统中。根据锅炉排渣量的多少及冷却情况,可适当调整进入冷渣器的冷却水量。由于水温很低(约为30℃),可以获得较大的传热温差,因此灰渣冷却效果好。因为冷渣器的3个分室均处于鼓泡床状态,流化速度很低(≤1mΠs),同时埋管管束上还焊有防磨鳍片,因此管束不容易磨损,从而保证除渣系统工作的安全性。

4 结束语

目前运行循环流化床锅炉冷渣器普遍存在运行不稳定、易磨损等缺点,这主要与运行人员对各类冷渣器的特性了解不透有很大的关系,当然设备本身的质量及结构的合理性更为重要,所以如何设计出更加合理和优质的冷渣器是一个不容忽视的问题,如何指导用户更加合理的了解冷渣器的特性并合理的运行操作成为机组锅炉安全运行、有效提高运行效率的关键,随着专业技术人员的深入研究和经验积累一定会使冷渣器得到更好的应用。(编 辑:刘宝珍)

?

1

3

?

第2期谭云松,等:循环流化床锅炉冷渣器的分类与选型

循环流化床锅炉冷渣器运行和改造

循环流化床锅炉冷渣器运行和改造 发表时间:2017-09-06T10:39:58.820Z 来源:《电力设备》2017年第14期作者:刘佳明 [导读] 。冷渣器内部采用多通道射流床结构,采用阶梯密封板型布风板并辅以吹扫结构、悬空隔板技术、分别排渣技术等措施,实际应用情况良好。 (阜新金山煤矸石热电有限公司辽宁省阜新市 123000) 摘要:冷渣器是循环流化床锅炉的重要辅机之一,其作用是采用水或空气将循环流化床锅炉排出的900e左右的高温灰渣冷却至200e以下,回收一部分灰渣的物理显热,提高锅炉效率,它的正常运行直接影响到循环流化床锅炉的安全可靠和经济连续运行,而冷渣器能否维持正常排渣与冷渣器结构、设计有关外,也与运行人员的操作水平有关,故循环流化床锅炉的排渣系统运行不正常,故障率高是导致循环流化床锅炉不能带满负荷运行或被迫停炉的直接原因之一对大型循环流化床锅炉冷渣器存在流化风量不足、渣无法流化、冷渣器内结渣、排渣口螺旋给料阀卡涩等问题进行了分析,有针对性地对全风冷冷渣器进行了重新设计和改造。冷渣器内部采用多通道射流床结构,采用阶梯密封板型布风板并辅以吹扫结构、悬空隔板技术、分别排渣技术等措施,实际应用情况良好。 关键词:循环流化床锅炉;排渣系统;冷渣器;调整;改造 前言 近年来循环流化床锅炉因其燃料适应性广、燃烧效率、脱硫效率高等优点得到了迅速的发展,但是循环流化床锅炉普遍存在着受热面磨损、进料难和出渣难的问题,特别是循环流化床锅炉的排渣问题直接影响着锅炉的安全稳定运行[1]。 1.原冷渣器存在的问题 冷渣器流化风量不足,各风室的渣无法流化起来,尤其能翻过隔墙的渣量非常少。由于设计的风机压头不足,进入冷渣器的风量较小,在炉膛渣量较多放下来时,各个风室的渣很难流化起来,尤其三、四风室之间的隔墙更难翻过去,因而冷渣器内的渣得不到充分的冷却,冷却水温几乎没有变化,严重时引起冷渣器内结渣;同时各个风室上下部温度相差较大,上部有时达到300℃,而下部有时仅仅只有30℃。冷渣器大渣排渣口螺旋给料阀容易发生卡涩。原设计的大渣排渣口采用的是螺旋给料机,出口的给料阀在出渣时很容易卡涩,所配电机多次被烧坏。在电机烧坏时引起大渣堆积,进而使冷渣器内结渣。 炉底输渣刮板机故障频繁。设计在冷渣器底部有一输渣刮板机,用来把渣输送到渣仓里面,但由于渣量大,颗粒粗,刮板机经常出现电机过载现象,使得输渣机频频跳闸,同时也使得输渣系统运行时冒灰特别严重,使得现场烟雾迷漫,环境卫生恶劣。冷渣器对大渣的排放能力较弱。由于煤种变化及碎煤系统的问题,入炉煤的颗粒较大,且煤中石头较多,使得排入冷渣器的渣粒相当一部分大于10 mm,在这种情况下,进入冷渣器的颗粒很难实现流化,也使得冷渣器内较容易堵塞结渣[2]。 2.全风冷冷渣器的改造 2.1 改造设计思想 针对存在的问题,改造设计时要求冷渣器具有传热系数高和连续冷却的功能,能及时连续有效地把排放出来的炉底渣迅速冷却到安全温度下;并且希望能达到以下目的:运行故障少,检修工作量少,做到长期稳定、安全、可靠地运行;能有效地回收炉渣的余热,提高锅炉的热效率;能改善流化质量,改善燃烧工况,提高锅炉燃烧效率;尽可能减少环境污染,提高灰渣的利用率;成本低、体积小、运行费用少;便于实现自动化、智能化和大型化。 2.2 改造遵循的原理 以宽筛分颗粒流态化时的流体动力特性为改造设计依据。从直观上看,密相气体流化床与处于沸腾状态的液体非常相像,在许多方面具有液体一样的特性。当4个分室床体通过悬空隔板在水平方向连通后,根据粒位均一化原理,颗粒从料位较高的第一床层逐步流向料位较低的床层,另外对各分室采用不同的风速,在分室之间造成微压差,推动床料由第一床层向下一床层流动,最终从溢流口自由排出床外;而对于难以流化的较大颗粒则被高压流化风吹向排大渣口顺利排出,从而实现了冷渣器的顺利排渣[3]。 2.3 改造采用的技术特点 改造采用一种全新的思路,与原来锅炉厂家设计有很大的区别。把新改造的冷渣器简称为多通道射流床全风冷冷渣器。 2.3.1 主要特点 冷渣器内部采用多通道射流床结构。渣室用隔板分开,风室分隔为若干个独立的风箱,每个风箱有单独的进风管和调节挡板,使冷渣器内部形成若干个独立的流化床结构;对于各射流床的配风,在保证料层良好流化的基础上采用不均匀布风,使各分床之间存在一定的风速差,从而实现渣由第一分床向下一分床的顺利流动[4]。 2.3.2 布风板的改造 摒弃了传统的风帽式布风板,采用阶梯密孔板型布风板,使布风更加均匀,无死角;无风帽的布风板结构减少了因风帽磨损、烧坏带来的停运次数,提高了设备的可靠性;阶梯型密孔布风板在布置时略向出渣口方向倾斜,减少渣在各床层间流动时的阻力,保证大渣的顺利排放。 2.3.3 辅助吹扫结构的考虑 在阶梯型密孔布风板的前端,设计辅助吹扫结构,对于沉积在布风板上的,难以流化的较大物料,采用高压射流风进行定期吹扫,使其到达大渣排放口,顺利排出。采用辅助吹扫技术,有效解决大渣沉积的难题,减少了冷渣器内部结焦的可能,适应锅炉燃煤品质差、入炉煤颗粒度不均匀的状况。 2.3.4 研究采用悬空隔板技术 在阶梯型布风板上布置悬空分室隔板,把冷渣器内部分成若干个独立的流化床,保证了颗粒从一个床层顺利流向另一个床层,同时为排大渣提供了通道。根据流化床整个床层温度分布均匀的性质,采用悬空隔板结构,提高冷渣器内各个分床的温度梯度,使高温渣按照一定的温降梯度冷却,防止高温红渣直接喷出,造成冷渣器内部结焦。 2.3.5 精心设计排渣口 根据物料颗粒大小,采用分别排渣技术,对粒度较小的颗粒,从溢流口喷射状自动溢出;而较大颗粒则从布风板排大渣口排出,从根本上杜绝了只有一个排渣口而出现的堵塞现象。

滚筒冷渣机资料

循环流化床锅炉冷渣器资料 冷渣机的发展历史:滚筒冷渣机是用于循环流化床锅炉底渣冷却,主要冷却方式采用水冷。最初我国普遍的是锅炉厂配套的引进技术的风水联合冷渣器,顾名思义冷却方式采用水冷和风冷联合方式。大家看图片: 风水联合冷渣器外形图

这种冷渣器由于易堵塞和排渣不畅,严重制约了机组的正常运行,我国前几年投入的很多循环流化床锅炉均是采用风水联合冷渣器,经过滚筒冷渣器改造后运行良好,且省却了耗能巨大的冷却风机。有关这方面的详细的数据比较将在后面章节进行描述。 现在各电厂使用的冷渣机有很多种,除上述提到的风水联合冷渣器外,还有现在循环流化床锅炉普遍配套的滚筒冷渣机,又分单管式和多管式(又叫蜂窝式),下面来讲滚筒冷渣机的发展历史: 滚筒冷渣机最初是由“水冷搅龙”演化而来,大致的结构是封闭的壳体内有一根带螺旋叶片的空心轴,轴内和叶片内通冷却水,锅炉排出的热渣通过空心轴带动螺旋叶片的旋转推动灰渣移动,在推进过程将热渣释放的热量传递给水,从而达到将灰渣冷却的目的。但是由于结构限制,水冷搅龙出力较小,推广和使用有很大局限性。随着机组容量的不断增大,迫切需要结构更好,出力更大的冷渣机,滚筒冷渣机应运而生。最初滚筒冷渣机虽然滚筒加大,理论换热面积增大,但是实际有效换热面积只有大约1/3可利用,这是因为它的结构只是在滚筒内壁布有连成一条线的螺旋叶片,进入滚筒内的灰渣只能与滚筒一部分接触,换热面积得不到充分利用。青岛松灵公司灵式滚筒冷渣机经过改进,增加密布纵向叶片,可以将热渣兜住,上升至滚筒最高点时抛洒,不仅将换热面积充分利用,还可以将热渣抛洒,充分冷却,避免了原结构冷却不均,实际冷却效果不理想的情况。为了区别,将这种改进后的冷渣机称为“灵式滚筒冷渣机”。为了更好的让大

供热燃气热水锅炉选型方案说明

供热燃气热水锅炉选型方案说明 天水成纪房地产开发公司拟对已建(分路口小区),供热采暖系统进行改造,经对小区现场实地勘察,以及和建设方对采暖问题的相关探讨,现将供热设备选型的基本参数及热力数据提供如下: 一.供热采暖的基本参数 1.供热总面积:70000m2 2.采暖形式均为地板辐射式散热 3.现有供热设备为地源热泵机组 4.单独为20000m2(两栋高层),采用燃气热水锅炉供热的可行性方案。 二.采暖热负荷的概算 采用面积热指标法对采暖热负荷进行计算,按下式进行 Q=q i F×10-3 根据《采暖通风与空气调节设计规范》GBJ19及《城市热力网设计规范》CJJ34,按当地最大热指标取值为75W/m2 的理论计算值。公式中: F—建筑面积(m2) Q—建筑物采暖设计热负荷(KW), q i—建筑物采暖面积热负荷(W/ m2) 1.总热功率:5250KW=5.25MW(取值5.6MW) 2.总耗热量:450×104 Kcal (65Kcal/m2.C0)

3.热源条件:燃气工业热水锅炉 4.供热型式;由锅炉房提供热源通过二次换热系统,为小区楼房输送地暖供热。 三.锅炉房水循环量理论计算值(G) ?t/h G=0.86?K?Q C?[ tg?th] 式中 Q————锅炉额定热功率 K————管网散热损失系数,取1.05 C————管网热水的平均比热容,kJ/Kg?0c tg————热水供水温度550C(地暖) th————热水回水温度450C(地暖) 代入数据计算值为:G=337m3/h 11.小区供热形式为地暖系统,属低温大流量辐射供热,供热锅炉房循环水量比传统散热器采暖系统要大,按照小区楼房分布位置及楼层高度参数,通过二次换热系统采取分区供热型式,能够满足小区整体供热质量和效果。 2.供热系统阻力由沿程压力损失,局部压力损失及设备内阻等因素决定,以输送管道规格及配件等数据计算确定。在循环水泵选型时综合考虑。 3.二次换热机组在循环水泵选型时应综合考虑上述流量,管道系统阻力及扬程的设计参数。 四.燃气热水锅炉选型 1.为保证小区采暖质量,综合考虑地暖系统的实际耗热

冷渣机技术规范

冷渣机技术规范书 : :

1 总则 ! 本规范适用于热电有限公司工程的冷渣器设备,它包括本体及辅助设备的功能设计制造、结构、性能、安装和试验等方面的技术要求。 本技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文。卖方保证提供一套符合招标规范书和有关标准的优质产品及其相应服务。 在签订合同之后,买方有权提出因规范标准和规程发生变化而产生的一些补充要求,具体项目由买、卖双方共同商定。 本技术规范书与合同具有同等效力,作为合同附件。 2设计和运行条件 概述 工程名称: 电厂位置: 设计单位: 工程简介:热源厂规划总容量为2×75t/h蒸汽锅炉+1×130t/h蒸汽锅炉+1×116MW 热水锅炉,本期工程建设1台75t/h高温高压蒸汽锅炉。配置一台园盘式冷渣机。 设备安装位置:锅炉间0.00米。 ? 锅炉技术参数 锅炉型式: 太原锅炉厂75t/h高温高压循环流化床锅炉, 型号:TG-75/。 设备概述 冷渣器用于将CFB锅炉的热态红渣冷却到小于100℃,回收渣的热量到除盐水,保护操作环境及工人的人身安全。热态红渣约1000℃,主要成分为渣、灰、矸石、石灰石等的混合物,物料粒度一般小于20mm。冷渣器冷却水采用广场喷泉水,系统压力约。冷渣器排渣至皮带输送机。 3.设备规范(表中空白处由设备厂填写)

4. 技术要求 制造的冷渣器,按国家有关标准、技术要求制造。符合国家有关产品质量要求,保证安全可靠、连续稳定运行,满足人身安全和劳动保护条件,冷渣机耐磨受压主要部件使用寿命≥5年,机架电机减速机等寿命应≥10年。 ;

除灰、除渣、脱硫系统培训教材

除灰渣、脱硫培训教材 (初稿) 某发电有限责任公司运行项目部

目录 第一篇除灰渣系统第一章除灰渣系统概述 第一节锅炉设计燃煤量、排灰渣量汇总 第二节除灰渣方式 第三节灰渣的组成 第二章除渣系统 第一节除渣系统概述 第二节除渣系统 第三节除渣供水系统及检修起吊设施 第四节除灰、渣系统的控制方式 第五节刮板式捞渣机系统的调试 第六节刮板式捞渣机的运行与维护 第三章电除尘器 第一节电除尘器概述 第二节电除尘器的构造 第三节电除尘器的工作原理 第四章电除尘器的运行和维护 第一节电除尘器的启动 第二节电除尘器的运行维护 第三节电除尘器的停运

第四节电除尘器的故障处理 第五节电除尘用微机控制高压整流设备 第五章锅炉除灰设备 第一节除灰专业设备 第二节离心泵 第三节空气压缩机系统 第四节卸灰机械 第五节气化风机 第六章正压浓相气力输灰系统 第一节输灰系统概述 第二节输灰系统的特点 第三节输灰系统的工作原理 第四节输灰系统的主要设备 第五节输灰系统主要故障分析与排除 第七章风机 第一节离心风机 第二节轴流风机 第三节风机的运行 第四节风机的常见故障及处理 第二篇烟气脱硫系统第一章烟气脱硫系统 第一节烟气脱硫系统概述

第二节吸收塔系统 第三节烟气系统 第四节石膏脱水及储存系统第五节石灰石浆液制备系统第六节公用系统 第七节浆液排放及收集系统第八节废水输送系统 第九节基本概念及计算 第十节脱硫岛的布置 第十一节脱硫岛的辅助设施

第一篇 除灰渣系统 第一章 除灰渣系统概述 第一节 锅炉设计燃煤量、排灰渣量汇总 一、锅炉设计燃煤量 (一)山西某发电有限责任公司2×300 MW 燃煤锅炉设计燃煤量见表 1—1 所示。 (二)燃煤供应运输 山西某发电有限责任公司2×300 MW 燃煤锅炉年耗煤量180万吨, 霍州煤电集团供应120万吨, 其中白龙矿供原煤60万吨, 白龙洗煤厂供中煤60万吨, 均采用皮带运输;辛置洗煤厂供洗中煤42万吨,地方煤矿洗煤厂供洗中煤18万吨,汽车运输。(二期上铁路运煤) (三)锅炉及相关设施参数见表 1—2所示。

火力发电厂除渣系统技术及应用

火力发电厂除渣系统技术及应用 发表时间:2019-03-05T14:44:26.940Z 来源:《基层建设》2018年第35期作者:高名园[导读] 摘要:以某火电厂锅炉改造为例,首先分析了影响锅炉结渣的因素,探讨了当前较多应用的干除渣技术的基本原理、系统及构成。中国能源建设集团黑龙江省电力设计院黑龙江哈尔滨 150078 摘要:以某火电厂锅炉改造为例,首先分析了影响锅炉结渣的因素,探讨了当前较多应用的干除渣技术的基本原理、系统及构成。通过在火电厂中应用干除渣技术,原水力除渣系统得到有益简化,还具有了节电、节水等特点,经济效益好。关键词:火电厂;除渣系统;干除渣技术;锅炉某火电厂总装机容量4×200MW,配置有4台高压、自然循环、平衡通风、全悬吊、燃煤固态排渣汽包锅炉(HG670/140-13型)。水浸式捞渣机将炉底渣捞出,然后将其破碎处理,最后经水力喷嘴冲到渣泵房渣池,由渣浆泵将其输送至厂外。针对该厂除灰系统所存在的诸如故障多、系统设备多、除灰与除渣环节多等问题,为了有效解决上述问题,该企业结合自身实况,最终选择了以钢带式输渣机为主的 干排渣系统。 一、影响锅炉结渣的因素 1.灰渣特性。灰熔融温度特性被广泛用作判断煤灰结渣性能的指标之一。灰熔融温度特性同灰的成分有关,一般而言灰中的酸性氧化物会提高灰的熔化温度,碱性氧化物则相反。同一煤种灰的熔化温度在氧化氛围中比在还原氛围中高。煤灰的高温粘度-温度特性参数也是初步评价煤粉炉结渣倾向的指标。该参数反应了熔融状态煤灰在降温过程中粘度与温度的关系。 2.锅炉设计因素。锅炉设计对结渣和积灰存在一定影响。由于锅炉设计的不同,同一煤种在不同锅炉中燃烧结渣表现也不同。锅炉设计的改善对预防结渣起着重要作用。 3.锅炉运行因素。煤粉细度、锅炉负荷及烟气温度均会影响结渣。煤粉过细将使煤粉气流着火快,燃烧区域局部温度升高,会加剧燃烧器喷口及其周围水冷壁结渣;煤粉过粗易造成炉膛上部和过热器结渣。锅炉负荷增加过多会使结渣增加,烟气温度的增加也将加剧结渣。适当加大过剩空气量能加大炉膛内氧化区范围,从而减少结渣。灰分中FeO和Fe都比Fe2O3熔点低。铁在较强的还原性气氛中,主要以纯铁存在;在一般性还原气氛中,则主要以FeO状态存在;而在氧化性气氛中,则呈Fe2O3状态。因此,灰熔点和灰渣结晶温度在还原性气氛中比在氧化性气氛中低。国外某燃用褐煤的500MW机组,将设计过剩空气量取值为30%~40%(体积百分数),以限制炉膛出口温度。 二、干除渣技术的基本工作原理当锅炉处于运行状态时,因冷灰斗落下的热灰渣,通过炉底排渣装置落至钢带式输渣机呈持续运作状态的输送钢带上,会随着输送钢带呈低速移动。受锅炉内部的负压影响,经钢带式输渣机壳体周围的通风孔,会进入一定的冷空气,这些冷空气会逐渐冷却在输送钢带上的热灰渣,使之再次燃烧,完成高温炉渣与冷空气之间的热交换,当冷空气受热,温度升至300~400℃时进至炉膛,而灰渣经冷却降至低于200℃时,便会被输送至碎渣机。对于炉底渣,其经过碎渣机完成破碎处理后进至中间渣仓,如果此仓发出高料位信号,炉底渣便会从中间渣仓,通过电动锁气给料机,被送至负压输送管道,经三级气固而分离完成过滤后,气体首先会冷却,然后经负压罗茨风机,实现外排,而炉渣会被收集至灰罐;如果罐内有高料位信号发出,炉渣便会通过卸灰球阀而被卸至储渣仓,最后在仓底被汽车送出。 三、系统主要组成炉底排渣装置位于钢带式输渣机与锅炉储渣斗之间。此机储渣斗间,依据金属膨胀节实现连接,并对渣斗的膨胀予以吸收。此机能够较好地防止大体积结焦渣块对输送钢带可能造成的冲击,另外,还能实现压头、预破碎处理。对于格栅而言,则能最大化降低炉膛辐射热对输送钢带所带来的影响,还能减少其热负荷。除此之外,还能将锅炉储渣斗出口关闭,便于后续更加方便地检修设备。此机结构与关断式闸板门较为类似,由驱动液压缸、隔栅、箱体、钢结构支架及挤压头等组成。共2套锅炉储渣斗,每套均有挤压头2对,油缸驱动共16个,缸挤压力60kN,出料粒度不大于280mm。在箱体外,设置有摄像监视器,能够对炉底排渣情况进行实时性监控。如果出现结焦状况,则需及时进行处理。如果有较难挤碎的焦块,可以运用专用工具,将相应隔栅抽出,使其落至输送带上,或细致观察窗手孔,进行人工破碎。 2.钢带式输渣机在干排渣系统中,钢带式输渣机为其核心设备,通常将其安装于炉底排渣装置出口处。此机由箱体结构、拖链刮板组件、输送钢带组件等组成。对于钢带输送部分而言,则由驱动机构、张紧机构、托轮、侧向限位轮及耐高温输送网带等构成;刮板清扫部分由张紧机构、托轮、链条及驱动机构等构成;箱体外侧设置有能够进行调节的进风口,而在箱体顶部,则有主进风孔2个,能够依据出渣量自动调节。针对拖链刮板张紧、输送带,则选用的是液压张紧方式,液压破碎机与压力源共用一套。另外,其内部还设置有蓄能罐。 3.碎渣机 此机实为一种单辊碎渣机,主要用作破碎炉底渣,提升冷却效果,出料粒度最大为15mm。 4.电动锁气给料机此机功能为把中间渣仓当中的炉底渣,比较均匀地送至负压输送管道,并对送料时的系统负压进行维护。 5.干除渣控制系统对于干除渣系统而言,其配置有先进的PLC自动控制系统,经CRT操作员站能够检测与控制储渣仓、碎渣机、炉底排渣装置、钢带输送机及负压输送系统等,确保系统的安全运行。系统将现场总线技术(PROFIBUS),用做现场设备与工程师控制站之间的信息交换系统,将网络通讯技术与工控的集散控制系统相融合,仅需2根电缆便能传输所有信息。 四、干除渣改造内容安装破碎机、给料机、碎渣机、中间渣仓、储渣仓,进行锅炉水封槽改造。加高水封槽内部的挡水板,从之前的水封槽内槽溢流,更改成外槽溢流,将溢流水外排至炉零米汽机侧的沟道中。对于水封槽供水而言,则从原先的除灰水更改成工业水,设置2个浮球阀,经水封槽水位,对工业水供水量进行有效控制。拆除锅炉冷灰斗喷嘴及附属供水管,避免由此而造成的漏水情况。此外,还应安装控制设备,进行系统调试、试运。 五、经济效益分析

冷渣机说明书

冷渣机使用说明书

一、工作原理 本滚筒冷渣机采用倾斜布置。主要由内部均布六棱管的转子、进渣管、进出水密封装置、齿轮传动装置和底座组成。当滚筒在传动装置的驱动下缓慢旋转时,锅炉排出的高温炉渣在重力的作用下从六棱管内通过,与夹层内的冷却水进行热交换,达到冷却的目的。 三、产品优点 1、滚筒采用倾斜布置,渣靠重力下落;转速很小,每分钟0~3转。使磨损降到了最低。同时渣道均采用耐热耐磨16锰钢,大大提高了关键易损件-内筒的寿命。 2、出力大:单台渣处理量大,这是其他型式冷渣器无法达到的。 四、操作指南 1、准备运行 a. 检查各连接旋转接头、减速机底座和管道法兰螺栓等是否松动, 各仪器仪表是否正常。 b. 检查各传动部件的润滑(轴承、托轮、减速机)等,是否缺油。 c. 打开进出水口阀门,检查各连接处是否漏水,并将冷渣器滚筒 上的排气阀门打开排尽筒体内的空气。 2. 设备运行 a. 开启冷却水系统循环正常3分钟以上。 b. 空载试车,启动冷渣器,把转速调到最低,然后进行高速运行,

观察10分钟以上,是否有异常现象。 c. 打开闸板门开始放渣,根据所需排渣量调整设备转速,最终达 到稳定。 3. 设备停运 a. 设备停止,先关闭落渣管板阀。 b. 待设备运转10-20分钟排尽筒体内炉渣,切断电源停止转动。 c. 待冷却水进出口水温达到一致时,关闭进水阀门。 五、日常维护 1. 日常检查冷渣机的运行情况,如电机、水密封等运行状况,发 现问题及时处理。 2. 检查减速机机油及轴承润滑情况,定期注油。 3. 巡检时,注意进口压力及流量,出口水温控制在90℃以下,以 防汽化。 六、设备运行注意事项 1. 该设备启动之前打开进出口水阀门。 2. 设备停运后,必须保持循环水系统一段时间正常运行,直接到 出水温度和进水温度一致,以防筒体内部过热损坏机器。 3. 停机时间过长时,冷渣机内应充满冷却水,减少腐蚀。 4. 采用连续排渣方式方法,因停机过长锅炉放渣管口处易结焦、 堵塞、造成停机。 七、故障与排除方法

锅炉除渣系统设计

锅炉除渣系统设计 一台 200MW 机组 670t/h 褐煤锅炉,每天排出的灰渣量约为 150~200 吨,因此锅炉的除渣问题显得日益重要。如何破碎、排放、输 送这些灰渣,既要符合环保要求、节约能源、水源,又要考虑灰渣 的综合利用,将是电厂急需解决的重大问题之一一整套的锅炉除渣 设备应包括以下三个主要部分: a.灰渣的排渣设备、粒化设备或碎 渣设备(包括排渣槽、粒化水箱、碎渣机等); b.将灰渣运送到堆 灰场的设备(包括各种机械卸渣设备、捞渣设备、输送设备等)及 系统; c.利用灰渣中热量的设备(如各种热交换器、蒸发器和空气 冷凝器等)。除渣设备的设计计算和选用需根据以下五个主要方面:1.锅炉燃用煤种的特性和煤灰数量及其物理和化学性质; 2.锅炉的 燃烧方式和排渣方式; 3.锅炉的容量; 4.电厂的水源条件; 5.环 保条例。煤灰的熔融性(灰熔点)和流变特性(粘温特性)与煤灰 的结渣特性有密切关系,于燃用结渣性较强煤的电厂,其除渣设备 在运行中出现的问题较多。例如:刮板式捞渣机经常会发生断销、 断链、叠链、链条掉道和卡涩,磨损快、不易排出较大焦渣,刮板 易弯曲变形;湿式水封斗除渣设备的活塞缸和灰渣闸门的密封圈老化,闸门密封性差,排渣时经常被渣卡住、打不开;辊式碎渣机被 大渣卡死;锤击式碎渣机的锤头磨坏、脱落、机体震动和格蓖易被 灰渣堵塞等。发生上述问题时锅炉必须立即减负荷运行,及时排除 故障,有时甚至需要停炉处理,将失灵和损坏的碎渣设备机构拆除,形成炉底开放式连续除渣。使炉底大量漏风进入炉膛,影响炉内燃 烧稳定,汽温升高,热效率降低,风机电耗增大,当灰渣颗粒中 SiO 2 /Al2O 3 >10 时大块焦渣有很高的气孔率(大于60%)和较 大的表面积,炉内结渣严重时,将近800~900℃的大块高温焦渣不 易粒化和破碎,许多大渣突然掉落水封斗中将会产生瞬时汽化,造 成气压聚增,引起爆炸。可见:除渣设备的好坏将直接影响到锅炉 的正常运行。随着燃料灰分和水分的不同,锅炉排出的灰分数量变 化范围就很大。例如:一台燃用灰分为 15%的次烟煤(30%水分)的 锅炉所产生的总灰量几乎为同等容量锅炉燃用灰分为 10%的高热值、中等挥发分贫煤所产生的灰量的三倍。锅炉的燃烧方式和排渣方式 不同所引起的排渣量变化也很大。例如:链条炉和抛煤机炉的排渣 量占总灰量之比可达60~85%,而煤粉炉一般只占20~40%;液态排 渣炉比固态排渣炉的排渣量要多得多。电厂的水源条件及灰场大小 是决定灰和渣处理系统选用形式(干式或湿式除灰渣系统,干式循 环水或闭式循环水系统)的前提条件。输送灰渣的水中的油和油脂,全悬浮固形物,PH 值等水质标准是否超过环保规定标准,也是选择

循环流化床锅炉冷渣器的改造及运行效果

循环流化床锅炉冷渣器的改造及运行效果 【摘要】本文通过对循环流化床锅炉冷渣器原理和运行现状分析,针对性的提出改造方案。 【关键词】循环流化床锅炉;冷渣器;改造。 0.引言 近年来循环流化床锅炉因其燃料适应性广、燃烧效率、脱硫效率高等优点得到了迅速的发展,但是循环流化床锅炉普遍存在着受热面磨损、进料难和出渣难的问题,特别是循环流化床锅炉的排渣问题直接影响着锅炉的安全稳定运行。 华电乌达发电有限公司CFB 锅炉原设计采用无锡锅炉厂生产的480 t/ h 循环流化床锅炉配套的风水联合冷渣器,2005 年6月投运。在运行中存在着结焦、磨损、漏水漏渣、流化效果差排渣温度高、冷渣器内部堵渣等问题。2007 年通过采用多通道射流床技术,对原有的冷渣器进行了改造,取得了良好的效果。 1.原冷渣器存在的问题 1.1冷渣器流化风量不足 冷渣器流化风量不足,各风室的渣无法流化起来,尤其能翻过隔墙的渣量非常少。由于设计的风机压头不足,进入冷渣器的风量较小,在炉膛渣量较多放下来时,各个风室的渣很难流化起来,尤其三、四风室之间的隔墙更难翻过去,因而冷渣器内的渣得不到充分的冷却,冷却水温几乎没有变化,严重时引起冷渣器内结渣;同时各个风室上下部温度相差较大,上部有时达到300 ℃,而下部有时仅仅只有30 ℃。 1.2冷渣器大渣排渣口螺旋给料阀容易发生卡涩 原设计的大渣排渣口采用的是螺旋给料机,出口的给料阀在出渣时很容易卡涩,所配电机多次被烧坏。在电机烧坏时引起大渣堆积,进而使冷渣器内结渣。 1.3炉底输渣刮板机故障频繁 设计在冷渣器底部有一输渣刮板机,用来把渣输送到渣仓里面,但由于渣量大,颗粒粗,刮板机经常出现电机过载现象,使得输渣机频频跳闸,同时也使得输渣系统运行时冒灰特别严重,使得现场烟雾迷漫,环境卫生恶劣。 1.4冷渣器对大渣的排放能力较弱 由于煤种变化及碎煤系统的问题,入炉煤的颗粒较大,且煤中石头较多,使得

冷渣机节能方案(文书特制)

冷渣排渣系统 技术经济效益可行性分析 2015年5月 第一章项目概述

1.1项目名称: 供热冷渣系统改造工程 1.2项目建设单位及负责人 1.3 承担可行性研究工作的单位及法人 法定代表人:白原毅 技术负责人:张树栋 编制负责人:刘维生 1.4 编制可行性研究报告的依据 姓名职称学历分工 刘维生工程师本科电力 张树栋工程师本科公用工程、土建工艺总图赵继惠工程师本科概算 白原毅高级工程师本科审核 《中华人民共和国环境保护法》 《中华人民共和国固体废物污染环境防治法》 《中华人民共和国大气污染防治法》 《内蒙古环境保护条例》

《内蒙古大气污染防治条例》 1.5 编制可行性研究报告的原则: (1)以环境保护、节约能源、安全防护与发电设备安全稳 定运行、经济效益同步发展为原则,采用国内先进的生产 技术装备,实现环保效益、节能效益和企业经济效益、社 会效益的同步发展。 (2)采用价格低廉,且在国内已成熟运行的冷渣输渣设备,充分利用和改造完善现有的生产管理设施,最大限度地节 约能源、保护环境和减少改造项目投资。 (3)本文描述的冷渣除渣系统改造工程可在热源厂主要设 备的正常运行状态下实施,。 1.6 编制可行性研究报告的范围。 除渣系统改造项目:主要对贵厂四台70MW链条锅炉所排放的炉渣,经冷渣机进行速冷,最后由贵厂的出渣设备输 送出去。 1.7 项目总投资36.8 万元。 1.8 结论 系统项目实施中,拟采用的关键技术设备HLCJ-10型水冷滚筒式冷渣机,是太原市宇力达电力环保设备有限公 司研制的产品,为目前国内锅炉冷渣设备中的先进机型, 已被广泛应用于新建电厂及老电厂锅炉改造中,达到了环

工业(民用)锅炉如何选型——容量的确定

工业锅炉(民用)如何选型 关于锅炉容量的确定 在新建厂或扩容改造中都会遇到这个问题,有的时候,由于设计院的专业人员对使用单位的工艺系统不是很了解,他往往都是根据用汽单位提供的理论数值来确定锅炉容量。锅炉容量的确定一般是由以下若干个负荷点累加之后得来的。 生产用户(N个)+采暖(北方地区)+非生产用汽+管损+不平衡系数+近期扩厂增容=蒸汽总耗量 说明:1、管损可以分别加到“N个用户中”。由于地区不同、管道敷设条件不同(直埋、地沟、架空)、保温条件不同等因素,管损也不尽相同,可以按照3%/每百米·每吨蒸汽来估算。 2、不平衡系数。由于用户特点,有的可以忽略这个条件,有的需要这个条件。当用汽设备需要快速启动,瞬时流量要大于平均流量时要考虑这一点,特别是北方地区,当多个冷态设备需要启动时,此时的蒸汽流量会大于平均流量,如果在供热系统中还有其它工艺在生产,而且有需要保证蒸汽压力,在这个条件下要考虑“不平衡系数”。例如有蒸汽喷射真空泵运转时,为了保证设备中有足够的负压,也是为了保证安全和产品质量,在确定锅炉容量的时候一定要适当加大锅炉容量。 不平衡系数一般以实际总负荷为基数,适当选高10%——20%为宜。 同时要说明的是,有人认为,设计总负荷=锅炉80%经济负荷,此

时已经有20%的瞬间不平衡余量了,这样可以不需要增加“不平衡系数”了?其实不然,不论是进口设备工艺还是国产设备工艺,它们向我们提供蒸汽耗量基本都是理论的,同时为了增加商业卖点,它们往往都向用户提供最佳条件参数,不会给你留有余量。 所以,不平衡系数一定要建立在如下条件下: 锅炉容量X80%=耗汽总量+不平衡系数 如果你感觉这个参数选高了,也不用怕。由于锅炉在长时间运行时其效率会逐渐下降,会弥补这次“失误”。另外,在生产实践中,不可预见的消耗还很多,所以这种选择是正确而又明智的。另外,在锅炉房设计原则上,有一句话叫“上选一档”原则,如果我们的总耗气量是16吨/每小时,由于在锅炉目录上没有17、18、19这三个规格,所以只能选择20吨容量的锅炉,你不会选择非标的15吨锅炉。 在下列情况下不需要“上选一档”原则,也不需要“不平衡系数”。例如用户只是瞬间耗汽量大,在间隔时间较长时可考虑选用双锅筒锅炉,以利用容水量大、蓄积能量多来,再加上选用较大的分汽缸来弥补不足。另外,如果有多个用户都是间歇而使用时间相对较短用汽时,此时可按总耗气量=锅炉总容量来选择。此种情况可在工艺设计中添加一种叫“蓄热器”的蒸汽储罐来满足需要。这两种选择其目的就是为了减少一次投资、降低消耗而考虑,在这里就不展开说明了。 锅炉台数的确定 确定锅炉配置台数需要总工要充分的了解用汽单位的特性、特点,适当、合理的确定锅炉配置台数,不仅会减少一次投资,而且还对节

循环流化床锅炉滚筒冷渣机安全技术规范示范文本

循环流化床锅炉滚筒冷渣机安全技术规范示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

循环流化床锅炉滚筒冷渣机安全技术规 范示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 范围 本规范规定了循环流化床锅炉滚筒冷渣机设计、制 造、安装、调试、运行、检修等方面的基本要求,适用于 循环流化床锅炉滚筒冷渣机(以下简称滚筒冷渣机)的安 全技术管理。 2 规范性引用文件 下列文件中的条款通过本规范引用而成为本规范的条 款。凡是注日期的引用文件,其随后所有的修改单(不包 括勘误的内容)或修订版均不适用于本规范,然而,鼓励 根据本规范达成协议的各方研究是否可使用这些文件的最 新版本。凡是不注日期的引用文件,其最新版本适用于本

规范。 GB150-1998 钢制压力容器 GB151-1998 钢制管壳式换热器 DL612-1996 电力工业锅炉压力容器监察规程 DL647-2004 电站锅炉压力容器检验规程 DL438-2000 火力发电厂金属技术监督规程 GB50058-95 爆炸和火灾危险环境电力装置设计规范DL5000-2000 火力发电厂设计技术规程 DL5007-92 电力建设施工及验收技术规范(火力发电厂焊接篇) DL/5047-95 电力建设施工及验收技术规范(锅炉机组篇) SD340-89 火力发电厂锅炉压力容器焊接工艺评定规程 DL/1035-2006 135MW级循环流化床锅炉运行导则

流化床锅炉冷渣器的类型及开发方向

供热热源 流化床锅炉冷渣器的类型及开发方向 刘洪龙, 商桂新, 张少锋 (济南锅炉集团有限公司,山东济南250023) 摘 要: 对各种流化床锅炉冷渣器的结构及特点进行了分析,探讨了冷渣器的开发方向。 关键词: 流化床锅炉; 冷渣器; 灰渣 中图分类号:T U995 文献标识码:B 文章编号:1000-4416(2008)05-0A01-02 Types of Flu i d i zed Bed Bo iler A sh Cooler and Its D evelop m en t D i recti on L IU Hong 2l ong, SHANG Gui 2xin, ZHANG Shao 2feng Abstract: The structure and characteristics of different kinds of fluidized bed boiler ash coolers are analyzed,and the devel opment directi on of the ash coolers is discussed . Key words: fluidized bed boiler; ash cooler; ash 1  冷渣设备的发展历程六五、七五期间,国家将流化床锅炉灰渣的冷却与综合利用列入国家重点科技攻关项目,旋转筒式、气力输送式、立式分配板逆流式、流化床冷渣器相继问世并投入运行,还研制出一批有价值的实验装置,如Z 形密孔板式冷渣器、渣封式冷渣器、百叶窗式冷渣器等 [1] 。20世纪90年代后,我国为了环境保 护、节约能源和综合利用资源,积极推广洁净煤技术,流化床锅炉在以燃烧劣质煤为主的基础上,迅速发展为燃烧多种煤种,容量越来越大,35~130t/h 级循环流化床锅炉的技术业已成熟,并向更大容量发展。因此,对冷渣器的技术经济性的要求也越来越高,对性能良好的冷渣器的需求量也在增长。国内虽有螺旋式冷渣器和旋转筒风水冷式冷渣器产品供应,但用户反映不理想。 2 冷渣器的类型2.1 作用 流化床锅炉的灰渣冷却主要目的是利用灰渣余热,提高锅炉热效率。主要作用为:加热锅炉给水,作为省煤器;预热空气,作为空气预热器;利用余热干燥煤,利于破碎与筛分;回收余热制备生活热水。 2.2 类型 ① 单管水套式冷渣器 单管水套式冷渣器在冷渣管和溢流管外面加设一层水套,作为省煤器。这是较原始,也是结构较简单的一种冷渣器。它的传热面积小,传热系数低,灰渣在冷渣器中停留时间短,冷却效果差,一般只能使灰渣温度降低100~200℃。 ② 搁管式冷渣器 可作为省煤器。在溢流口下搁置许多锅炉钢管,水从管内流过,灰渣在管间流过。水被加热后送至锅炉的给水系统。锅炉钢管有横向、竖向两种布 置方式,横向布置时的传热系数为27.2W /(m 2 ?K ),可使灰渣温度由800℃左右降至400℃左右; 竖向布置时的传热系数为28.14W /(m 2 ?K ),灰渣 温度可降至380℃左右。这种冷渣器体积大,消耗钢材多,冷却效果不理想。 ③ 螺旋(绞笼)式冷渣器 20世纪70年代,许多流化床锅炉由在用的链 条锅炉改装而成,一般都沿用原来的螺旋出渣机冷却流化床锅炉的溢流渣,但效果不理想,而且螺旋叶片易磨损,还出现卡死等现象。后来进行了改进,例 ? 10A ?第28卷 第5期2008年5月 煤气与热力 G AS &HE AT Vol .28No .5May 2008

12#锅炉冷渣机改造方案20110506

攀枝花三维发电有限责任公司 12#锅炉滚筒冷渣机 改造方案 批准: 审定: 初审: 编制: 生产技术部 二〇一一年五月

12#锅炉滚筒冷渣机改造方案 一、概况 12#锅炉原为四台气槽式冷渣器,现已将冷渣器A、B、D改造为WWR-X-20型滚筒冷渣机,还有一台气槽式冷渣器,在运行中气槽式冷渣器存在出力小、排渣温度高、检修困难、漏灰严重无法冶理问题,12#锅炉冷渣器C经二年多的气槽改混流式试验,从试验情况看未达到预期效果,冷渣器C自2009年下半年以来长期不能投运,已影响到12#锅炉安全、经济运行。从11#锅炉改造滚筒冷渣机运行情况看,排渣能力满足设计要求、排渣温度满足技术协议要求,基本达到改造目的,锅炉冷渣器已具备全面改造条件。根据公司2011年度技术改造计划,确定在12#机组年度大修中对冷渣器C进行改滚筒冷渣机工作。具体改造方案如下:。二、改造方案 (一)总体规划 按11#锅炉改造方式将冷渣机A、B、C、D放置于原一级刮板机标高3000mm (+500)位置,布置方式沿锅炉宽度中心线方向,增加二台螺旋输渣机(绞龙): 1、将支撑原冷渣器靠炉本体标高4490;D(1/2)至E(1/2)水平横梁H800水平下移1490mm,更改之前加固方式为在对应上方标高12000处D(1/2)至E (1/2)水平增加45#工字梁(A、B两侧相同,B侧为D(1/5)至E(1/5)柱)。 2、将支撑冷渣器靠炉外侧标高4490;D(1/1)至E(1/1)水平梁H800水平下移1490mm(A、B两侧相同,B侧为D(1/5)至E(1/5)柱)。 3、改造更换冷渣器A、C、B,尺寸:φ1650mm×4500mm(冷渣机A保护性拆除后进行修复,用于11#锅炉冷渣机B的更换);冷渣机B保护性拆除(返厂修理更换齿圈、支撑圈及内部漏点处理,作为11#锅炉冷渣B备品),冷渣机D进行全面检修,并改造更换进渣箱后安装。 (二)实施方案: 1、12#锅炉冷渣渣器改造内容: (1)拆除冷渣器C本体及附件,圆风门、执行器、热工、电气元件保护性拆

锅炉选型

? ? ? ? ? ? ? ? 使用燃料:柴油、天然气、城市煤气、液化石油气 1千瓦=3600/4.18大卡/小时=861大卡/小时

"上海真空热水锅炉150万大卡燃油真空热水锅炉说明: 1、真空热水机组始终在负压状态下运行,永无膨胀爆炸的危险,具有常压和有压锅炉所无法比拟的安全可靠性。 2、内置式不锈钢换热器,换热效率高,水质清洁。 3、烟管内置拢流片,增加了换热效果,使结构更加紧凑。 4、进口燃烧器,高效燃烧,噪音、废气排放极低,达到国家一类地区要求。 5、整体采用方形结构,整体喷涂,外形紧凑美观。 6、烟管内设有螺旋扰流片,强化了传热,提高了锅炉效率,降低了运行成本。 7、间接式加热:本体负压,系统承压。 8、大炉胆技术:有效增加了机组辐射受热面积,降低了NOX排放量。 9、炉水采用高纯水,确保炉体内部永不结垢、腐蚀。10.锅炉与换热器的一体化设计,节省空间,大大减少占地面积。 11、采用锅壳式全湿背三回程结构,动态加热,换热充分。 12、锅炉在负压状态下低温运行,安全可靠。 13、全自动控制系统,无须专人值守。 14、进口燃烧器,高效燃烧,噪音、废气排放极低。 15、独特的脉冲水位检测电路结构,性能可靠。 16、进、出水温度显示功能更加方便地掌握锅炉及系统的运行状况。

锅炉选型:YZK1.75-86/65-Y.Q

注:经双方技术交流商定后做出以下变动。 1、增加分、集水器,直径500mm、长度为2200mm,各1台 2、软水器调整为软化量5吨水。 3、去掉3台除氧水泵,由3台锅炉给水泵直接除氧给水。 4、锅炉房的配套阀门配至换热器出水口。 5、冷水管所需阀门配置至锅炉房外1米,不包含管件。 供方只提供控制柜本体。所需电缆连接线、信号线由需方负责。 真空热水锅炉工作原理:水在一个大气压(1bar)下,沸 点是100℃。压力低于1bar,水的沸点就小于100℃;压力为-0.7bar,沸点为90℃;压力为-0.3bar,沸点为70℃;压力为-0.1bar,沸点为40℃. 真空热水机组内部密闭腔通过真空抽气后形成一个真空腔,燃烧使热媒水在真空腔中沸腾汽化产生负压水蒸气,蒸汽在换热器管外凝结,将管内冷水加热升温并通至用户,水蒸气凝结后形成水滴流回热媒水,重新被加热汽化,如此完成整个 循环,机组正常工作压力小于-0.7bar。 热媒水是经除垢、脱氧等特殊处理的高纯水,由工厂出厂前一次冲注完成,使用时在机组内部封闭循环(汽化-凝结-汽化),不增加、不减少,在机组使用寿命不需要补充或更换

锅炉除渣系统改造建议

锅炉除渣系统改造建议 一、我厂锅炉除渣系统简介: 我厂锅炉除渣系统采用机械输送,在锅炉底部从东至西一共设有三个排渣管,在东西两个排渣管下方,各安装有一台SC8-43/20型气槽式冷渣机(编号为1#、2#)。1#、2#冷渣机均由南侧进渣,北侧排渣。在1#、2#冷渣机排渣口下,沿东西方向布置有一部DS540型链斗输送机(编号为1#)。在1#斗式输送机的出口转载点下方,沿北南方向布置有一部DS540型链斗输送机(编号为2#),2#斗式输送机的出口进入渣库。 排渣工艺流程为: 正常运行时:锅炉排渣管——――1#、2#气槽式冷渣机——-1#斗式输送机——2#斗式输送机——――渣库————汽车运输至排渣场地。 机械输送系统发生故障的情况下,用1#、2#气槽式冷渣机中间的事故排渣管放渣,然后由人工运输。 二、现有除渣系统存在的问题与不足之处: 1、冷渣机的出力低,不能满足锅炉正常运行的需要。 设计工况下,锅炉的排渣量计算为12.06T/h(290T/d),而冷渣机的额定出力只有8 T/h,两台冷渣机必须同时运行才能满足运行。而在校核工况下(煤:矸为3:7,实际取样化验低位发热量只有1846千卡/千克),锅炉的排渣量计算为23.5T/h(564 T/d),两台冷渣机同时运行,出力只有16 T/h,远远不能满足运行。 2、锅炉事故排渣口处的场地狭窄,事故情况排渣时,场地空间太小,无法使用平车运输。

3、排渣系统是单系统运行,一旦其中一部输送机发生故障,都会使整个系统停运。 4、气槽式冷渣机采用风、水两种冷却工质作为冷却介质,因此又专门配有冷渣风机和冷却水系统。一旦冷渣风机出现故障就会使冷渣机降负荷或停运。而冷却水系统的问题更突出:由于采用循环水作为冷却水,极易引起结垢,损坏冷却水管。 5、采用这一除渣系统,必需设置专人在锅炉零米监视设备运转情况,并及时处理下渣不畅、堵塞等问题,员工的劳动强度大。 6、由于系统的正常运行完全依赖与转动设备的运转状况,可靠性小,维护工作量大。 7、由于炉渣在冷却、运输过程中处于非封闭状态,跑灰、二次扬尘会严重污染厂房及厂区环境。 三、改造目的: 四、改造方案: 针对锅炉除渣系统存在的问题与不足之处,我厂组织有关技术人员进行了研究,认为采用目前的除渣系统从根本上不能保证锅炉按额定工况正常运行。为此,应该对锅炉除渣系统进行改造。同时确立如下原则: 1.改造后的系统要有高度的运行可靠性; 2.在保证运行可靠的前提下,应尽量采用非机械除渣系统,以减少运行值班人员的工作量和检修维护工作量。 在上述原则的指导下,我厂组织相关人员进行研讨后认为,采用水利冲渣是一种较理想的除渣方式。具体的方式是:

相关主题
文本预览
相关文档 最新文档